
SDP15: Group 20: InteLEDs 1



Abstract—The InteLEDs vision is an LED Music Controller

featuring an automated lightshow where colorful LEDs react in

harmony with the music being played, and a remote to control the

lights for a price under $200. The user may play songs via

auxiliary input or Shairplay. This paper describes the current

state and future goals of each major subsystems, and the plan to

integrate them into a final product.

I. INTRODUCTION

Noncommercial products which connect the auditory

experience of music with the visual experience of suitably

synchronized LEDs are limited. This is due to a couple of

obstacles: it is difficult to market lightshow products to a

public when only targeted for party settings, and it is

challenging to do processing on sound and control lights

accordingly in real-time. Consequently, products such as the

CUBEecho0 target only commercial and wealthy audiences

with a price around $500. Cheaper laser light show products

exist1, but yield poor coordination with sound, spending more

time collecting dust than actually plugged in. These, and other

current lightshow products on the market utilize simplified

methods such as amplitude detection to give an appearance of

beat recognition. Such oversimplification limits possibilities

for what the lightshow can provide. InteLEDs strives to

overcome both obstacles by acting as the central lighting

system in the room with simple controls from any device with

WIFI access. InteLEDs invites itself into one’s home and

everyday use, by acting as a unifying system between the lights

and speakers of one’s home while delivering comprehensive

music analysis. Controlling the delivery of both audio and

optics, the InteLEDs system can smoothly achieve synchrony.

Because the InteLED’s music controller flashes bright lights

at high speeds, analysis on the effect of our product on the

public is necessary to ensure the safety of all users. Three

percent of epileptics report a sensitivity to flashing lights

yielding seizures2. We will make it clear to those users that

they should use our product with caution and at their own risk,

voiding us of liability, and ethical responsibility.

II. DESIGN

A. Overview

We will make a LED music controller. We decided the ideal

candidate for a processing system is the BeagleBone Black3

J. L. Author from Bangor, ME (jlad@umass.edu).

A. M. Author, Jr., from Auburn, MA (apmichae@umass.edu).

S. L. Author from Fall River, MA (sluwoye@umass.edu).

A. I. Author from Acton, MA (aizotov@umass.edu).

(BBB), a popular development platform, for two major

reasons. First, there were not many other candidates. A DSP

seemed too specific and lacked the ability to use existing

python libraries and standard Linux features. A laptop was

considered for speed and convenience, but it didn’t fit our

embedded system vision. The last choice is a Raspberry Pi,

which pales in comparison to specs1. Not to mention, it's fairly

cheap ($50). For development boards, the BBB is as good as

it gets.

Python has been chosen as the primary language to complete

the project, over lower level languages for various reasons.

Primarily, it is perfectly suited for prototype development by

offering powerful built in functionality and libraries that makes

writing code natural and pain-free. The major drawback of

using python is performance, but because we’re allowing a

maximum buffer time of 10 seconds, execution time of our

programs isn’t critical to the functionality of our project.

Additionally, many of the python libraries being used

(pyAudio, numpy.fft) wrap C libraries, so those processes are

almost as efficient as C. The most important aspect is the

coordination of light signals and music playback, which will

be simpler using Python.

Figure 1: The System Block Diagram

Figure 1 outlines the system as a whole and the interaction

between subsystems, which will be analyzed in depth in

addition to the specific technologies used in the sections

below. Sade is responsible for block 1, Alden for block 2,

Justin for block 3, and Arseny for block 4. The functionality

of each subsystem guarantees the complete system will work

because we have already demonstrated each subsystem works.

The real challenge now is to coordinate the integration.

B. Block 1: Remote Light Controller

This block includes the Web App interface and Shairplay4.

The Web App will be compatible with iPhone, Android, and

computers. The Web App gives the user the ability to choose

a specific color for the LEDs. The user will also have the

InteLEDs Midterm SDP Report

Justin Lad, EE, Alden Michaels, CSE, Sade Luwoye, EE, and Arseny Izotov, EE

mailto:sluwoye@umass.edu
mailto:aizotov@umass.edu

SDP15: Group 20: InteLEDs 2

ability to choose whether they would like the lights to flash to

the beat of the music or choose a light show demonstration.

The color wheel was created using HTML5. It is a visual

representation of colors arranged in a circle to show the

relationship between primary and secondary colors. Figure 4

displays the color wheel image used for the Web App. The

color wheel consists of two main components: the preview

pane and the color wheel. When the preview pane is clicked,

the color wheel will be displayed. First a new canvas is

created, then a png image of a color wheel is drawn on the

canvas. Event handlers were added for when the user clicks the

preview pane and the color wheel. When the user moves over

the color wheel, information about the current color is

refreshed and updated. A server was written for interfacing

with the LEDs. It allows a webpage to be called when the user

clicks on a point in the color wheel. For example, if the user

clicks on red, the hex RGB value is 0xFF0000, so

http://10.10.10.101/rgb/FF0000 would be called.

Figure 2: Color Wheel for Light Color Control

Figure 3: Remote Light Control Block Diagram

To allow the BeagleBone Black to become a wireless audio

receiver, Shairplay was installed. Shairplay is a free portable

AirPlay server implementation. It allows music to be streamed

from a mobile device to the BeagleBone black5, 6.

C. Block 2: LED Modules

The LED Module system consists of two systems: the server

that sends control signals to the module, and the LED module

itself.

The block shown in figure 3 describes the software and

hardware stack for LED control on the BBB. First, there is a

static Python web server which serves Sade's WebUI HTML

file, a static file that includes HTML for layout and a JS

program for asynchronous network control of our lighting

system. In addition to that static server, there is a dynamic

server which takes HTTP requests and uses them to control the

lights. The commands come in the format

of http://beagleboneaddress/rgb/RRGGBB, where RR is the 8

bit hex value of the red intensity (from 0-100%), GG is the

same for green, and BB for blue. This standard API allows

any programmer to write an interface in any language on any

internet-connected device that is active in the user's home.

This allows for a tight level of integration into existing

products, leveraging the extensive trove of internet connected

devices most households contain. The dynamic Python server

takes these commands and outputs them via a standard USB

Bluetooth 4.0 transceiver, a popular item available for under

$10 from any computer retailer. If we were to create custom

boards for the BBB, this transceiver would be replaced with a

Nordic Semiconductor nRF51822, or similar, and place that on

the board as well.

Figure 4: LED Control from BBB

Figure 4 depicts the LED Module, the device responsible for

controlling the LEDs electrically. It is powered by a standard

12V “wall-wart,” which allows us to leverage the economies of

scale for that component. This 12V is fed to a 3.3V LDO

(low-dropout regulator), which powers the logic of the

mainboard. The module has a 2.4GHz antenna to receive

Bluetooth signals, which are fed into a dedicated BLE radio.

The Nordic Semiconductor’s nRF518227 was chosen, as it has

an integrated BLE radio and a powerful 32 bit ARM Corext-

M0+ processor on one SoC die, with a low price point of

under $2 in quantity. The ARM processor is programmed with

custom control logic, which uses the hardware PWM

capabilities of the internal timers to create RGB signals

corresponding to the colors received via Bluetooth. These

signals are sent to MOSFET driver circuits, which are

connected to 5M long RGB LED strips. These strips are

http://10.10.10.101/rgb/FF0000
http://beagleboneaddress/rgb/RRGGBB

SDP15: Group 20: InteLEDs 3

waterproof, have over 300 RGB LEDs (900 total LEDs), and

consume about 48W of power at full brightness. They cost

less than $20 per 5M roll, so we are once again leveraging the

economies of scale here.

Figure 5: LED Module Block Diagram

D. Block 3: Live Stream & Frequency Transform

The specifications this block must accomplish are recording

music streaming on the USB sound card, transforming the

song information into its frequency representation (which is

then sent as an input to block 4), and finally coordinate

playing the lightshow and music for every moment of the song.

This block will consists of three python programs, tied

together by a python script depicted in figure 5. The first

python program will continuously record 2.75 second samples

of music input from the sound card and send the .wav file with

its associated time stamp (to keep track of how to piece the

song back together) as inputs to two programs:

songAnalysis.py and controller.py. The songAnalysis program

takes a .wav file and a timestamp as an input, opens the wav

file, converts it to the frequency domain, and outputs the beat

and key of that song segment (this is block 4). It will then

send its output (time stamp and songInfo) to the controller

program. The controller program will listen for a .wav file and

songInfo and keep two queues: one for .wav files and one for

songInfo. The buffer is implemented by checking if there are a

couple matching timestamps each time a new .wav file or

songInfo is received. Matching time stamps in each queue

indicates that our system will be able to play the song segment

and control the lights accordingly.

In order to complete this block, research and testing must be

done to learn how to make the controller program listen for

asynchronous inputs, and how to coordinate the programs

together. In order to develop the functionality of my block, we

will first continuously record and pipe the output to

analyzeSong.py. Then complexity will be added by sending

the recorded output to analyzeSong.py and controller.py. At

that point, controller.py will be able to add its input to the

correct queue. Analysis of my results are fairly self-evident—

either it works or it doesn’t. Once the system is fully

integrated, the ultimate test is whether the program controls the

lights in sync with the music being played.

A significant portion of prototyping this subsystem has been

accomplished at this mid-year junction. A major aspect of this

block has been achieved: converting a song in .wav format to

its frequency domain representation, by employing the use of a

python wrapper of a C library called scipy.fft, which hase been

successful in recording and playing back audio using the

pyAudio library; however, implementing the controlling

system will be fairly involved and the crux of the deliverable

for CDR.

Completing this block will require drawing upon a

culmination of skills accrued during my UMass education.

Namely, software courses like data structures and algorithms

that taught me how to formulate programmatic algorithms, and

software engineering (ECE 373), which taught me parallel

processing, Unix, and scripting fundamentals.

Figure 6: Live Stream Block Diagram

E. Block 4: Song Analysis

The main purpose of this block is to analyze the song, and

create a lightshow accordingly. The analysis will consist of

finding the tempo, individual beats, and possibly key detection

of the song, to allow a programmatic approach to color

selection. This block will receive sampled song data points

over time, compute and store the analysis, then output

lightshow information mapped to appropriate times, cutting

out computation time wherever possible. All parts of the

system take into account a faster reaction time of human

perception: 100 milliseconds8.

 The beat and tempo detection is completed, and ready for

optimization when integrating the blocks. The beat and tempo

detection are both done by applying a comb filter on simplified

frequency energy points. Those simplified frequency energy

points are samplings of the energy of the song, 20 times a

second, in multiple different frequency ranges. The multiple

frequency ranges allow for more intricate song analysis.

 Each frequency is treated separately, differentiated to find

the biggest changes in energy, and then the comb filter is

applied. The comb filter takes a dot product of evenly spaced

rectangular pulses with one of the frequency energy arrays.

Sweeping over different spacing of the rectangular pulses, and

the different possible starting points of the rectangular pulses,

the highest dot product values are recorded.

 Recorded spacing of the rectangular pulses map to a

certain number of beats per minute (BPM). The start of the

first rectangular pulse maps to the start of the first beat. This is

repeated for every frequency range, once a second, operating

on the past 2.5 seconds. Due to the nature of music, different

frequency ranges produce different results, which can later be

used for more complex lightshows. For now, the fastest BPM

is recorded per one second interval.

To deal with memory issues as seen in Computer Systems

Lab, and to learn from previous mistakes, old data is cleared to

SDP15: Group 20: InteLEDs 4

make room for new music and analysis. This data is also

structured accordingly to linked list systems as exemplified in

Data Structures at UMass.

What remains for a simple lightshow is integrating different

patterns of flashing and fading to the LED strip. For a more

complicated lightshow, the key of the song may be found by

mapping the most persistent frequencies to chords. More

research needs to be done in regards to music theory to deal

with overtones and undertones, but the concept is present.

Specific keys are known to be sadder or happier than other

ones, which can map to warmer or cooler colors. Also, with

more LED strips available, more complicated optics can be

programmed, and switched between tempo changes.

Due to the complexity of the algorithm, it is important to

keep the code maintainable by keeping it readable. Along with

the benefits of ease of integration with other blocks, and the

availability of C libraries for the fast Fourier transform, python

is again used.

 To test the accuracy of the program, multiple methods

were used. One was to see how the algorithmically detected

BPM of the song related to audible BPM. Matching a

metronome to the beats of several tested songs, the audible

BPM was found. The two BPMs were accurate within the

human 100 millisecond recognizable margin. In essence, a

song with BPM of 117 was detected to be either 110 BPM or

120 BPM over 95% of the time. Another test was to write

down audible beats for a 10 second span of music by ear, to

mimic the human ability of detecting beats. The

programmatically detected beats matched up at most beats

excluding two conditions: around random samples included in

modern music (such as an eagle chirp) and around tempo

changes. This can be overcome during integration by having

oversimplified lightshow transitions during those tempo

changes.

 Key detection may be more difficult to analyze in modern

music, but by using songs that stay in a known key, this can be

easily tested. Future tests for whether lightshow patterns match

up can be done by handling the lightshows with a consistent

BPM, and again measuring with a metronome to see if the

lights react accordingly.

Figure 7: Song Analysis Block Diagram

III. PROJECT MANAGEMENT

MDR Goal Status Estimated Time

until Delivery

Play song on BBB

via Shairplay

Completed N/A

Control Lights via

webUI

Completed N/A

Convert .wav file

to frequency

domain

representation

Completed N/A

Calculate BPM for

every moment of

song

Needs

Optimization After

Integration

CDR

Control lights to

blink to beat of

song

Not Started CDR

2/15

Table 1: Listing of MDR Deliverables

Generally speaking, our team works well together. There

have been times where individual commitment is challenged,

but we bounce back and come together with motivation and

energy to get the project working. Each member possess

unique abilities that makes focusing on individual parts

natural. And beyond our individual responsibilities within our

project, we assist each other during group meetings.

Scheduling and general communication is done via GroupMe,

which is essentially a group SMS application, so every team

member gets information sent immediately to their phone.

We have weekly meetings with our advisor Professor Kelly

and as group every Thursday. Our group meetings largely

consist of discussing our progress and discussing technical

issues we’re struggling with. Arseny has a strong ability in

algorithm development; consequently, he’s handling the

difficult problems of beat and dominant key recognition. Sade

is our organization savior by noting important comments and

keeping the rest of the team informed. She will deliver the

Wep App interface and Shairplay functionality. Justin acts as

the manager and has a strong ability to program. He is

delivering the live stream functionality and coordinating

playback and light controls. Alden Michaels is the technical

backbone of this project, with deep knowledge in most aspects

of the project. He delivered a functional LED Module by

MDR, and keeps our group in line when the urge to slack

creeps in.

Figure 8: Gantt Chart for Proposed Progress

SDP15: Group 20: InteLEDs 5

IV. CONCLUSION

InteLEDs is at a reasonable halfway point. All of the major

subsystems are functional but there are a couple of features

that must be delivered (live stream and key detection). Our

plans for future progress are outlined in the Gantt chart (figure

7). We plan to achieve a significant portion during winter

break, so we may come together as a group and focus

exclusively on integrating the system and all the unforeseen

issues associated with that process. Each member will describe

his status, accomplishments, and future goals below.

Currently for Block 1, the user is able to access the website

and choose a specific color from the color wheel for the LED

lights. With the help of Alden, we were able to accomplish this

task. For CDR, Sade plans to add more control features such

as individual color buttons to minimize the lagging that occurs

from the color wheel. She also plan to create a light show

demo for the user. This will allow the user to choose a specific

light choreography instead of flashing to the beat of the music.

This is similar to how Christmas lights work. Sade is currently

researching light patterns of Christmas tree lights and how they

are developed.

Block 2 meets all of the proposed goals, but exists solely on

a breadboard. Additionally, a Linux bluetooth program is still

being used as the intermediary from my groupmate's Python

scripts to the USB Bluetooth radio attached to the Beaglebone

Black. Thus, two main things to remain for the coming

semester; one will be to minimize the latency of the BBB

software side of my project, bypassing the intermediary tool

and talking directly to the kernel driver, and the other is to

move the LED Module onto a custom PCB. Currently, the

BBB must handshake with the LED Module each time it

changes color, this is a result of using the intermediary

program. By writing a custom library and talking to the kernel

driver directly, we can greatly reduce the latency by only

performing the handshake at the stand of a session, rather than

on every color change. The PCB will reduce the footprint

from roughly the size of a sheet of paper, to roughly one half

of a dollar bill. It will include an integrated 2.4GHz PCB

antenna for BLE communications, an ARM Cotrex-M0+ 32 bit

microcontroller, and all the power electronics to handle the

large LED load. All components will be surface mount, save

for the barrel jack power connector. This mimics real life

LED controllers, and would be the most cost effective option

in a real manufacturing scenario.

Block 3’s live stream is a critical feature, and needs to be

functional by the end of January. Difficulties can certainly be

foreseen adapting songAnalysis.py (Arseny’s block) to work

with the live recording, due to it constantly receiving song

segments instead of reading an entire .wav file. Also, a kernel

interface might be necessary to take the audio information sent

from shairplay in order to send it to block 3, which will

certainly add complications. However, we believe we can

record the song in the same way as it’s done with the auxiliary

input. Once we can record and analyze continuously, we can

start the final system integration: writing the controller.py

program shown in figure 5, that will playback the previously

recorded songs and send signals to control the LEDs. Lastly,

the USB soundcard must be configured to work on the BBB,

which will be done before leaving for winter break.

The current state of block 4 is a completed beat detection

algorithm, which can be further optimized for speed and

accuracy. Integration with lights is needed, along with colors

from an uncompleted key detection. Running into difficulties

with overtones and undertones could potentially leave the need

for randomly selected colors. Creating different algorithms for

different lightshow patterns is also a need.

REFERENCES

[0] Eternal Lighting, “Eternal Lighting CUBEecho RGBWA

DMX” CUBEecho-DMX RGBWA datasheet.

[1] American DJ Technical Staff, Micro Galaxian Instruction

Manual, American DJ.

[2] Shafner, P. O. "Epilepsy Foundation." Photosensitivity

and Seizures. 1 Nov. 2013. [Online]. [Accessed 15 Dec.

2014].

[3] L., Michael. "How to Choose the Right Platform:

Raspberry Pi or BeagleBone Black?" Makezine. 25 Feb.

2014. [Online]. [Accessed 15 Dec. 2014].

[4] Juhovh. "Juhovh/shairplay." GitHub. GitHub, n.d.

[Online]. Available: https://github.com/juhovh/shairplay.

[Accessed 21 Sept. 2014].

[5] "Play Content from Your IPhone, IPad, IPod touch, or

Mac on Your HDTV." Airplay. Apple, n.d. [Online].

Available: http://www.apple.com/airplay/. [Accessed 13

Sept. 2014].

[6] Crawford, Stephanie. "How AppleAirPlay Works" 27

June 2011. HowStuffWorks. [Online]. Availbe:

http://electronics.howstuffworks.com/airplay.htm

[Accessed 13 Sept. 2014.]

[7] Nordic Semiconductor, “Multi-protocol Blueototh Low

Energy and 2.4 GHz proprietary system-on-chip,”

nRF51822 datasheet.

[8] J. Shelton and G. P. Kumar, “Comparison between

Auditory and Visual Simple Reaction Times,” SciRes

Neuroscience & Medicine, Vellore, India. Final Rep.,

Aug. 7, 2010.

https://github.com/juhovh/shairplay
http://www.apple.com/airplay/

