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Abstract—The Pothole Tracker is a system of devices that 

gathers and stores information about potholes encountered on the 

road. The first Raspberry Pi board, containing sensor units, is 

mounted on the front of the vehicle while the second Raspberry Pi 

board, containing the storage, image processing program, and 

button to activate the system, is located within the vehicle. The 

system is connected to the internet through a Wi-Fi dongle which 

sends information gathered by the sensors to a database. A 

website is connected to the database to display the data on Google 

Maps to users, such as the Department of Public Works, in a 

user-friendly manner.  

 

I. INTRODUCTION 

OTHOLES are holes formed in the pavement as by 

excessive use or by extremes of weather. They have 

become a nuisance and hazard to drivers everywhere since the 

dawn of paved roads. These craters have caused serious 

damages to cars resulting in costly repairs. According to AAA, 

potholes have cost drivers $6.4 billion a year. This is around 

$2,000 throughout the life span of a car just from road 

conditions. Road conditions are costing drivers, potholes being 

at the forefront of the cause forcing drivers to demand their 

efficient repair.  

 The first step to solving a problem like repairing potholes is 

being able to know where a pothole is located. Not all potholes 

are big enough in size and depth to cause damage and certainly 

not every pothole can be repaired. How do we keep track of 

potholes and their level of needing repair? 

 Most places like cities have a database of potholes setup, 

storing their location, size, and status of repair. The city of 

Seattle, Washington has an implementation similar to this but a 

key factor is how this information is acquired and stored. The 

citizens of Seattle have to submit forms reporting potholes, 

which then are reviewed and put into a database. Although this 

method is useful because who better to ask than those who 

actually use the roads but submitting a form is a hassle and so 

is manually storing the information into a database. With the 

advancement of technology there are better ways to keep track 

of potholes. 

 The majority of today’s adults drive on the roads making 

this problem one that affects the vast majority. On top of it 

they have to deal with the consequences of something they 
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have no control over fixing besides submitting a request form. 

Potholes are timeless in the sense that for as long as there are 

paved roads, they will become damaged and potholes will 

form. 

An efficient solution to this problem would be a system that 

can track potholes and submit the required data into a 

database. Regardless of the technology, the system will need to 

go out into the field and analyze the potholes first hand.  

Therefore the device needs to be compact enough to fit into 

a vehicle and not be in the way of anything. In addition it 

needs to be able to be powered by the car itself. It has to 

transfer data so wireless and network capabilities are a must. 

There will also need to be driver input to tell the device when 

to start analyzing the pothole. 

 

Specification Value 

Power <5V 

Height <6in 

Width <6in 

Length <6in 

 

II. DESIGN 

A. Overview 

The solution we came up was to use sensors and image 

processing to extract important information like size, depth, 

and location to store into a database. We decided to use 

Raspberry Pi boards for our system because they are compact 

powerful microcomputers. They are capable of a lot at an 

affordable price. There will be two boards that will be used in 

the system. One will be used for all the sensors like the 

accelerometer, sonar, GPS, and camera and the second will 

serve as the NAS and image processing board. The driver has 

to travel around 30 mph, which is a good speed for residential 

areas. When the driver sees a pothole coming up from at least 

50ft away they press a button that activates all the sensors. The 

camera takes 20 pictures in a sequence and the board chooses 

one to be sent off to the NAS to be stored along with a GPS 

location, accelerometer reading, and sonar depth. When the 

NAS receives the pothole picture, the image processing runs 

and extracts the diameter. When the driver presses a second 

button the NAS sends the data to a database to be stored. A 

webpage will access the database and display the locations of 

potholes on a map. 

Incorporating a button into a system requires additional 

hardware that ensures reliable switching. Switch bouncing is a 
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problem that degrades the integrity of a mechanical switch. A 

switch bounce occurs when a mechanical switch is opened and 

closed. When this happens, unnoticeable vibrations on the 

contacts within the switch vibrate. This vibration causes the 

switch to open and close several times, typically within a 

period of a few hundred microseconds. An example of a 

switch bounce is shown in Figure 3, where the switch bounces 

twice before settling to a logical High. Switch debouncing in 

digital circuitry is very important when applications require 

precise timing. If a bounce were to occur, the Raspberry Pi 

would interpret the faulty input as multiple button pushes. 

There exists both software and hardware solutions to the 

switch bouncing issue. For the purposes of this project, 

hardware will be used. This decision was made based on the 

need for conserving processor resources for the image 

processing. Image processing will consume considerably more 

resources than switch debouncing, so eliminating the need for 

software is desirable whenever possible. 

The circuit chosen to settle the switch bouncing is an RC 

debouncer that utilizes a Schmitt Trigger. The schematic for 

this circuit is shown in Figure 4. The circuit operates as 

following. When the button is not pressed, the capacitor 

charges through the series combination of R1 and R2 to a 

voltage close to Vcc. The voltage across the capacitor is the 

input voltage to the Schmitt Trigger inverter. When the 

capacitor is charged to Vcc, the output of the Schmitt Trigger 

Figure 1: Block Diagram 

 

Figure 2: Accelerometer Reading 
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will output 0V, a logical Low. Alternatively, when the button 

is pressed after charging for some time, the capacitor will 

discharge through R2. This causes the voltage across the 

capacitor to go to 0V. If the voltage across the capacitor is 0V, 

the Schmitt Trigger will output Vcc, a logical High. 

The design of this circuit focuses on maintaining a certain 

voltage long enough to settle any bouncing. The equation that 

dictates the voltage across a charging capacitor as a function of 

time is, 

Vcap = Vfinal(1 – e
-t/RC

) 

The previous equation can be rearranged in order to solve for 

R, 

R = -t/C*ln(1 – Vcap/Vfinal) 

Choosing a value of 0.1μF for the capacitor, C, is the first step 

in determining values for R1 and R2. The equation accounts for 

resistance in the exponent as R, which is equivalent to R1 + R2. 

Vcap is the voltage across the capacitor. The Schmitt Trigger 

will switch from a logical Low to High when the voltage 

across the capacitor goes above 0.8V. Therefore, Vcap = 0.8V. 

Vfinal is the voltage the capacitor is charging to, which is Vcc. 

For this project, Vcc = 5V. Finally, the time required to settle 

the bouncing comes from Figure 3, where the switch settles in 

approximately 175μs. This is the worst-case time recorded 

from numerous tests. Substituting these values into the 

previous equation yields R = R1 + R2 = 10037Ω, which will be 

rounded to the closest standard resistance value of 10kΩ. 

Another expression for R is needed in order to find values for 

R1 and R2. Consider the following equation for a capacitor 

discharging, 

Vcap = Vinitial(e
-t/RC

) 

This equation can be rearranged as an expression for R, 

R = -t/C*ln(Vcap/Vinitial) 

Vcap assumes a value of 1.6V, the voltage at which the Schmitt 

Trigger will switch from a logical High to Low. Vinitial is 

equivalent to Vcc (5V). The values for C and t used in the 

previous calculation remain the same in this calculation as 

well. Substituting these values into the previous equation for R 

yields R = R2 = 1536Ω. The value for R2 will be rounded to 

1.5kΩ. 

There is now a system of two equations in order to solve for R1 

and R2, 

R1 + R2 = 10kΩ 

R2 = 1.5kΩ 

Solving for R1 yields a value of 8.5kΩ, which is rounded to 

8.3kΩ. The final design involves the following components, 

R1 = 8.3kΩ, R2 = 1.5kΩ, C = 0.1μF, and an SN74LS14N 

Schmitt Trigger will be used. The following graphic shows the 

output of the switch debouncing circuit. Note how the voltage 

rises sharply without any bouncing. This is the desired effect. 

There were many other technologies we considered aside 

from image processing. Lasers were a promising idea but 

obtaining one was expensive and out of an efficient budget. 

Lasers would have been able to perform a 3D reconstruction of 

the pothole, which would allow us to manipulate it and 

perform the necessary calculations. There was also an issue of 

generating multiple lasers or rotating one laser across the road. 

Figure 3: Before Debouncer 

 

Figure 4: Debouncer Circuit 

Figure 5: After Debouncer 
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The complications lead us to find a more simple method. We 

also considered using sonar over the use of a button input to 

allow the system to automatically detect when a pothole was 

approaching. Unfortunately the available sonars for Raspberry 

Pis had a limited range of fifteen feet restricting the amount of 

time to process and record from the cameras. 

B. Block 1: Raspberry Pi 1 

The first Raspberry Pi board will be equipped with a 

camera, GPS, accelerometer, and sonar. The system will be 

activated with the press of a button. In order to attain accurate 

results for the depth of potholes, accelerometers are placed on 

the front, left and right control arms of the test vehicle. This 

mounting location was chosen because the control arm is 

unaffected by the vehicle's suspension system. If the 

accelerometers were mounted elsewhere, the suspension 

system of the car would dampen the force experienced by the 

accelerometers, yielding an inaccurate result.  The 

accelerometers utilized in our final design are ADXL335 

analog accelerometers. Analog accelerometers were chosen 

over digital because the output of each accelerometer is 

filtered before being converted into a digital signal via an 

analog to digital converter(ADC). In order to determine how 

the accelerometer output should be filtered, we mounted 

accelerometers to the vehicle and recorded several tests where 

potholes were struck. These recordings were then analyzed by 

a MATLAB script that computed the Fast Fourier 

Transform(FFT) of the time-domain signal. The FFT of a 

pothole test is shown in Figure X. These results yielded spikes 

at approximately 15-18Hz. This indicates that the test vehicle 

oscillates at around 15Hz when a pothole is struck. 

 The next step in the design of the accelerometer block in 

the system was to construct filters to suppress frequencies 

above the 15-18HZ range. Two filters are needed, one filter 

for each accelerometer. We chose a third order Sallen-Key low 

pass filter topology to achieve a desired bandwidth at very low 

frequencies. The cutoff frequency of the filters was chosen to 

be approximately 20Hz. The third order configuration 

provides a 60dB/dec roll off, which very effectively rejects 

frequencies beyond the 15-18Hz range while maintaining the 

desired signals.  In order for the Raspberry Pi to analyze the 

data yielded from the filters, a 10-bit , 8-channel ADC was 

chosen to convert the analog, filtered data. Only two channels 

were utilized, one channel for each accelerometer. The number 

of channels refers to the number of inputs the ADC can handle. 

With a resolution of 10 bits, the ADC outputs values from 0-

1023, which corresponds to a voltage detected on the input of 

the ADC. For example, an ADC output of 0 means that 0V is 

applied to the input. An ADC output of 1023 occurs when 

3.3V or higher is applied to the input. In order for the signal to 

rest in the middle (512) of the ADC's range, the output of the 

filters were DC biased at 1.65V. Biasing the signals at 1.65V 

allows for a maximized swing in accelerometer readings. If the 

signal were coupled to ground, only the positive components 

of the signal would be present.  The final design was soldered 

to a prototype board in order to make the filter and ADC 

circuitry more robust. A printed circuit board (PCB) was 

designed in EAGLE to accommodate the circuitry. However, 

the PCB was too expensive for our budget, which is why the 

prototype board was utilized. 

For our GPS we chose to buy an Adafruit Ultimate GPS due 

to its low cost at $40 and low maximum error of about 10 

meters. The GPS is connected to a USB port on the raspberry 

pi sensor board through a USB to TTL serial cable. As soon as 

the GPS receives power it outputs NMEA sentences. The 

National Marine Electronics Association created a protocol to 

define the format certain devices transmit data and our GPS 

follows this protocol. Before the GPS achieves a fix on the 

satellites the NMEA sentences it outputs will be incomplete, 

which means achieving a fix as fast as possible was crucial. To 

achieve a fix faster we attached an external antenna to our 

GPS, which was placed on top of the car. The antenna 

improved our time from powering on the GPS to getting a fix 

from about 5 minutes to around 30 seconds. Once the GPS has 

a fix we had to extract the appropriate data out of our NMEA 

sentences. We chose to find a $GPGGA sentence because they 
Figure 6: Frequency Domain Representation of Force from 

Pothole 

Figure 7: Time Domain Representation of Force from 

Pothole 
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contain the time, latitude and longitude. When the user presses 

the button to signify a pothole a python program will read the 

data coming into the USB port from the GPS, once it reads a 

$GPGGA sentence it records the sentence and writes it to a 

text file, then stops reading data from the USB port. From 

there the python program parses the $GPGGA text file for the 

time, latitude and longitude. The program then converts the 

latitude and longitude into a format that Google Maps can 

read. This is because with NMEA sentences the first 2 digits of 

the latitude (and 3 digits of the longitude) are in degrees 

formats while all the following digits are in minutes, so we 

divide the values reported in minutes by 60 and then add those 

to the respective values reported in degrees to give our latitude 

and longitude in degree format. Then we create a new GPS 

text file that contains the folder number, the time, the latitude 

and the longitude in a format that the NAS can grab and 

recognize.  

Getting the depth of a pothole using an accelerometer 

required the car to drive into the pothole, which is not ideal 

unless the pothole is unavoidable. In most cases a driver will 

drive over a pothole. Originally, the depth was to be extracted 

through image processing but it proved to be difficult. 

Therefore a sonar was added in order to extract the depth from 

sound waves. The idea behind a sonar is that it sends sounds 

waves and when those waves hit a solid wall or object, the 

waves return. Using the time it takes for the waves to come 

back, you can calculate the distance to the object or wall the 

waves bounced off of. The distance to an object is calculated 

by multiplying the speed by the time. The speed of sound is 

343 m/sec. We use half of the recorded time value because we 

want the to use the time it took the waves to reach the object, 

not the time it takes to bounce off the object and come back. 

The sonar runs for about 3 seconds, calculating distance 

values. When the car drives over the pothole, the distance will 

be greater than any other value because all other distances 

should be the distance to the ground. The largest distance is 

taken and the distance to the ground is subtracted from it to 

calculate the depth of the pothole. The depth is written to a 

text file and sent to the NAS. 

All four sensors are synced in that they all run in parallel 

when the user presses the button. Once each has gathered its 

data and created its text file, it sends the text file off to the 

NAS.  

C. Block 2: Network Attached Storage/Image Processing 

The second Raspberry Pi board will be dedicated to become 

a Network Attached Storage for the first board and also serve 

as the board dedicated to processing the pothole images. The 

NAS will be connected to the other board through an Ethernet 

switch. The Ethernet connections will have the issue of dealing 

with a limited bandwidth while a high amount of data will be 

streamed from the first Raspberry Pi board, though not at the 

same time. 

The NAS receives incoming files from the sensor board and 

stores those files into a folder. The files that are received 

contain data gathered by the accelerometer, sonar, and GPS. 

Each file contains the folder number they belong to which the 

NAS uses to store them in the appropriate folders. This 

process is used to keep data from different potholes separate. 

When the button to transmit is pressed, the each folder is 

opened and the contents inside each file are read. The contents 

are then sent to the database where they are stored. Following 

the data transmission, the data will be relocated and the state 

gets reset to a clean state. 

A USB flash drive will be connected to the board so that 

when the user chooses to send all the data to the database, the 

raw files will be transferred to the flash drive into a folder with 

the date and time of the transfer as the folder name. 

The data flow is relatively straightforward. The front 

Raspberry Pi board sends a picture and three text files to the 

second board. The data also is sent from the second board to 

the database. 

Since the database is a separate system from the two 

Raspberry Pi boards, an internet connection is required to send 

data to it. To allow the board to access the internet through 

Wi-Fi, a USB Wi-Fi dongle will be connected in one of the 

USB ports. This allows the board to access a network 

connection without needing an Ethernet cable.  

The second Raspberry Pi board also serves as the dedicated 

image-processing node. Image processing is a crucial step in 

the project because that is how we will determine the diameter 

of the pothole. 

 The first step in the processing requires the image’s 

brightness and contrast to be altered in such a way that the 

edges are more prominent. It then converts the image to gray 

scale and blurs it so that smaller less important edges are not 

as visible. Then a threshold value is calculated and the image 

is converted to black and white based off of the threshold. 

Now the algorithm runs Canny Edge detection and maps out 

the edges on the image. Once this step is finished the program 

draws out contours in the image and using these it draws out 

Figure 8: Image Processing Steps 
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circles matching a certain criteria. Depending on the location 

of the circle on the image, the algorithm calculates a diameter 

of the circle in inches. It takes into account whether the actual 

pothole is near the bottom, closer to the car, or near the top, 

further away. Depending on the proximity of the pothole, it 

will look bigger or smaller. That is why the algorithm uses the 

location of the pothole in the picture from its coordinates. The 

diameter is written to a text file and stored into its proper 

folder.  

D. Block 3: Database and Webpage 

The database stores the location, size, depth, and 

accelerometer reading of all potholes. The webpage grabs this 

data and plots the locations onto a map. This allows any user 

to now exactly where a pothole is and be able to prioritize 

which potholes to repair first. 

III. PROJECT MANAGEMENT 

We currently have one board that has the camera interface, 

accelerometer, and GPS working. The board is able to take 

pictures and store them as bitmap files. The other board is the 

image processing board. We have been able to process the 

image to outline the pothole but we are still working on 

improving the processed image to make it more ideal to extract 

the size and depth.  Our progress for MDR was greatly 

affected due to having to go back to designing stage of our 

project. The parts were ordered later due to this fact and thus 

our ability to have each subsystem working was not possible 

with the given amount of time. 

Each of our group members offers skills or expertise that 

will contribute to the project. Michael has experience doing 

group work involving both circuit design and computer 

programming. His experience with Java, C, and some Python 

will be useful when programming the Raspberry Pi. His 

circuitry skills will be invaluable when interfacing with the 

Raspberry Pi’s hardware components. Various elements that 

will require hardware design in this project include the button 

that the driver activates when encountering a pothole and the 

accelerometers that will collect data regarding potholes. 

Michael is very interested in many disciplines of electrical 

engineering. His coursework focuses primarily on microwave 

engineering and signal processing. His knowledge of signal 

processing will be utilized when analyzing the data collected 

by the accelerometers. While his primary interests lie in 

electrical engineering, he also enjoys exploring 

interdisciplinary design problems. This curiosity will help 

when designing an enclosure to contain the finished project. 

Michael will also need to find a portion of a car frame to 

mount the accelerometers onto in order to collect pothole 

information.  

 William has experience building and verifying physical 

circuits in a group environment.  He helped construct a 

switching voltage regulator using an efficient combination of 

several subsystems.  This project improved his ability to verify 

that subsystems work together as planned. With regards to 

software William has learned multiple programming languages 

through coursework and his independent project of building an 

Android app.  William will lead the synchronization of the 

GPS, camera and accelerometer subsystems.  He will design 

an algorithm to assign the most appropriate GPS location to 

data collected from the cameras and accelerometers.  His 

experience synchronizing the physical subsystems of a 

switching voltage regulator and familiarity with multiple 

programming languages will be valuable in the 

synchronization phase. William is also knowledgeable of 

networks and communications from engineering course work, 

he will provide assistance with the NAS and WIFI components 

if Daniel or Muhammad request it. 

Daniel has experience in working in groups on both coding 

projects and database projects. He has experience in coding in 

C, C++, Java, and Visual Basic. Daniel was able to put his 

programming knowledge to the test during his internship at 

Verizon. Here he combined his programming knowledge with 

setting up and creating databases using both Visual Basic and 

MySQL. These skills will come in handy when programming 

the boards and working on image processing. Daniel also has 

experience in networking through courses he has taken in 

college. This skill will be help when handling data from all 

three Raspberry Pi’s along with sending data to the database. 

Though he might need to learn Python, it shouldn’t be hard has 

experience learning new languages. 

 Muhammad has extensive experience in web development 

and working with databases in MySQL. He is able to run 

efficient queries through the database to get desired content 

and also able to present the data onto a webpage. He has 

created many websites and added content to existing ones 

through his internship at the DOT. Muhammad also has 

experience working with MySQL databases with C/C++. 

These skills will come in handy when the data from the NAS 

will be sent to be stored into the database and then displayed 

onto a map on a webpage. Muhammad has had experience 

coding in C/C++ throughout his years in college, which will 

help with the overall software implementation of the 

Raspberry Pis.  

There are two CSE’s and two EE’s in our group therefore 

each person has one other to ask for help in terms of their area. 

Daniel and Muhammad work together on the software end of 

the boards, the majority of which is the image processing. 

Mike and Bill help each other in implementing all the devices 

like accelerometer and GPS and wiring them up. We are able 

to help each other out too because most devices have a 

Figure 9: Website Map Displaying Potholes 
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software end to them and each of the boards have a hardware 

part.  

Our team has been efficient with communication. With the 

convenience of text messaging we are able to communicate at 

all times. Whenever files or documents are involved, email and 

Google Docs are used.  

IV. CONCLUSION 

 It has been a long journey and the project has evolved 

significantly. There were many last minute changes to the 

project especially with how the system determines the depth of 

the pothole. The addition of the sonar was added only a few 

weeks prior to FDR and thus was why it proved difficult to 

complete that portion of the system. The sonar accurately 

measured distance form it to a solid wall when in the lab but 

the physics of it changed when added to the car. There are 

many improvements that can be made but given the 

progression of our project as a whole we are all proud of work.  
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