Viano

Chitula Chipimo
CSE

Christopher Cunniff
CSE

Kelly Kennedy
EE

Anna Wildman
EE

Advisor: Professor Anderson
Agenda

- Review of Project
- CDR Deliverables
- Demo
- FDR Deliverables
Pico-Projected Midi Controller

Specifications:

- **Portable** (fit in small bag, lightweight)
- Dimensionally-correct keyboard
 - Immediate goal: 2-Octaves
- Seamless integration with GarageBand
- Not pressure sensitive**
Promised CDR Deliverables

Kelly
Design housing unit and wide-angle solution for projecting image

Anna
Design and Test a Power Circuit

Chi
Implement Virtual Coordinate Keyboard and Touch Calibration

Chris
Gui application on laptop and sending information from Raspberry Pi
Design Challenges:

- Have 3 devices that need power
 - 2 - 5V (Raspberry Pi (5W), Linear Laser (25mW))
 - 1 - 12V (Pico Projector (18W))
- For portability, need batteries with a charging circuit
- Only want one charging cord for simplicity on user end
Charging Circuit for Rechargeable Batteries

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Cost per Item</th>
<th>Cost per Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop Charger</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UBEC 5V, 3A</td>
<td>2</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>UBEC 12V, 3A</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Rechargeable AA Batteries</td>
<td>18</td>
<td>2.75</td>
<td>49.5</td>
</tr>
<tr>
<td>PCB Charging Circuit</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td></td>
<td>129.5</td>
</tr>
</tbody>
</table>

Manually Recharging/Replacing Batteries

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Cost per Item</th>
<th>Cost per Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>UBEC 5V, 3A</td>
<td>2</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>UBEC 12V, 3A</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Rechargeable AA Batteries</td>
<td>18</td>
<td>2.75</td>
<td>49.5</td>
</tr>
<tr>
<td>Battery Recharger</td>
<td>5</td>
<td>16.99</td>
<td>84.95</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td></td>
<td>164.45</td>
</tr>
</tbody>
</table>

Battery Pack

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Cost per Item</th>
<th>Cost per Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop Charger</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>USB Battery Pack</td>
<td>1</td>
<td>49.95</td>
<td>49.95</td>
</tr>
<tr>
<td>PCB Charging Circuit</td>
<td>1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td></td>
<td>99.95</td>
</tr>
</tbody>
</table>
Viano Charging & Power Circuit: Schematic
Viano Charging Circuit: Testing

FEATURES
- Specified 1% Output Voltage Tolerance (LM317A)
- Specified max. 0.01%/V Line Regulation (LM317A)
- Specified max. 0.3% Load Regulation (LM117)
- Specified 1.5A Output Current
- Adjustable Output Down to 1.2V
- Current Limit Constant with Temperature
- P* Product Enhancement tested
- 80 dB Ripple Rejection
- Output is Short-Circuit Protected

R2calculated = 2.06 (kohm)
R2measured = 2.02 (kohm)

R2calculated = 720 (ohm)
R2measured = 707 (ohm)
Projecting the Piano Image

Design Challenges:

- Projecting bright enough image
- Keeping Viano overall size as compact as possible
- Finding a wide-angle solution that gave us the right magnification without distorting image
- Perspective Transformation Distortion

Solution:

- New Pico Projector (DLP technology + 100 lumens vs 6 lumens)
- High Definition .43x Wide Angle Lens
- Graphic Program for re-imaging
Projecting Piano Image

New Projector + Wide-Angle Lens + Perspective Transformation

Before perspective transformation

After perspective transformation
Housing for the Viano

- Built via SolidWorks (CAD program)
- 6in x 6in x 12in
- Hollow, 4 individually piece design that will snap in with one another
 - allows for flexibility in design

(View in SolidWorks)
Finger Tracking

1. Linear IR Laser Beam ~790nm
2. A finger breaks IR beam
3. Camera with IR filter sees finger reflection

- Add keyboard and touch calibration
Keyboard

- Defines a keyboard in 2D Euclidean space
- Input is finger coordinates
- Identifies key presses and releases
 - Uses a KeyStateManager, KeyEventHandler, and MidiHandler to receive, interpret, and pass on data
- Output is MIDI messages
- Contains a simulator for visual testing
Touch Calibration

Camera & projector placement:

- **Either rigid**
 - Once-off coordinate mappings
 - Errors introduced by camera or projector moving
 - Hard-code (this may be tedious to update)

- **Or flexible**
 - Parts may move/tilt/vary
 - Arbitrary placement of camera and projector
 - User calibration at startup
Bluetooth Communication

- **Transmission (Raspberry Pi)**
 - Slave bluetooth adapter via UART on Pi’s GPIO
 - Code to transmit MIDI notes over channel
 - Current transfer rate approx. 300 notes/s

- **Receiving (Desktop)**
 - Java App to receive/process transmitted data
 - Play notes on garageband
 - Allows for user definition of note velocity
<table>
<thead>
<tr>
<th>CDR Deliverable</th>
<th>Who is Responsible</th>
<th>Has it Been Achieved?</th>
<th>What is Left?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Housing Unit</td>
<td>Kelly</td>
<td>Yes - Overall Design</td>
<td>Final Dimensions and 3D Printing</td>
</tr>
<tr>
<td>Find Wide-Angle Solution for Projecting Image</td>
<td>Kelly</td>
<td>Yes - Accurate Width/Length of 2 Octaves</td>
<td>Sync Key Width with Software</td>
</tr>
<tr>
<td>Design and Test a Power Circuit</td>
<td>Anna</td>
<td>Yes - USB Battery Pack</td>
<td>Charging PCB</td>
</tr>
<tr>
<td>Implement Keyboard and KeyEventProcessor classes</td>
<td>Chi</td>
<td>Yes</td>
<td>Adjust Individual Key Dimensions</td>
</tr>
<tr>
<td>Implement Touch Calibration at Startup</td>
<td>Chi</td>
<td>Yes</td>
<td>Improve Separation of Fingers</td>
</tr>
<tr>
<td>Gui Application on Laptop</td>
<td>Chris</td>
<td>Yes</td>
<td>Improve UI</td>
</tr>
<tr>
<td>Sending Information from Raspberry Pi</td>
<td>Chris</td>
<td>Yes</td>
<td>Nothing</td>
</tr>
</tbody>
</table>
Final Design Review Deliverables

Kelly
Have Housing printed and implemented for Viano.
Correct dimensions of piano keyboard that will sync with the software

Chi
Add control keys to keyboard for changing instrument.
Discuss efficient image-processing improvements with Prof. Erik Learned-Miller.

Anna
Design and Order a Charging PCB using Cadsoft Eagle Software

Chris
Integrate pthreads into code base to utilize quad core on Raspberry Pi 2.
To maintain frame rate when increase image resolution.