
SDP 2016: Team 5 Final Report

1

Abstract—The Pothole Tracker is a system of devices that

gathers and stores information about potholes encountered on the

road. The first Raspberry Pi board, containing sensor units, is

mounted on the front of the vehicle while the second Raspberry Pi

board, containing the storage, image processing program, and

button to activate the system, is located within the vehicle. The

system is connected to the internet through a Wi-Fi dongle which

sends information gathered by the sensors to a database. A

website is connected to the database to display the data on Google

Maps to users, such as the Department of Public Works, in a

user-friendly manner.

I. INTRODUCTION

OTHOLES are holes formed in the pavement as by

excessive use or by extremes of weather. They have

become a nuisance and hazard to drivers everywhere since the

dawn of paved roads. These craters have caused serious

damages to cars resulting in costly repairs. According to AAA,

potholes have cost drivers $6.4 billion a year. This is around

$2,000 throughout the life span of a car just from road

conditions. Road conditions are costing drivers, potholes being

at the forefront of the cause forcing drivers to demand their

efficient repair.

 The first step to solving a problem like repairing potholes is

being able to know where a pothole is located. Not all potholes

are big enough in size and depth to cause damage and certainly

not every pothole can be repaired. How do we keep track of

potholes and their level of needing repair?

 Most places like cities have a database of potholes setup,

storing their location, size, and status of repair. The city of

Seattle, Washington has an implementation similar to this but a

key factor is how this information is acquired and stored. The

citizens of Seattle have to submit forms reporting potholes,

which then are reviewed and put into a database. Although this

method is useful because who better to ask than those who

actually use the roads but submitting a form is a hassle and so

is manually storing the information into a database. With the

advancement of technology there are better ways to keep track

of potholes.

 The majority of today’s adults drive on the roads making

this problem one that affects the vast majority. On top of it

they have to deal with the consequences of something they

M. Catalano from Abington, Ma (mcatalan@umass.edu).

D. Chin from Stoughton, Ma (dhchin@umass.edu).

B. Quigg from Pembroke, Ma (wquigg@umass.edu).

M. Mir from Stoughton, Ma (mmir@umass.edu).

have no control over fixing besides submitting a request form.

Potholes are timeless in the sense that for as long as there are

paved roads, they will become damaged and potholes will

form.

An efficient solution to this problem would be a system that

can track potholes and submit the required data into a

database. Regardless of the technology, the system will need to

go out into the field and analyze the potholes first hand.

Therefore the device needs to be compact enough to fit into

a vehicle and not be in the way of anything. In addition it

needs to be able to be powered by the car itself. It has to

transfer data so wireless and network capabilities are a must.

There will also need to be driver input to tell the device when

to start analyzing the pothole.

Specification Value

Power <5V

Height <6in

Width <6in

Length <6in

II. DESIGN

A. Overview

The solution we came up was to use sensors and image

processing to extract important information like size, depth,

and location to store into a database. We decided to use

Raspberry Pi boards for our system because they are compact

powerful microcomputers. They are capable of a lot at an

affordable price. There will be two boards that will be used in

the system. One will be used for all the sensors like the

accelerometer, sonar, GPS, and camera and the second will

serve as the NAS and image processing board. The driver has

to travel around 30 mph, which is a good speed for residential

areas. When the driver sees a pothole coming up from at least

50ft away they press a button that activates all the sensors. The

camera takes 20 pictures in a sequence and the board chooses

one to be sent off to the NAS to be stored along with a GPS

location, accelerometer reading, and sonar depth. When the

NAS receives the pothole picture, the image processing runs

and extracts the diameter. When the driver presses a second

button the NAS sends the data to a database to be stored. A

webpage will access the database and display the locations of

potholes on a map.

Incorporating a button into a system requires additional

hardware that ensures reliable switching. Switch bouncing is a

Pothole Tracker

Mike Catalano, EE, Daniel Chin, CSE, Bill Quigg, EE, and Muhammad Mir, CSE

P

SDP 2016: Team 5 Final Report

2

problem that degrades the integrity of a mechanical switch. A

switch bounce occurs when a mechanical switch is opened and

closed. When this happens, unnoticeable vibrations on the

contacts within the switch vibrate. This vibration causes the

switch to open and close several times, typically within a

period of a few hundred microseconds. An example of a

switch bounce is shown in Figure 3, where the switch bounces

twice before settling to a logical High. Switch debouncing in

digital circuitry is very important when applications require

precise timing. If a bounce were to occur, the Raspberry Pi

would interpret the faulty input as multiple button pushes.

There exists both software and hardware solutions to the

switch bouncing issue. For the purposes of this project,

hardware will be used. This decision was made based on the

need for conserving processor resources for the image

processing. Image processing will consume considerably more

resources than switch debouncing, so eliminating the need for

software is desirable whenever possible.

The circuit chosen to settle the switch bouncing is an RC

debouncer that utilizes a Schmitt Trigger. The schematic for

this circuit is shown in Figure 4. The circuit operates as

following. When the button is not pressed, the capacitor

charges through the series combination of R1 and R2 to a

voltage close to Vcc. The voltage across the capacitor is the

input voltage to the Schmitt Trigger inverter. When the

capacitor is charged to Vcc, the output of the Schmitt Trigger

Figure 1: Block Diagram

Figure 2: Accelerometer Reading

SDP 2016: Team 5 Final Report

3

will output 0V, a logical Low. Alternatively, when the button

is pressed after charging for some time, the capacitor will

discharge through R2. This causes the voltage across the

capacitor to go to 0V. If the voltage across the capacitor is 0V,

the Schmitt Trigger will output Vcc, a logical High.

The design of this circuit focuses on maintaining a certain

voltage long enough to settle any bouncing. The equation that

dictates the voltage across a charging capacitor as a function of

time is,

Vcap = Vfinal(1 – e
-t/RC

)

The previous equation can be rearranged in order to solve for

R,

R = -t/C*ln(1 – Vcap/Vfinal)

Choosing a value of 0.1μF for the capacitor, C, is the first step

in determining values for R1 and R2. The equation accounts for

resistance in the exponent as R, which is equivalent to R1 + R2.

Vcap is the voltage across the capacitor. The Schmitt Trigger

will switch from a logical Low to High when the voltage

across the capacitor goes above 0.8V. Therefore, Vcap = 0.8V.

Vfinal is the voltage the capacitor is charging to, which is Vcc.

For this project, Vcc = 5V. Finally, the time required to settle

the bouncing comes from Figure 3, where the switch settles in

approximately 175μs. This is the worst-case time recorded

from numerous tests. Substituting these values into the

previous equation yields R = R1 + R2 = 10037Ω, which will be

rounded to the closest standard resistance value of 10kΩ.

Another expression for R is needed in order to find values for

R1 and R2. Consider the following equation for a capacitor

discharging,

Vcap = Vinitial(e
-t/RC

)

This equation can be rearranged as an expression for R,

R = -t/C*ln(Vcap/Vinitial)

Vcap assumes a value of 1.6V, the voltage at which the Schmitt

Trigger will switch from a logical High to Low. Vinitial is

equivalent to Vcc (5V). The values for C and t used in the

previous calculation remain the same in this calculation as

well. Substituting these values into the previous equation for R

yields R = R2 = 1536Ω. The value for R2 will be rounded to

1.5kΩ.

There is now a system of two equations in order to solve for R1

and R2,

R1 + R2 = 10kΩ

R2 = 1.5kΩ

Solving for R1 yields a value of 8.5kΩ, which is rounded to

8.3kΩ. The final design involves the following components,

R1 = 8.3kΩ, R2 = 1.5kΩ, C = 0.1μF, and an SN74LS14N

Schmitt Trigger will be used. The following graphic shows the

output of the switch debouncing circuit. Note how the voltage

rises sharply without any bouncing. This is the desired effect.

There were many other technologies we considered aside

from image processing. Lasers were a promising idea but

obtaining one was expensive and out of an efficient budget.

Lasers would have been able to perform a 3D reconstruction of

the pothole, which would allow us to manipulate it and

perform the necessary calculations. There was also an issue of

generating multiple lasers or rotating one laser across the road.

Figure 3: Before Debouncer

Figure 4: Debouncer Circuit

Figure 5: After Debouncer

SDP 2016: Team 5 Final Report

4

The complications lead us to find a more simple method. We

also considered using sonar over the use of a button input to

allow the system to automatically detect when a pothole was

approaching. Unfortunately the available sonars for Raspberry

Pis had a limited range of fifteen feet restricting the amount of

time to process and record from the cameras.

B. Block 1: Raspberry Pi 1

The first Raspberry Pi board will be equipped with a

camera, GPS, accelerometer, and sonar. The system will be

activated with the press of a button. In order to attain accurate

results for the depth of potholes, accelerometers are placed on

the front, left and right control arms of the test vehicle. This

mounting location was chosen because the control arm is

unaffected by the vehicle's suspension system. If the

accelerometers were mounted elsewhere, the suspension

system of the car would dampen the force experienced by the

accelerometers, yielding an inaccurate result. The

accelerometers utilized in our final design are ADXL335

analog accelerometers. Analog accelerometers were chosen

over digital because the output of each accelerometer is

filtered before being converted into a digital signal via an

analog to digital converter(ADC). In order to determine how

the accelerometer output should be filtered, we mounted

accelerometers to the vehicle and recorded several tests where

potholes were struck. These recordings were then analyzed by

a MATLAB script that computed the Fast Fourier

Transform(FFT) of the time-domain signal. The FFT of a

pothole test is shown in Figure X. These results yielded spikes

at approximately 15-18Hz. This indicates that the test vehicle

oscillates at around 15Hz when a pothole is struck.

 The next step in the design of the accelerometer block in

the system was to construct filters to suppress frequencies

above the 15-18HZ range. Two filters are needed, one filter

for each accelerometer. We chose a third order Sallen-Key low

pass filter topology to achieve a desired bandwidth at very low

frequencies. The cutoff frequency of the filters was chosen to

be approximately 20Hz. The third order configuration

provides a 60dB/dec roll off, which very effectively rejects

frequencies beyond the 15-18Hz range while maintaining the

desired signals. In order for the Raspberry Pi to analyze the

data yielded from the filters, a 10-bit , 8-channel ADC was

chosen to convert the analog, filtered data. Only two channels

were utilized, one channel for each accelerometer. The number

of channels refers to the number of inputs the ADC can handle.

With a resolution of 10 bits, the ADC outputs values from 0-

1023, which corresponds to a voltage detected on the input of

the ADC. For example, an ADC output of 0 means that 0V is

applied to the input. An ADC output of 1023 occurs when

3.3V or higher is applied to the input. In order for the signal to

rest in the middle (512) of the ADC's range, the output of the

filters were DC biased at 1.65V. Biasing the signals at 1.65V

allows for a maximized swing in accelerometer readings. If the

signal were coupled to ground, only the positive components

of the signal would be present. The final design was soldered

to a prototype board in order to make the filter and ADC

circuitry more robust. A printed circuit board (PCB) was

designed in EAGLE to accommodate the circuitry. However,

the PCB was too expensive for our budget, which is why the

prototype board was utilized.

For our GPS we chose to buy an Adafruit Ultimate GPS due

to its low cost at $40 and low maximum error of about 10

meters. The GPS is connected to a USB port on the raspberry

pi sensor board through a USB to TTL serial cable. As soon as

the GPS receives power it outputs NMEA sentences. The

National Marine Electronics Association created a protocol to

define the format certain devices transmit data and our GPS

follows this protocol. Before the GPS achieves a fix on the

satellites the NMEA sentences it outputs will be incomplete,

which means achieving a fix as fast as possible was crucial. To

achieve a fix faster we attached an external antenna to our

GPS, which was placed on top of the car. The antenna

improved our time from powering on the GPS to getting a fix

from about 5 minutes to around 30 seconds. Once the GPS has

a fix we had to extract the appropriate data out of our NMEA

sentences. We chose to find a $GPGGA sentence because they
Figure 6: Frequency Domain Representation of Force from

Pothole

Figure 7: Time Domain Representation of Force from

Pothole

SDP 2016: Team 5 Final Report

5

contain the time, latitude and longitude. When the user presses

the button to signify a pothole a python program will read the

data coming into the USB port from the GPS, once it reads a

$GPGGA sentence it records the sentence and writes it to a

text file, then stops reading data from the USB port. From

there the python program parses the $GPGGA text file for the

time, latitude and longitude. The program then converts the

latitude and longitude into a format that Google Maps can

read. This is because with NMEA sentences the first 2 digits of

the latitude (and 3 digits of the longitude) are in degrees

formats while all the following digits are in minutes, so we

divide the values reported in minutes by 60 and then add those

to the respective values reported in degrees to give our latitude

and longitude in degree format. Then we create a new GPS

text file that contains the folder number, the time, the latitude

and the longitude in a format that the NAS can grab and

recognize.

Getting the depth of a pothole using an accelerometer

required the car to drive into the pothole, which is not ideal

unless the pothole is unavoidable. In most cases a driver will

drive over a pothole. Originally, the depth was to be extracted

through image processing but it proved to be difficult.

Therefore a sonar was added in order to extract the depth from

sound waves. The idea behind a sonar is that it sends sounds

waves and when those waves hit a solid wall or object, the

waves return. Using the time it takes for the waves to come

back, you can calculate the distance to the object or wall the

waves bounced off of. The distance to an object is calculated

by multiplying the speed by the time. The speed of sound is

343 m/sec. We use half of the recorded time value because we

want the to use the time it took the waves to reach the object,

not the time it takes to bounce off the object and come back.

The sonar runs for about 3 seconds, calculating distance

values. When the car drives over the pothole, the distance will

be greater than any other value because all other distances

should be the distance to the ground. The largest distance is

taken and the distance to the ground is subtracted from it to

calculate the depth of the pothole. The depth is written to a

text file and sent to the NAS.

All four sensors are synced in that they all run in parallel

when the user presses the button. Once each has gathered its

data and created its text file, it sends the text file off to the

NAS.

C. Block 2: Network Attached Storage/Image Processing

The second Raspberry Pi board will be dedicated to become

a Network Attached Storage for the first board and also serve

as the board dedicated to processing the pothole images. The

NAS will be connected to the other board through an Ethernet

switch. The Ethernet connections will have the issue of dealing

with a limited bandwidth while a high amount of data will be

streamed from the first Raspberry Pi board, though not at the

same time.

The NAS receives incoming files from the sensor board and

stores those files into a folder. The files that are received

contain data gathered by the accelerometer, sonar, and GPS.

Each file contains the folder number they belong to which the

NAS uses to store them in the appropriate folders. This

process is used to keep data from different potholes separate.

When the button to transmit is pressed, the each folder is

opened and the contents inside each file are read. The contents

are then sent to the database where they are stored. Following

the data transmission, the data will be relocated and the state

gets reset to a clean state.

A USB flash drive will be connected to the board so that

when the user chooses to send all the data to the database, the

raw files will be transferred to the flash drive into a folder with

the date and time of the transfer as the folder name.

The data flow is relatively straightforward. The front

Raspberry Pi board sends a picture and three text files to the

second board. The data also is sent from the second board to

the database.

Since the database is a separate system from the two

Raspberry Pi boards, an internet connection is required to send

data to it. To allow the board to access the internet through

Wi-Fi, a USB Wi-Fi dongle will be connected in one of the

USB ports. This allows the board to access a network

connection without needing an Ethernet cable.

The second Raspberry Pi board also serves as the dedicated

image-processing node. Image processing is a crucial step in

the project because that is how we will determine the diameter

of the pothole.

 The first step in the processing requires the image’s

brightness and contrast to be altered in such a way that the

edges are more prominent. It then converts the image to gray

scale and blurs it so that smaller less important edges are not

as visible. Then a threshold value is calculated and the image

is converted to black and white based off of the threshold.

Now the algorithm runs Canny Edge detection and maps out

the edges on the image. Once this step is finished the program

draws out contours in the image and using these it draws out

Figure 8: Image Processing Steps

SDP 2016: Team 5 Final Report

6

circles matching a certain criteria. Depending on the location

of the circle on the image, the algorithm calculates a diameter

of the circle in inches. It takes into account whether the actual

pothole is near the bottom, closer to the car, or near the top,

further away. Depending on the proximity of the pothole, it

will look bigger or smaller. That is why the algorithm uses the

location of the pothole in the picture from its coordinates. The

diameter is written to a text file and stored into its proper

folder.

D. Block 3: Database and Webpage

The database stores the location, size, depth, and

accelerometer reading of all potholes. The webpage grabs this

data and plots the locations onto a map. This allows any user

to now exactly where a pothole is and be able to prioritize

which potholes to repair first.

III. PROJECT MANAGEMENT

We currently have one board that has the camera interface,

accelerometer, and GPS working. The board is able to take

pictures and store them as bitmap files. The other board is the

image processing board. We have been able to process the

image to outline the pothole but we are still working on

improving the processed image to make it more ideal to extract

the size and depth. Our progress for MDR was greatly

affected due to having to go back to designing stage of our

project. The parts were ordered later due to this fact and thus

our ability to have each subsystem working was not possible

with the given amount of time.

Each of our group members offers skills or expertise that

will contribute to the project. Michael has experience doing

group work involving both circuit design and computer

programming. His experience with Java, C, and some Python

will be useful when programming the Raspberry Pi. His

circuitry skills will be invaluable when interfacing with the

Raspberry Pi’s hardware components. Various elements that

will require hardware design in this project include the button

that the driver activates when encountering a pothole and the

accelerometers that will collect data regarding potholes.

Michael is very interested in many disciplines of electrical

engineering. His coursework focuses primarily on microwave

engineering and signal processing. His knowledge of signal

processing will be utilized when analyzing the data collected

by the accelerometers. While his primary interests lie in

electrical engineering, he also enjoys exploring

interdisciplinary design problems. This curiosity will help

when designing an enclosure to contain the finished project.

Michael will also need to find a portion of a car frame to

mount the accelerometers onto in order to collect pothole

information.

 William has experience building and verifying physical

circuits in a group environment. He helped construct a

switching voltage regulator using an efficient combination of

several subsystems. This project improved his ability to verify

that subsystems work together as planned. With regards to

software William has learned multiple programming languages

through coursework and his independent project of building an

Android app. William will lead the synchronization of the

GPS, camera and accelerometer subsystems. He will design

an algorithm to assign the most appropriate GPS location to

data collected from the cameras and accelerometers. His

experience synchronizing the physical subsystems of a

switching voltage regulator and familiarity with multiple

programming languages will be valuable in the

synchronization phase. William is also knowledgeable of

networks and communications from engineering course work,

he will provide assistance with the NAS and WIFI components

if Daniel or Muhammad request it.

Daniel has experience in working in groups on both coding

projects and database projects. He has experience in coding in

C, C++, Java, and Visual Basic. Daniel was able to put his

programming knowledge to the test during his internship at

Verizon. Here he combined his programming knowledge with

setting up and creating databases using both Visual Basic and

MySQL. These skills will come in handy when programming

the boards and working on image processing. Daniel also has

experience in networking through courses he has taken in

college. This skill will be help when handling data from all

three Raspberry Pi’s along with sending data to the database.

Though he might need to learn Python, it shouldn’t be hard has

experience learning new languages.

 Muhammad has extensive experience in web development

and working with databases in MySQL. He is able to run

efficient queries through the database to get desired content

and also able to present the data onto a webpage. He has

created many websites and added content to existing ones

through his internship at the DOT. Muhammad also has

experience working with MySQL databases with C/C++.

These skills will come in handy when the data from the NAS

will be sent to be stored into the database and then displayed

onto a map on a webpage. Muhammad has had experience

coding in C/C++ throughout his years in college, which will

help with the overall software implementation of the

Raspberry Pis.

There are two CSE’s and two EE’s in our group therefore

each person has one other to ask for help in terms of their area.

Daniel and Muhammad work together on the software end of

the boards, the majority of which is the image processing.

Mike and Bill help each other in implementing all the devices

like accelerometer and GPS and wiring them up. We are able

to help each other out too because most devices have a

Figure 9: Website Map Displaying Potholes

SDP 2016: Team 5 Final Report

7

software end to them and each of the boards have a hardware

part.

Our team has been efficient with communication. With the

convenience of text messaging we are able to communicate at

all times. Whenever files or documents are involved, email and

Google Docs are used.

IV. CONCLUSION

 It has been a long journey and the project has evolved

significantly. There were many last minute changes to the

project especially with how the system determines the depth of

the pothole. The addition of the sonar was added only a few

weeks prior to FDR and thus was why it proved difficult to

complete that portion of the system. The sonar accurately

measured distance form it to a solid wall when in the lab but

the physics of it changed when added to the car. There are

many improvements that can be made but given the

progression of our project as a whole we are all proud of work.

 ACKNOWLEDGMENT

We would first off like to thank our faculty advisor

Professor Maciej Ciesielski for making time in his busy

schedule to help us through the difficult process of designing

and implementing our project. We would also like to thank our

faculty evaluators Professor Bill Leonard and Professor Sandip

Kundu. Last but not least we would like to thank Professor

C.V. Hollot for his patience and helpful advice and Fran Caron

for his help in the lab. A special thank you, again, to Professor

Leonard for lending us his monitors.

REFERENCES

[1] A. detection, 'Accelerometer data smoothing filtering pothole detection',

Electronics.stackexchange.com, 2015. [Online]. Available:

http://electronics.stackexchange.com/questions/56238/accelerometer-

data-smoothing-filtering-pothole-detection. [Accessed: 09- Dec- 2015].

[2] E. Buza, S. Omanovic and A. Huseinovic, 'Pothole Detection with

Image Processing and Spectral Clustering', University of Sarajevo, 2005

[3] Seattle.gov, 'SDOT - Seattle Pothole Information', 2015. [Online].

Available: http://www.seattle.gov/transportation/potholes/. [Accessed:

09- Dec- 2015].

[4] WUSA9, 'AAA: pothole damage costs drivers $6.4 billion a year', 2015.

[Online]. Available:

http://www.wusa9.com/story/news/nation/2014/02/24/potholes-damage-

cost-us/5773501/. [Accessed: 09- Dec- 2015].

Figure 10: Specification Table

Figure 11: Development and Production Cost Table

