PROJECT SAURON CUMULATIVE DESIGN REVIEW

Senior Design Project Spring 2016

> Sponsors: UMassAmherst COLLEGE OF ENGINEERING

Department of Electrical and Computer Engineering

UMassAmherst The Team

Advisor: Tilman Wolf

Zach Goodman EE

Walter Brown CSE & CS

Omid Meh CSE & EE

Jose LaSalle EE

Department of Electrical and Computer Engineering

Overview

- Project Sauron
 - 1. Problem
 - 2. Scope
 - 3. Specs
 - 4. Deliverables
 - 5. Work Breakdown Structure
 - a) Block Diagram
 - b) Mic Modules
 - c) New Array
 - d) Real-Time System
 - e) Beamforming
 - f) User Interface
 - g) Integration
- Responsibilities
- Demo
- Outlook

Project Sauron – Refresher

A surveillance system in which a user selects an individual in the camera's field of vision, directs our microphone array to focus on the selected individual and isolate their audio.

Project Sauron – Specs

- Range: 1 to 3 meters
- Spanning Angle: 130° (-65° to 65° from center)
- Frequency: 500Hz-3.5kHz
- Beam Width: 40°

Department of Electrical and Computer Engineering

Project Sauron – CDR Deliverables

- Promised Deliverables (Achieved)
 - Mic Modules Designed
 - Prototype of the New Array
 - Working draft of UI
 - Integration (HW, SW, UI)
- Additional Accomplishments
 - Real-time Code
 - Working Compound Array
 - Speech Isolation on the Compound Array

Work Breakdown Structure

Block Diagram

Work Breakdown Structure

New Array Design

- Engineered for Human Voice
- Compound Array
- Ground Shielded Alpha Wires
- Chassis/Mic Acoustic Separation
- Vantage Point Placement
- Low-Noise Voltage Source

Directivity (dBi), Broadside at 0.00 degrees

Work Breakdown Structure

New Array Design

Department of Electrical and Computer Engineering

Work Breakdown Structure

3.3V Power Supply

Department of Electrical and Computer Engineering

Work Breakdown Structure

\pm 9V Power Supply

Department of Electrical and Computer Engineering

Work Breakdown Structure

Mic Modules

Department of Electrical and Computer Engineering

Work Breakdown Structure

Differential Pair

Department of Electrical and Computer Engineering

Work Breakdown Structure

Real-time system design

Moved from Matlab to Simulink

Department of Electrical and Computer Engineering

Work Breakdown Structure

Beamforming

- Compound Array Interface
 - SW DC block
 - Optimal Sampling rate
 - Modular Design
- Parallel Sub-band Processing
- Time-delay Beamforming
- Beam Pattern Analysis

I MassAmherst

Work Breakdown Structure

180

160

40

20

0 0

User Interface

- Camera Interface
 - USB
- Mouse Location
 - S2 Block
- **Deriving Expression** •
 - Assume centered horizontal
 - **Expression Almost** Linear

Angle VS X Coordinate on Picture

Work Breakdown Structure

User Interface

Fisheye Picture of Protractor

Department of Electrical and Computer Engineering

Work Breakdown Structure

Integration

- UI Gives Beamformer Direction
- Buffering Frame Size

Team Responsibilities

- New Array (Jose/Zach)
- Microphone Module Design (Zach)
- Real-Time (Omid/Walter)
- Beamforming with New Array (Omid)
- User Interface (Walter)
- Hardware Debugging (Jose)
- Software Debugging (All)

Project Sauron – Outlook

- Enclosure
- Power Source
- Use both mouse coordinates to find azimuth
- Mark spanning angle in UI
- Mark beamforming area in UI
- Reduce Noise with new modules

Project Sauron – Demo

Prototype Demo

Department of Electrical and Computer Engineering

Project Sauron – Questions

Any Questions?

Department of Electrical and Computer Engineering