
Team 2 Midway Design Review Report

1

Abstract—The increased popularity of unmanned aircraft

vehicles (UAVs) has expanded the possibilities for innovation with

aerial photography, package delivery services, and other exciting

applications. However, many new users are inexperienced with

flying and unaware of the guidelines and regulations in place to

ensure safety and prevent potentially disastrous collisions. The

ASPECTS module – a Raspberry Pi computer connected to a

communication device – mounts on the UAV and interfaces with

the flight controller to restrict flight in FAA-designated No-Fly

zones.

I. INTRODUCTION

ECREATIONAL drone use has increased dramatically in

recent years as the hobby becomes more popular. The

number of Certificates of Allowance permitting the flight of

UAVs in civil airspace, for example, grew from 146 in 2009 to

545 in 2013.
[1]

 These numbers are in addition to the multitude

of recreational drones available for public purchase.

Furthermore, according to a report by USA Today in October

2015, “An examination of 891 drone sightings reported to the

Federal Aviation Administration over a 17-month period found

more than half flew too close to an airport.”
[2]

 This poses a

serious problem: UAV interference with passenger planes

could result in property damage and, in extreme cases, fatality.

Therefore, with this trend comes a new challenge: defining

regulations that will lower the risk of incursions with

passenger and commercial planes, and ensuring safe practices

among vehicles sharing the airspace. One way this is

implemented is by establishing restricted areas where drones

cannot legally fly. The Federal Aviation Administration (FAA)

currently enforces a five mile No-Fly Zone around all major

airports, military bases, national parks, and other sensitive

landmarks in the U.S., but very often those perimeters are

breached by unmanned aircraft. This poses a threat to safety

and security.

 This issue has gained the attention of the FAA, the United

States Department of Transportation, and several key Senate

members, who recently proposed that all consumer drones

must feature geofencing capabilities in the future.
[3]

Geofencing is a way of creating virtual geographical

boundaries which are defined by a central set of GPS

coordinates with a specified radius around that point. The idea

of geofencing expands on the basis for other existing

technologies such as invisible fences for dogs. This concept

can be paired with specified hardware and software

components to simulate a physical “fence.” This technology

requires innovation by manufacturers, and also presents an

obstacle for hobbyists who build their own copters. Some

drone manufacturing companies, such as DJI, have made

firmware updates on their fleets that warn operators of nearby

restricted areas via a mobile device and gradually lower the

drone as it approaches the No-Fly Zone. This technology,

however, only applies to DJI’s Phantom 3 copter and newer

models.
[4]

 ASPECTS is a portable module designed to be

compatible with any existing or future quadcopters that use the

Pixhawk
[5]

 flight controller popular among hobbyists, making

geofencing technology available to all UAV owners both

practically and financially.

 In a meeting at Bradley International Airport, officials

expressed their concern about the increased presence of UAVs

in the airspace. While the threat of collision between drones

and other vehicles continues to build, they said, it is not until a

disaster occurs that this type of issue receives sufficient

attention from the media and policy makers.
[6]

 ASPECTS will

not only alleviate apprehension for air traffic controllers

monitoring flights into and out of the airport, but will regulate

a majority of privately owned drones and ultimately create a

safer airspace for travel, business, and recreation.

II. DESIGN

A. Overview

ASPECTS (Airport Safety Perimeter Control System) is a

proposed universal geofencing solution which may be

incorporated on future drone models or retrofitted on previous

designs. The on-board unit will consist of a Raspberry Pi

computer, a GPS chip, and a 3G communication module, all of

which will interface with the existing flight controller to

execute commands. See the block diagram in Fig. 1.

By constantly monitoring the location of the drone via

satellite, ASPECTS will determine the proximity to local No-

Fly Zones through a software algorithm on the Raspberry Pi.

Using the 3G communication module and an onboard SIM

card, ASPECTS will send a message warning the user when

he/she is within a predefined buffer zone of about 500 meters

around the No-Fly Zone (indicated by the blue boundary in

Fig. 2) allowing an opportunity for the user to manually

redirect the flight path.

ASPECTS

Christopher Boselli, EE; Alex Breger, EE; Jason Danis, EE; Sandra McQueen, EE

R

Team 2 Midway Design Review Report

2

Fig. 1. Detailed block diagram of ASPECTS system.

If the user does not take corrective action before the drone

reaches the No-Fly Zone, the on board controller will then

assume control of the drone in order to prevent a breach of the

critical airspace (indicated by the red boundary in Fig. 2).

Transferring control away from the user presents a potential

unintended consequence: collision with structures such as

buildings or power lines which could result in damage to

public or private property or to the UAV itself. For this reason

we are considering several possible actions, including landing

the aircraft, hovering in place, or executing a return-to-launch

algorithm. This effectively creates a physical barrier around

the perimeter of the airport or other sensitive area and averts a

potentially dangerous situation.

Below is a table of quantitative specifications which we

have already met for MDR, or plan to meet once the system

has been integrated.

Fig. 2. A visual representation of our Geofencing solution. The blue outer

perimeter represents the buffer zone surrounding the critical No-Fly zone

denoted by the red inner perimeter.

A. Block 1: Drone Body

One of the earliest changes made to our original vision for

this project was the decision to build our own drone “from

scratch” rather than simply purchasing a fully integrated one.

A major factor in this decision was to keep all associated

hardware/software components of the project as open source

and compatible as possible. In disassembling a 3DR Iris+

quadcopter, we soon realized that we would likely need special

SYSTEM SPECIFICATIONS

Specification Value

GPS Update Rate >2Hz

Min. User Response Time 10 seconds

Buffer Zone Radius >1000 feet

GPS/Cellular Signal

Strength

>5dB

Drone Test Flight Time >15 min

Team 2 Midway Design Review Report

3

permissions from the manufacturer in order to be able to

access and alter the flight software to execute our algorithm

once inside a geofenced area. To avoid additional

complications, we researched all of the major components

required to build a quadcopter of our own.

One of the major aspects that needed to be considered when

designing our own drone was the overall weight of the

quadcopter and additional on-board hardware which we were

going to install as part of our design. This key factor ultimately

finalized decisions between alternative hardware possibilities

when purchasing the parts for the drone. Ultimately, we stayed

within our target limit of 1.5 kg for total weight of the

quadcopter parts and additional on-board hardware

components. The final parts list with the corresponding weight

of each component can be seen in Table 1.

Another key aspect of the design process was selecting

which battery to purchase that would power all of the on-board

components of the drone. We had to take into consideration

the power consumption of the drone hardware as well as our

additional components, and we had to make some calculations

in order to be sure that the battery provided enough power for

significant flight time without compromising the balance

between increased power and added weight.

B. Block 2: Controller (Raspberry Pi)

In order to interpret GPS data, hold code for overriding the

drone’s microcontroller, and hold code for landing the drone at

a geofence boundary, an on-board controller is needed. We

are using a Raspberry Pi Model B
[7]

 to implement this

controller unit, which will be housed on-board the drone

during flight. This controller is initially responsible for

reading in GPS information from a separate hardware

component, and interpreting this data as it comes in. The GPS

coordinates that are read into the Raspberry Pi are compared

with a database of central geofenced coordinates and

clearances that are required around each one of them. The

GPS data is also changed into NMEA format after it is read in,

which makes it easier to interpret. Although our group did not

receive a necessary passive antenna before our MDR

presentation, we could still demonstrate that the Raspberry Pi

could serially read in the formatted data. This geofence

information will be compiled into a database, and read in from

a separate subsystem upon startup. Coordinates that are read

into the controller will be classified into three regions: Clear

of all restricted areas, inside of a buffer region near a

geofenced area in which the user and owner of the restricted

space will be notified of the drone’s presence, and inside of a

geofenced area. Distance from the central geofence

coordinates, illustrated in Fig. 3, is determined using the

Pythagorean Theorem assuming the difference in latitude is the

y-axis distance and the difference in longitude is the x-axis

distance.

Fig 3. Breakdown of regions surrounding a geofenced area

After it is determined that the drone has breached a restricted

area, the Raspberry Pi will communicate with the Pixhawk

microcontroller, which is the flight controller installed on the

drone, to override its software and safely land the drone. The

software to land the drone will be executed after it has been

confirmed that the Raspberry Pi has priority over the Pixhawk.

 LED indication has been used to test the Raspberry Pi’s

ability to interpret data that it receives from the separate GPS

unit. A yellow LED indication, as well as a text message

notification, has been demonstrated when the controller is fed

coordinates that are within the buffer region of a preset

geofenced location. A red LED was designed to turn on when

the controller was given coordinates that were inside of a

geofenced area. Lastly, we demonstrated that there is no LED

indication when the controller was clear of all restricted areas.

Python scripts have been used to implement and test different

aspects of the controller unit.

 Now that we have verified that the Raspberry Pi can

Table 1. On-board hardware and corresponding weight contribution to the

design.

Team 2 Midway Design Review Report

4

interpret incoming GPS information, we can send user and

airport messages when the drone has entered a buffer region,

which will be implemented using a different functional block,

and we can execute an algorithm to land the drone when it had

entered the restricted airspace of a geofenced location.

C. Block 3: Communication Device

 The geofencing module requires two forms of

communication: 3G to the UAV user and the airport via the

cellular network, and satellite communication to receive GPS

coordinates as discussed in the previous section. The Adafruit

FONA breakout modem
 [8]

 provides both capabilities and was

selected for its efficiency and its compact size. Data is sent to

and received from the Raspberry Pi through the hard-wired

transmit and receive pins. The various 3G and GPS functions

of the FONA are accessed using a library of built-in “AT”

commands provided in the datasheet.
[9]

 Then the antenna is connected and read-in is enabled, the

GPS coordinates are read continuously with an update speed

of 2 Hz. This data is sent to the Raspberry Pi where it is parsed

and analyzed to determine when the UAV is in danger of

breaching a No-Fly zone.

 Utilizing existing communication technology, such as

AT&T’s cell towers, is critical to the ASPECTS design

because it minimizes overall cost of the system and facilitates

implementation. As the UAV approaches the No-Fly zone it

will encounter the geofence coordinates defined in the

controller software. The FONA will then receive a command

from the Raspberry Pi’s transmission (TX) pin, which contains

the cellular telephone number of the user along with a text

message warning the user of his or her proximity to the airport

and instructing him or her to turn around. In order to allow the

user sufficient time to read the message and react, we estimate

that the text must be received between 10 and 20 seconds

before the drone reaches the critical 5-mile radius. Since this

requires fast and reliable communication, we chose to use the

3G FONA in favor of the previous 2G model. The maximum

latency observed was 8 seconds from the time the message was

sent to when it was received by a mobile device. From this

delay, the radius (B) of the buffer zone added on to the initial

5 miles could be calculated based on the maximum speed of

the average UAV:

B = avg. max speed (m/s) * [reaction time + max delay] (s)

= 22.3 (m/s) * [15 + 8] = 512.9 m

In addition to notifying the user when the UAV has breached

the buffer zone surrounding the critical airspace, the FONA

sends another text message update following the warning. This

message will indicate that either the user has successfully

cleared the No-Fly zone and the surrounding buffer, or that the

flight controls have been taken over and the UAV will land or

return to its launch point.

D. Block 4: Geofencing Data Server (2
nd

 Raspberry Pi)

In order to upload the most current geofencing information

to our device throughout operation, our team has designed a

remote server to host this information over the Internet. The

physical server (the host) consists of a second Raspberry Pi

device connected to the Internet and configured to function as

an FTP server using GNU’s vsftpd protocol.
[10]

 Our

geofencing controller (the client/first Raspberry Pi) can access

the server’s file system at custom intervals using a Linux

command line script and its 3G data connection. The client

need only ping the server’s static IP address over the FTP

protocol, and it receives immediate read permission to

download the hosted files (stored as .txt files). Once

downloaded by the client, these text files will be parsed by our

GPS program into meaningful navigational data.

Designing the server mainly involved UNIX shell

programming (ECE 353 and 558), network configuration

(ECE 374), and database programming (ECE 242). On the

server side, the main challenge was using the Linux shell

editor to alter the server’s FTP configuration file in order to

enable and customize the server. The host device and local

network also had to be configured to forward FTP ports 20-22

and maintain a static IP address. On the client side, we must

still design a Linux command line script to be called by our

GPS program during operation in order to fetch new

geofencing coordinates. For example, the server could contain

a database of different coordinate files for various different

regions. The server script would be configured to execute

upon entering each new region, in addition to executing an

automatic check for updates at a custom interval.

 There are two experiments we will use to verify the

functionality of the data server. The first, which we have

already demonstrated for MDR, is issuing a manual server call

using a Linux FTP program on the client device. As pictured

in Fig. 4 below, when the host’s IP address and port

information is properly entered into the client, our test file

‘MDR_test.txt’ can be accessed and downloaded to the client’s

file system. The program reported a file transfer of 84 Bytes

in 1 second, which is a more than optimal latency for this

aspect of the project.

Fig 4. Example of a Manual Server Call using Linux GUI

Once we get our drone in the air and design the data fetch

script, our next experiment will consist of conducing a server

download over 3G while our entire system is in operation and

Team 2 Midway Design Review Report

5

subsequently verifying that the new data file was received by

the client after landing.

III. PROJECT MANAGEMENT

Table 2: Proposed deliverables for Midway Design Review.

 As indicated in Table 2 above, the major goals set by the

team at the Preliminary Design Review were achieved by

MDR. The GPS data can be read in from the FONA to the

Raspberry Pi in a specified format and interpreted to

distinguish latitude, longitude, and altitude values for later

processing. From those coordinates the relative position of the

UAV to the center point of the airport is calculated in a python

script. Depending on that distance, a text notification may be

sent to the user accordingly. Once these three individual

subsystems were tested separately, we then integrated them so

that the process executes when the Raspberry Pi boots up, and

will run continuously thereafter.

 Our team meets weekly to review our progress with our

advisors Professor Douglas Looze (ECE) and Professor

Daiheng Ni (CEE). We also meet separately as a team to talk

about our individual contributions and how each piece will fit

into the overall system design. Alex Breger is primarily

responsible for the server; Christopher Boselli, for developing

flight control software and assembling drone hardware; Jason

Danis, for GPS processing; and Sandra McQueen, for

communication with the UAV, owner, and local airport. When

obstacles arose due to delayed hardware shipment, we adapted

our deliverables by focusing on other subsystems so that all

contributed equally to the final MDR design. While each had

his or her particular subsystem to develop, all team members

assumed responsibility for project completion.

 Earlier this semester we had the opportunity to present our

project at Bradley International Airport, where we received

valuable feedback from airport officials regarding their

experiences with UAV sightings and their concerns for the

future of drone use. In addition to providing further motivation

to implement our solution, the conversation at Bradley

emphasized the importance of notifying the airport as well as

the user. This provides them with the data necessary for

observing trends and expressing the magnitude of the problem

through statistics.

 Figure 5 shows a Gantt chart specifying our team’s

projected timeline for the fall and spring semesters leading up

to the Final Design Review, as well as the name of the team

member assigned to each task.

Fig. 5: Time Management Plan and Primary Responsibilities

MDR GOALS

Specification Completion

GPS Tracking/Data Logging 100%

GPS Data Interpretation 100%

User Notification System 100%

FTP Server 100%

Copter Assembly 50%

Team 2 Midway Design Review Report

6

I. CONCLUSION

Our team accomplished our goals for MDR even without the

use of a passive antenna for GPS data collection. Without this

component, we still demonstrated that the data could be

collected, formatted and logged, and that the resulting data

could be incorporated into an algorithm that would interpret it.

We were also able to successfully notify the user via individual

SMS messages specific to the location of the drone (in No-Fly

zone or simply in buffer zone) sent by our on-board controller

upon determining if action was necessary or not. Additionally

communication was established between our on-board

controller and off-board file server which will eventually

house a database of geo fenced coordinates.

Our CDR goals include establishing reliable communication

between our on-board controller and the drone’s flight

controller, creating an algorithm to override the flight

controller software at the boundary of a No-Fly zone, creating

an enclosure to house our additional on-board hardware

attached to the drone, developing a set of regional databases

containing geofenced coordinated, and creating an algorithm

to provide additional notification to airports via associated

official email addresses. For our CDR presentation, we are

also striving to have all of these aforementioned subsystems

fully integrated and functioning correctly.

The remaining work to be done has been split into phases

which we believe is the most practical way to ensure the

success of the project. First, we will have the drone fully

assembled and tested, and the enclosure to house the on-board

electronics will be built. The enclosure can be designed using

applications such as AutoCAD, and physically built using a

3D-printer. For testing and demonstration purposes, all

members of the team will become proficient in piloting the

drone. Next, we will create the algorithm to safely land the

drone. We are planning on using MavLINK to accomplish this

phase, which is a protocol for communicating with small

unmanned vehicles such as drones. During this phase we will

simultaneously be designing the email notification system to

alert the airports, which will be implemented with the FONA

hardware component. After we demonstrate that we can

successfully land the drone, the last phase before subsystem

integration will be demonstrating that we can automatically

synchronize the geofencing database information onto the

Raspberry Pi using the FTP host server.

 One of the major difficulties we can expect for the

remainder of this project is the learning curve associated with

learning scripting languages such as Python as well as the

correct way to implement the MavLINK protocol. This should

not pose too much of a problem, as each member of the team

is becoming proficient at scripting thanks to the numerous

tutorials and examples that are available online. There is also

an abundance of documentation available for implementing the

MavLINK protocol. The other difficulty of this project will be

learning how to pilot the drone, which each member of the

team should be comfortable with before we test our electronic

systems on-board the drone. Once all of the individual

subsystems have been designed, tested, and integrated onto the

drone, we will be ready to give a demonstration of the

system’s functionality. This demonstration will begin by

initiating startup software as the drone is powered on, and will

conclude after the drone has been successfully landed,

powered down, and the user and fictitious airport have been

notified of its presence.

ACKNOWLEDGMENT

All of us on the ASPECTS team would like to thank our

ECE faculty advisor, Professor Douglas Looze, for his

valuable insight and contribution to team ideas. We would also

like to extend a thank you to our Transportation Engineering

advisors, Professor Daiheng Ni and Professor John Collura,

for their help and advice along the way. We would also like to

thank Bradley International Airport’s Air Traffic Manager,

Ayaz G. Kagzi, for his suggestion and for providing us with

the perspective and insight of an airport staff member dealing

with these issues every day. His critical advice helped us

understand the solution our project is attempting to solve from

outside the engineering point of view, and made us realize the

severity of the issue at hand.

REFERENCES

[1] Federal Aviation Administration, Fact Sheet – Unmanned Aircraft

Systems (UAS). Washington, DC: US Department of Transportation,

January 2014.

[2] B. Jansen, ‘Drone sightings spur legislation to fence them in away from

planes’, USA TODAY, 2015. [Online]. 7 December 2015.

<http://www.usatoday.com/story/news/nation/2015/10/21/drone-

rulebreaking-geofencing-dianne-feinstein-charles-schumer/74292314/>

[3] “Schumer Bill Would Require Safety Features, Like Geo-Fencing And

Sense & Avoid Technology On All Drones; Would Improve The Ability

Of Law Enforcement To Take Action Against Reckless Users By

Making Drones Detectable And Identifiable To Pilots & Air Traffic

Control,” Charles E. Schumer United States Senator for New York, Oct.

14, 2015. <http://www.schumer.senate.gov/newsroom/press-releases>.

[4] “DJI Introduces new Geofencing System for its Drones,” DJI, 17

November 2015. [Online]. Available:

<http://www.dji.com/newsroom/news/dji-fly-safe-system> [Accessed:

January 22, 2016].

[5] 3DR. “Pixhawk Overview” [Online]. Available:

<http://copter.ardupilot.com/wiki/common-pixhawk-overview/>

[6] A. G. Kagzi, Air traffic Manager, Bradley International Airport,

personal communication, Nov. 2015.

[7] Adafruit. “Raspberry Pi Model B” [Online]. Available:

<https://www.adafruit.com/pdfs/raspberrypi2modelb.pdf> [Accessed:

January 22, 2016].

[8] SIMCom. (2012, Aug. 21). “SIM5320_Hardware Design_V1.07”

[Online]. Available:

<https://umanitoba.ca/faculties/engineering/departments/mechanical/pdf

/NEW-Citing-IEEE-2013.pdf> [Accessed: January 22, 2016].

[9] SIM Tech, “AT Command Set,” SIMCOM5320 command set, July

2014.

[10] Christopher Evans, “vsftp – Secure, fast FTP server for Unix-like

systems” (2015) <https://security.appspot.com/vsftpd.html>.

http://www.usatoday.com/story/news/nation/2015/10/21/drone-rulebreaking-geofencing-dianne-feinstein-charles-schumer/74292314/
http://www.usatoday.com/story/news/nation/2015/10/21/drone-rulebreaking-geofencing-dianne-feinstein-charles-schumer/74292314/
http://www.schumer.senate.gov/newsroom/press-releases
http://www.dji.com/newsroom/news/dji-fly-safe-system
http://copter.ardupilot.com/wiki/common-pixhawk-overview/
https://www.adafruit.com/pdfs/raspberrypi2modelb.pdf
https://umanitoba.ca/faculties/engineering/departments/mechanical/pdf/NEW-Citing-IEEE-2013.pdf
https://umanitoba.ca/faculties/engineering/departments/mechanical/pdf/NEW-Citing-IEEE-2013.pdf
https://security.appspot.com/vsftpd.html

