Project Sauron Preliminary Design Review

Senior Design Project Fall 2015

Department of Electrical and Computer Engineering

Meet The Team

Advisor: Tilman Wolf

Zach Goodman Walter Brown EE CSE & CS

Jose LaSalle EE

Department of Electrical and Computer Engineering

UMassAmherst Goal

Develop a real-time recording system to localize and track targets in a noisy environment and output clear audio and video.

Current Solutions?

Video Surveillance

- Non-Directional Noisy Audio
- Data intensive

Phone Tapping

- Need to breach carrier network
- No/Minimal visual

Directional Microphone

- Track one at a time
- No visual

Our Solution: Sauron

• Input video feed

I MassAmherst

- Arbitrarily distributed mics
 - Requires calibration
- Target tracking and AV recording
- Parallel recording of multiple targets
- Speech to text

UMassAmherst Who cares

- Government
 - Homeland security
 - Law Enforcement
 - Forensics
- Corporate
 - Facility security
 - Residential areas

System Requirements

- Operate within human voice frequency spectrum
 - 80Hz 3kHz (Necessitates 6kHz sampling frequency)
- Adapt to arbitrary Microphone Distribution
 - Microphone Distribution must operate in the Gunness Student Center
 - Real-time
 - Video (30 frames per second)
 - Position updates (12 updates per second)
 - Video, audio, and transcript must be accurate within 5 seconds.
- Accurate
 - Visually flag target within a meter
 - Must be able to isolate audio within a cubic foot

System Overview

Department of Electrical and Computer Engineering

Block Diagram - High Level

Department of Electrical and Computer Engineering

Block Diagram

Department of Electrical and Computer Engineering

Processor Algorithm

- 1. User selects target from video input
- 2. Obtain visual description of target
- 3. Repeat:
 - 1. Find region in video where target could be
 - 2. Map visual coordinates to delay differences
 - 3. Find loudest human voice near delay differences
 - Isolate sound source and highlight the detected target
 Audio to Text

Risks vs. Payoffs

Risk:

Unethical applications Limited audio and video coverage Hard to conceal Payoff: Easy identification of individuals for user Arbitrary setup

Cost

Quantity	Unit Cost	Total Cost
8	\$30	\$240
8	\$5	\$40
1	\$100	\$100
1	\$100	\$100
1	N/A	N/A
N/A	N/A	N/A
		\$480
	8 8 1 1 1	8 \$30 8 \$5 1 \$100 1 \$100 1 \$100

Department of Electrical and Computer Engineering

UMassAmherst MDR Deliverables

- Reproduce Acoustic Beamformer Functionality
 - Establish Hardware Setup
 - Microphone to ADC
 - Establish Interface
 - Microphone Input into MATLAB
 - Be able to analyze 8 channels in MATLAB
- Development of real-time software framework
- Video input into MATLAB