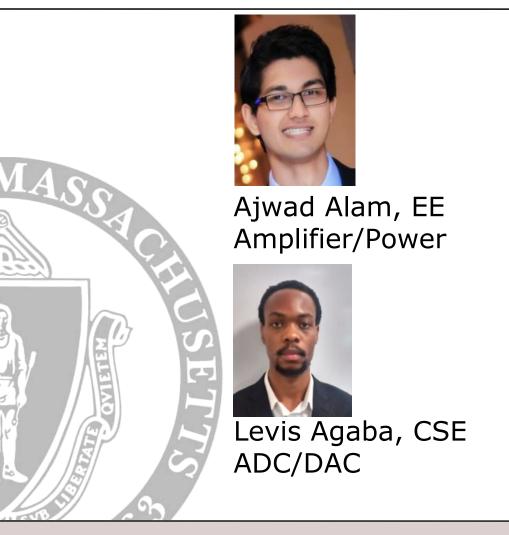
Final Project Review



Sync-In April 14, 2016

Department of Electrical and Computer Engineering

Advisor: Professor Gao

Sync-In

Joseph Bellve, EE Housing/PCB

Carl Senecal, CSE Networking/Integration

Department of Electrical and Computer Engineering

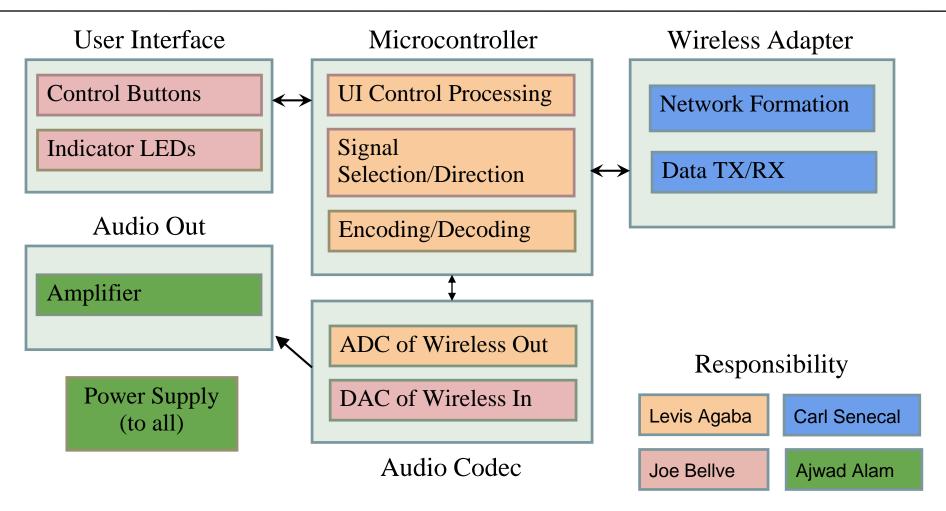
Advisor: Professor Gao

Agenda

- Project Overview
- Specifications
- FPR Deliverables
- Demo

Sync-In Overview

- Broadcast audio from one set of headphones to many in a local area via WiFi
- Independent of Internet connection or phone data plan
- Various applications
- Social Bring together strangers in unfamiliar situations through music
- Conferences/Events Broadcast translations in multiple languages


Specifications

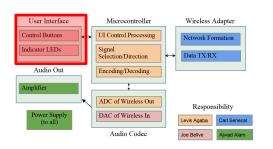
Ease of Use	Clear controls and indicators				
Size	 Small enough to fit in headphone enclosure 				
Power	 Use as little power as possible; ideally 4-8 hours of battery life 				
Network	 Free WiFi network (no need for ISP or data plan) 				
Concurrent users	 Minimum 3 users (one broadcaster, two listeners) 				
Streaming	 Minimum 192 kbps audio quality 				
Quality	No noticeable drops/stuttering in playback				
	 Near-synchronous listening 				
Range	 100 foot radius 				

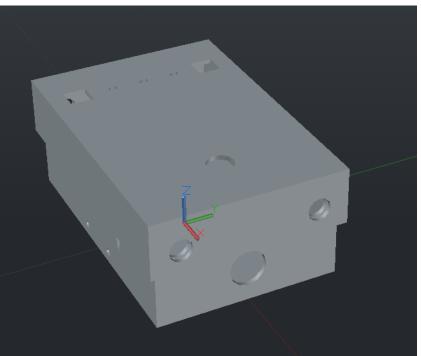
Specifications

Ease of Use	Clear controls and indicators			
Size	Small enough to fit in headphone enclosure			
Power	Use as little power as possible; ideally 4-8 hours of battery life			
Network	Free WiFi network (no need for ISP or data plan)			
Concurrent users	Minimum 3 users (one broadcaster, two listeners)			
Streaming	Minimum 192 kbps audio quality			
Quality	No noticeable drops/stuttering in playback			
	Near-synchronous listening			
Range	100 foot radius			

Block Diagram

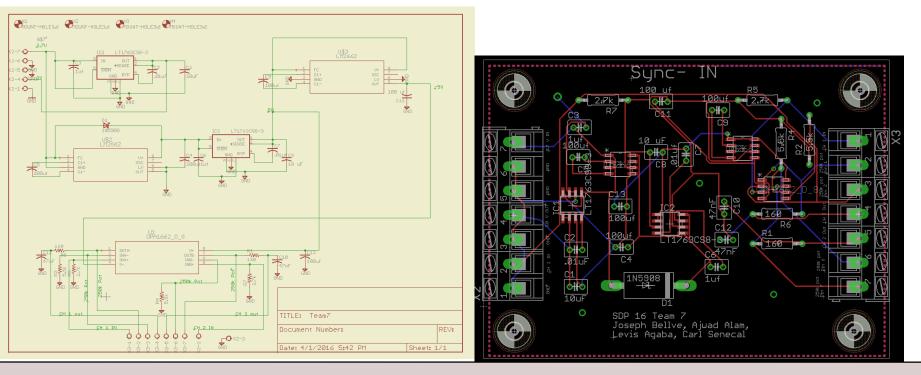
CDR Review


- Two-channel audio amplification
- Partially integrated mobile power supply
- One-to-one board communication and one-to-one group formation
- Audio communication between two boards

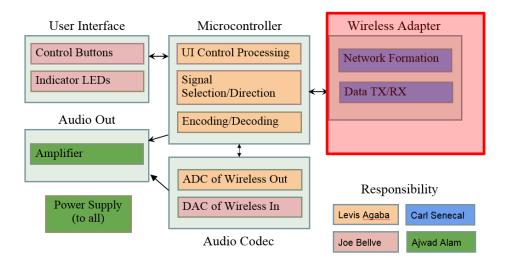

FPR Deliverables

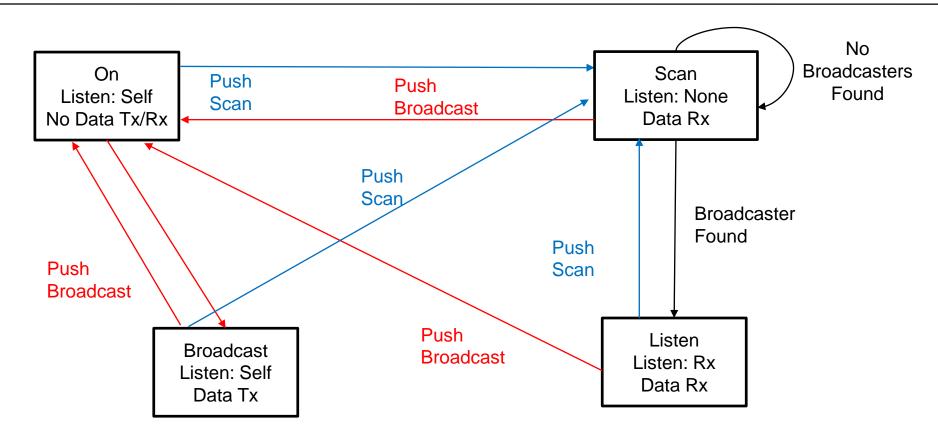
Deliverable	Responsible	Achieved	Comments	
Multi-Person Groups	Carl	Yes	Transceiver Mode	
Audio Broadcast	Carl	No	Tx/Rx functions incomplete; API problems	
PCB Development	Joe	Yes		
Enclosure	Joe	Yes	Larger than planned	
Power supply to all subsystems	AJ	Yes		
Audio Quality Improvement	Levis	Yes	192 kbps	

Subsystem 1: User Interface


- Built the Housing in AutoCAD2016 Student edition
- 3D printed at Digital Media Lab in W.E.B. Du Bois Library
- Has two buttons which control the state.
- Has 3 LED's that notify the user of the current state.

Printed Circuit Board


- Built on Eagle
- Manufactured by OSH Park


Department of Electrical and Computer Engineering

Subsystem 2: Networking

- System supports full one-to-one communication
- Listeners can scan and choose between different transmitters
- Can broadcast (one-to-many) data, but not audio

State Diagram

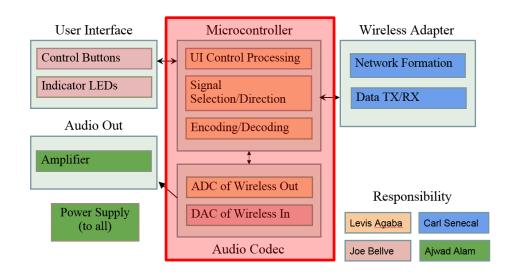
Code

- System Thread Monitors for network events
- I/O Event Thread Watches for and processes button presses
- Audio In Thread Depending on state, forwards line in to a socket, places line in the play buffer, or does nothing
- Audio Out Thread Depending on state, listens for audio data on a socket and places that data in the playback buffer or does nothing
- Networking Configures board in Access Point or Thread Station mode and handles network connection events

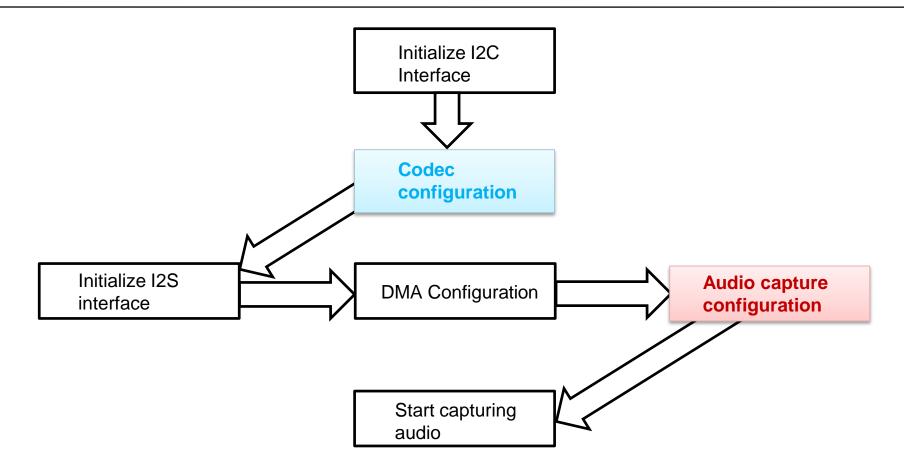
Code Flow

- Initialization: Board Setup, Pin Setup, UART Setup, Thread Creation (System, I/O Event, Audio In, Audio Out), Thread Launch
- Board loops back audio until a button is pressed
- Button Handler starts AP or STATION thread and sets flags for use by the Audio In and Audio Out threads according to a state machine
- AP/STATION thread configures soft AP with SSID, key, operating channel, transmission strength, connection policy, handles connection to AP, assigns IP addresses, creates socket for Audio Tx/RX, handles all network events like device connection and disconnection

Subsystem 2: Networking


- Challenges: API Limitations and Transmission Rates
- Broadcasting
 - CC3200 AP Mode Supports only 1 client at a time
 - Workarounds via IP addresses are not viable
 - Client needs to associate with AP before accepting packets
 - Cannot associate new clients at an AP without disassociating current client
 - Solution: Transceiver Mode
 - Bypasses Network & Link Layers
 - Requires re-implementing transmission and receive protocols and does not work with essential API functions

Subsystem 2: Networking


- Transceiver Mode
 - No collision protection
 - Need to filter packets manually
 - Many API functions do not work properly with raw sockets
 - Receiving packets to file is broken
 - Between buffering issues and noise, audio is mostly static, unrecognizable
 - Demo shows basic broadcast functionality with data only

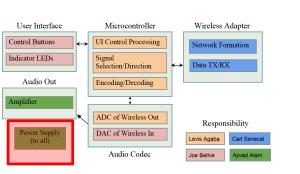
Subsystem 3: Audio quality

- 16bit (Default) bit resolution (option to use 24bits)
- 44.1kHz sampling frequency (16kHz for decent quality)
- 48kHz sampling frequency at 16bit resolution

Program Flow

Audio Codec Specs

- Stereo Audio DAC with 100db SNR
- 4.1 mW Stereo 48ksps DAC Playback
- Stereo Audio ADC with 93 dB SNR
- 6.1mW Stereo 48ksps ADC Record
- Support Sample ADC sample rate 8kHz to 192kHz
- DAC supports data rates form 8kHz to 192 kHz


Subsystem 4: Power Supply

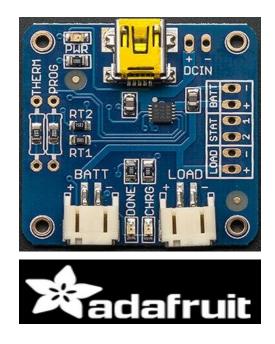
- Lithium Polymer Ion
 - 3.7V, 2500mAh

Powers amplifier, MCU & codec

Fed to voltage regulators -LT1763CS8-3 (3V) -LT1763CS8-5 (5V)

5V generation is done in two steps

LT1763CS8-3


LT1763CS8-5

Department of Electrical and Computer Engineering

Subsystem 4: Power Supply

5V Generation
 3.7V LM2662 ≈7.4V LT1763CS8-5 to amplifier block

Charging circuit from Adafruit
 5V input via mini-B USB connector
 Default charge current ≈ 500mA
 Duration for full charge ≈ 5 hours

Cost Analysis

item	qty	unit price	total cost	
boosters	3	\$ 29.00	\$ 87.00	
batteries	3	\$ 15.00	\$ 45.00	
headphones	3	\$ 15.99	\$ 47.97	
launchpads	3	\$ 29.99	\$ 89.97	
pcb	3	\$ 10.00	\$ 168.00	
capacitors	39	\$ 1.70	\$ 66.30	
resistors	18	\$ 0.15	\$ 2.70	
audio cables	3	\$ 3.00	\$ 9.00	
potentiometers	3	\$ 3.99	\$ 11.97	
opamp	3	\$ 2.10	\$ 6.30	
battery charger	3	\$ 12.50	\$ 37.50	
lm2662	6	\$ 2.52	\$ 15.12	
voltage regulators	6	\$ 2.30	\$ 13.80	
totals			\$ 600.63	

Department of Electrical and Computer Engineering

Demo

- Part 1: Video of Broadcast Communication
 - One board broadcasts data to two others on the same channel
 - One-to-many communication
 - <u>Video</u>

Demo

- Part 2: Three parties that can act as listeners or transmitters
- Unicast
 - Listener board tunes to first transmitter
- Channel changing
 - Listener board tunes to second transmitter
- Role changing
 - Listener board changes to transmitting, transmitter changes to listening

RED = Scan/Active Listener Mode

- BLUE = Loopback
- GREEN = Broadcast Mode

Thank You

Questions?

Department of Electrical and Computer Engineering