Preliminary Design Review

S.H.A.R.C. Simulated Hand and Arm Remote Control

Team 6

Connor Pope, Daniel Sheridan, Derek Caudill, Harrison Shecter

October 22, 2015

Department of Electrical and Computer Engineering

Advisor: Professor Bardin

Project Description

- Our SDP team is going to design and build a system that controls a robotic arm wirelessly using wearable sensors.
- The robot arm is an open-source 3D printed design in order to focus our efforts on designing and building the controller

The Arm

- InMoov Robot Project
 - Open source
 - Directions on how to assemble the arm are provided
 - All parts and 3D models are given

Significance and Societal Impacts

- Bomb Defusal
 - Animatronic control -> Better accuracy + more intuitive control = Safer and more efficient defusal
- Medical Surgeries
 - Animatronic control maps to surgeon muscle memory
 - Scaled robotics leads to scaled surgeries
- Quality of Life
 - Robot arm + drone = Reaching the unreachable
- Manufacturing
 - 100 Robot arms + 1 glove/sleeve
- Defense
 - Non-autonomous and unmanned weapons

Alternatives Approaches

	Joystick Controller	Electrode Based System	Visual Tracking
Advantages	 Simplest design Inexpensive to produce 	 Allows control of limbs that aren't necessarily there (i.e. for use in prosthetics) 	 Precise optical mapping from user's image
Disadvantages	 Lacks intuitive control High learning curve 	 Requires background in bio Expensive Noise from small signals 	 Design requires high resolution optical sensors Very CPU intensive

Requirements - Specifications

- Five degrees of freedom for arm movement
- Individual finger control
- Wireless communication between sensor glove/sleeve and robot arm
- Maximum latency of 500 ms
- Sensor glove/sleeve can be used by multiple users

Requirements – Input/Output

- Inputs
 - Accelerometer force data
 - Gyroscope orientation data
 - Flex sensor data
 - Feedback sensor data
- Outputs
 - Servo angle/rotation
 - Independent for each servo
 - Capture motion recording library

High Level Block Diagram

Distribution of Responsibilities

Connor	Derek	Harrison	Dan
- R Pi Robot Arm programming	 Sensor selection and placement on 	 Calibrating and testing servos 	- R Pi Sleeve Programming
 Use sensor data to compute arm 	- Sleeve/glove	 Sensor selection and placement for 	 Receive data from Sleeve
movements	assembly	feedback	 Transmit data to robot arm
 3D Printing of parts and 	 Flex sensor bias network 	- Power supply	- Communication
assembly of 3D printed parts		 Assembly of 3D printed parts 	architecture for Raspberry Pis

Sensor Glove + Sleeve - Derek

Sensor Glove + Sleeve - Derek

- Gyroscope and Accelerometer
- Signal amplification and

Sensor Glove + Sleeve - Derek

Flex sensor

- Variable resistance based of bend of strip
- Voltage divider with flex sensor to measure finger movement

Sleeve R Pi - Dan

Sleeve R Pi - Dan

- Chosen WiFi Adapter is the Edimax EW-7811Un
- Supports 802.11n
- Cheap
- Compatible with R Pi

EDIMAX

Robot Arm R Pi - Connor

Robot Arm - Harrison

Robot Arm - Harrison

- Servo models provided by instructions for InMoov robot arm
 - HS-808BB for arm
 - MG996r for fingers

MDR Deliverables

- Functioning ad-hoc Wi-Fi communication between Raspberry Pi's (Dan)
- Sensor glove complete and sending signals to Raspberry Pi (Derek)
- Raspberry Pi on robot arm sending control signals to finger servos (Connor)
- Servo power supply for fingers and assembly servo calibration (Harrison)
- 3D printed and assembled robot hand/arm (All)