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Abstract—When a driver of a large vehicle misinterprets signals from their ground guide, such miscommunication can easily lead to accidents resulting in death or injury of bystanders. The E-µ is a wearable device which serves as an interface to minimize communication errors and reduce the risk associated with navigating large vehicles through difficult or heavily populated terrain. The device determines gestures by reading the muscle activity and motion of the ground guide’s arm into pattern recognition software running on an embedded processor. Then, speech associated the gestures is sent wirelessly over a Bluetooth connection to a speaker in the driver’s car. Our solution is unique because it supplements pre-existing gestures.
I. INTRODUCTION
I
N corporate and military settings, large vehicles must be navigated through both tight areas and through areas with heavy foot traffic. This leads to accidents which often cause injury and death. According to the Department of Labor, nearly two hundred people were killed by large vehicles backing up between the years of 2005 and 2010 [1]. Figure 1 shows a table of how these deaths were distributed between large commercial vehicles.
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Fig. 1. Deaths from various vehicle backups from 2005 to 2010 [1]

The Texas Department of Insurance suggest using a spotter to guide the driver with hand signals [2], and the Armed Forces deploy a ground guide as a standard operating procedure while driving through certain high risk zones [14]. Despite these practices, mistakes are still made.


In order to reduce personal injuries, deaths, and damage to property, we propose a system that would reinforce these existing hand signals via in-cab audio communications. Our gesture recognition system will be designed to be generic enough that it could be used in other applications as well.
II. Design
A. Overview
By reinforcing the communication between the driver and the ground guide, we can avoid injuries, and reduce the costs of preventable accidents. We aim to build a system that will not require any additional training, and can seamlessly be implemented into existing practices.
To monitor the arm signals used by guide personnel, we will use an inertial measurement unit (IMU) and electromyography (EMG) sensors. The IMU senses with accelerometers and gyroscopes, and its data can be used to determine movement. The EMG sensors read electrical muscular activity at the surface of the skin. By utilizing both types of sensors, we predict we will be able to accurately recognize the motion of the arm and the movements of the wrist and hand.
Once this data is analyzed and a pattern is recognized, our system will select a voice command from an existing library, and transmit it from the guide to a speaker inside the cab using Bluetooth communications. An additional speaker can be placed on the system with the guide, so they can monitor the functionality of the system.

Alternative solutions include using handheld radios to transmit this data, or using radio frequency identification (RFID) tags on ground personnel that interact with sensors on the vehicle. The E- µ is preferable to handheld radios because it does not require existing hand signals to be altered. Similarly, RFID tags fall short of preventing vehicle backups involving multiple vehicles, or other physical obstacles. RFID tags also would not be worn by non-permanent personnel. Our system still involves a human element in case of hardware failure.
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Fig. 2. System Level Block diagram of the E-u
Figure 2 shows the system level block diagram of the E-µ armband. The armband will be powered by a rechargeable battery. At present a 5V supply is anticipated, but a 10V bipolar supply has also been considered. A 3.3V regulator will be used to power the microcontroller unit (MCU). The system will receive input from the IMU and EMG sensors. After some analog processing the EMG signal will be passed to the MCU for digital processing. After the EMG and IMU signals undergo their respective digital signal processing (DSP) stages, information will be passed to the pattern recognition subsystem. This block will utilize the k-nearest neighbors (KNN) algorithm to determine if a specific gesture is being performed. The controller will then interpret the output of the pattern recognition subsystem, and retrieve an audio file from the SD card module. This file will then be sent over a Bluetooth transmitter to a commercially available Bluetooth speaker. The gestures we intend to use and their anticipated sensor dependencies are shown in Table 2.

B. Electromyography Circuitry
The purpose of the EMG circuit is to take the raw data from the surface of the user’s skin and to amplify it into a usable signal. Initially, the electrical signals read at the electrode are too weak to be used for meaningful data. Before any processing can be done, we must amplify these signals from a few millivolts to a few volts. Also, filtering the signal is necessary, as the only meaningful content resides in the frequency band 60-500Hz [3].

The signal is amplified in two stages. First, the electrodes will feed directly into an instrumentation amplifier. The instrumentation amplifier used is the Texas Instruments INA2126, a dual channel amplifier with variable gain [4]. The gain on either channel is set with a 1kΩ potentiometer, for a range of 38dB to 80dB. The second stage of amplification is also an active low pass filter. A first order low pass filter is used to cut out frequencies above 500 Hz, and also to offer additional gain of 15dB to the output of the instrumentation amp. These signals are then passed to the analog to digital converters on the MCU.
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Fig. 3. EMG Signal Conditioning Circuit Diagram
Superposition can be used to analyze the circuit and gain insight as to the function of gain resistors, and offset voltages. The initial design proposed at PDR included an envelope detector. Although this design was dropped in favor of digital filtering, the initial design was inspired by course material from the introductory communications class. The anti-aliasing filter design was added in order to filter out noise that could corrupt the meaningful data while sampling, as discussed in the signals and systems analysis class, ECE 313. This was designed to have a cutoff frequency of 500Hz, which implies the sampling rate should be at least 1000 samples per second. The ADC on the MCU can far exceed that rate.

To test this system, a commercially available EMG sensor was used as a known working system. The sensor used was the Pololu V3 Muscle Sensor [5]. Electrodes were placed on the forearm of one subject, and two different hand motions were performed. The hand motions were done once with the designed system, and again with the Polulu sensor.  Comparing outputs from both sensors in real time using an oscilloscope resulted in similar waveforms with slight variations in noise and amplitude.
C. Electromyography Digital Signal Processing
EMG signals are composed of action potentials fired by muscle fibers when performing certain gestures. They are acquired using surface electrodes placed on the flexor muscles of the forearm. Multiple approaches have been suggested to characterize hand movements using both the time and frequency domain representations of EMG signals.  This is because for a particular hand gesture, EMG signals provide distinctive features in each of the time and frequency domain. These features will be extracted and compared for classification of samples and building a gesture library. Other papers have identified features such as standard deviation, mean absolute value, mod frequency, waveform length and variance of EMG useful for classifying gestures [10]. It is also possible to study the amplitude by averaging the EMG signal [9]. 
To collect EMG signal samples, we first observed the data with an oscilloscope and then stored the data on a computer in ‘.csv’ format. A parser was used to format the stored data in MATLAB before it was ready for processing.

Typically a frequency range of 20-500Hz is used for frequency domain analysis of the EMG signals [9]. This establishes a cutoff frequency of 500Hz and therefore sets our sampling frequency to the Nyquist rate of 1000Hz. The next step is Fast Fourier Transform (FFT) on the EMG signal and extraction of the desired features. FFT produces an N point Discrete Fourier Transform of the signal and provides us with a single frequency spectrum for our EMG signal. In order to confirm that our FFT produced correct results we performed this analysis on a sinusoidal input from the function generator. Parameters such as the mean and standard deviation of the sinusoid input matched our expected result. Having confirmed that our program works accurately and sampled at a frequency of 1000Hz, we performed FFT on EMG signals obtained for two different gestures.

The first gesture performed is wrist flexion, where the user bends their palm down towards the wrist and thereby flexes the forearm muscles. The second gesture characterized is the fist, in which the user clenches the fingers to make a fist and holds in place. These gestures were chosen because they displayed distinctive time and frequency domain behavior. In the time domain the voltage measured varied distinctively in amplitude for each of the gestures. In the frequency domain we were able to extract features such as fundamental or mod frequency, mean amplitude and standard deviation in amplitude. Mod frequency is the frequency at which the highest amplitude occurs. These features were extracted both before and after digital noise filtering of the EMG signals in the frequency domain. Roughly ten instances of the experiment were performed for each gesture over a span of different days and the results were recorded into a table.
D. Inertial Measurement Unit
The purpose of the inertial measurement unit is to detect arm movements of the ground guide. This is accomplished through both the digital sensor MPU-6050 and through associated software. The MPU-6050 contains a three axis accelerometer and a three axis gyroscope. Since the sensor is digital, it is integrated into the device through I2C compatible pins on the microcontroller. Each reading from the sensor is interpreted as six column vector including roll, pitch, yaw, and acceleration in the x, y, and z directions. 
There are two components in the digital processing of the data from the IMU. The first component is a digital low pass filter. This acts as a way to make the sensors less sensitive to very small movements. The purpose of this is to get more consistent data without losing characteristic information of the gestures.
The second component of the digital processing works to counter the effects of gravity which initially distort the acceleration readings. The act of holding up one’s arm in place accelerates the sensor upward against gravity and this acceleration changes as the arm rotates [7]. However, since gravity is a constant acceleration, this is avoided by using the MCU to determine the derivative of acceleration. While not a perfect work-around, the resulting readings strongly mitigate the changes in acceleration from gravity during rotation and greatly emphasize changes acceleration due to the wearer’s actions. The units of the processed accelerometer data are in meters per second cubed, or jerks. Figure 4 depicts the IMU DSP process.
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Fig. 4. Digital signal processing for the inertial motion sensor
E. Pattern Recognition
The purpose of this subsystem is to interpret readings from the sensors and decide when different gestures are being performed. The algorithm we use is a variation of the K-nearest neighbors (KNN) algorithm which was learned both from a class on intelligent system design, ECE 597C, and its textbook “Introduction to Pattern Recognition” [12]. The benchmark for success with the pattern recognition system is the ability to reliably differentiate between six gestures using the data from the sensors.

Two dimensional vectors are used to represent patterns of data that correspond to each motion. Each column is a different property of the motion as determined by the IMU DSP and EMG DSP subsystems. Each row of this two dimensional pattern vector is a unique reading in time. 
The input vector is compared against this stored-pattern vector with the result being a score for each gesture based on the similarity of the input. To get this score, the distance between the input and the stored pattern is determined using the Euclidean distance formula:
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Where ‘n’ is the number of features being compared in the data, ‘p’ is the input vector from the sensor and ‘q’ is a single row of the stored pattern.

 For each row of each pattern, distances are stored relative to a single input, along with a record of which pattern each specific distance measurement belongs. The distances are then sorted from lowest to highest and N of the smallest distances are considered for scoring. Each corresponding patterns’ score value is incremented by one.
In order to smooth out the results after multiple inputs, the final score of a pattern is its score averaged over a variable past number of readings. This has the structure of a queue, in which the most recent reading is pushed in and the oldest reading is popped out. The queue size, or window size, can be changed to adjust how long a person should do the gesture until it is recognized. We will likely use a window size of around thirty but this is something we will have to fine tune after the entire system is implemented. For reference, with a constant highest score in a single gesture, there is a delay of approximately one second using a window size of eighty.
Figure 5 depicts an overview of how this subsystem works.
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Fig. 5. Overview of the pattern recognition process

The microprocessor we have chosen to do these calculations is a 32 bit ARM Cortex-M4 that operates at 72 MHz [13]. The pattern recognition is the most intensive operation that the microprocessor will have to perform, and its processing speed is more than adequate for our needs.
In order to test that this subsystem worked before joining it with the other subsystems, two pseudo gestures and a set of mock input data were constructed. The mock input data was purposely created to match one pseudo gesture more so than the other. Additionally, the subsystem was tested to work in real time using sensor data from the IMU and proved to be accurate. 
One future complication will be differences in stored gesture data for different users. One likely solution is to record the gestures upon startup.
III. Project Management

The EMG Circuit successfully amplifies and filters the raw signal from the surface of the skin for processing. However, there is a non-stable DC component that will have to be resolved for the best system functionality. It is believed this stems from the voltage offset applied to the elbow of the user, which does not always drop uniformly at either of the differential electrodes.

The EMG Digital Processing currently reads in EMG data, further filters the data, and performs frequency domain analysis on the data, but this is not yet done in real time. Further data must be collected for distinct arm movements so that the best characterizations can be selected.

The IMU system currently sends data to the pattern recognition system in the form of a six column vector containing three dimensions of jerk, roll, pitch, and yaw. No additional work must be done for this subsystem.

The pattern recognition system currently predicts three distinct patterns reliably using solely the IMU. Further data must be gathered for the final patterns to be recognized, along with integration of the EMG signals. Differences in stored gesture data for different users is something that will be looked into at a later time.
Additional subsystems to be completed include the voltage regulation circuitry, the Bluetooth interface, and the SD card assembly.
Weekly meetings keep each team member up to date with the activities of the one another. Team members collaborate on the ideas of all subsystems, but individuals are responsible for their implementation. 
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Fig 6. Gantt Chart from MDR to CDR
IV. Conclusion
This report aims to identify some of the key design choices that were made when designing individual subsystems.  Aside from literature review, the team discussed key concepts with professors from Kinesiology and Computer Science departments at UMass, Amherst. Additionally, with the support of the ECE department, we feel very confident about moving forward to complete our project. Further research is well underway to overcome certain bottlenecks that were encountered in implementing individual subsystems and to meet the challenges of system integration.

Currently our system comprises of a basic pattern recognition interface using the IMU sensor data, a working wearable EMG sensor circuit obtaining real time EMG data, and signal-processing program to analyze EMG data. Signal fidelity is still an issue with the EMG circuitry, and we are moving forward to implement signal processing in real time. We also aim to run more experiments on different individuals and see how adaptable our device is for different users.

As we continue to develop the E- µ we are confident that the final product will come together to provide a system that will effortlessly interacts with the user and provide accurate feedback.  

References

[1] United States Department of Labor, “Preventing Backovers,” Occupational Safety & Health Administration, 2011 [Online], Available at https://www.osha.gov/doc/topics/backover/. [Accessed Nov. 20, 2014].
[2] Texas Department of Insurance, “Vehicle Backing Safety Factsheet,” Division of Workers’ Compensation, 2013 [Online], Avalable at http://www.tdi.texas.gov/pubs/videoresource/fsvehiclebackin.pdf. [Accessed Dec. 1, 2014].
[3] Delsys, “Fundamental Concepts in EMG Signal Aquisition,” Delsys Inc. 2003 [Online], Available http://www.delsys.com/. [Accessed Oct. 23, 2014].
[4] Texas Instruments, “Micropower Instrumentation Amplifiers, Single and Dual Versions,” INA2126 Datasheet, January 1996 [Revised August 2005].
[5] Advancer Technologies, “Three-Lead Differential Muscle Electromyography Sensor for Microcontroller Applications,” AdvancerTechnologies.com, Feb 2013. Available at http://www.pololu.com/product/2726/resources.
[6] Analog Devices, Appl. Note 649, pp. 21-24.
[7] Veresano, Fabio. “A Guide to Using IMU (Accelerometer and Gyroscope Devices) in Embedded Applications.” Starlino Electronics. N.p., n.d. Web.
[8] Analog Devices, “A Designer’s Guide to Instrumentation Amplifiers,” Analog Devices Inc. 2006 [Online], Available http://www.analog.com/. [Accessed Oct. 18, 2014].
[9] De Luca, Carlo J. "The Use of Surface Electromyography in Biomechanics."Journal of Applied Biomechanics (1997): 135-63. Human Kinetics Publisher Inc. Web. 5 Sept. 2014.
[10] Artemiadis, P.K., and K.J. Kyriakopoulos. “EMG-Based Control Of a Robot Arm Using Low-Dimensional Embeddings.” Robotics, IEEE Transactions On 26.2 (2010) : 393-398. © 2010 IEEE
[11] Analog Devices, Appl. Note 649, pp. 21-24.

[12] Theodoridis, Sergios, Aggelos Pikrakis, Konstantinos Koutroumbas, and Dionisis Cavouras. Introduction to Pattern Recognition: A MATLAB Approach. Burlington, MA: Academic, 2010. Print.
[13] Semiconductor, Inc. Freescale. "K20P64M72SF1." K20 Sub-Family Web.<http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Dev/Arduino/Boards/K20P64M72SF1.pdf>.
[14] U.S. Marine Corps Technical Manual, “TM 11240-15/3F Motor Vehicle Licensing Official’s Manual,” U.S. Marine Corps. Jan 2009 [Online] Available at http://www.med.navy.mil/sites/nmcphc/Documents/.

TABLE I


Design Specifications


Specification�
Value�
�
Weight�
< 3  kg�
�
Height�
< 12cm�
�
Length�
< 5  cm�
�
Width�
< 1  cm�
�
Battery Life


Range�
> 3  hours


> 10m�
�
Hardware Cost�
< 80$�
�












TABLE II


Gesture Recognition


Gesture�
Motion�
Primary Dependence�
�
Stop�
Fist�
EMG�
�
Slow Down�
Wrist Flexion�
EMG�
�
Forward


Reverse


Left


Right�
Arm Flexion & Extension - palm up


Arm Flexion & Extension - palm down


Palm facing left and lateral motion


Palm facing right and lateral motion


�
IMU


IMU


IMU


IMU


�
�






TABLE III


Results of Preliminary EMG Processing


Gesture�
Mean Magnitude�
Standard Deviation (Magnitude)�
Mod Frequency�
�
Fist�
7.7034�
4.6285�
74 Hz�
�
Wrist Flexion�
6.1835�
6.8170�
80 Hz�
�
Sin Wave


�
0.0928�
0.4206�
49 Hz


�
�






TABLE IV


MDR Goals


Task�
Status�
�
Design EMG circuitry�
Complete�
�
Place Electrodes�
Complete�
�
Filter and Amplify EMG


Create KNN Program


Analyze IMU Data�
Complete


Complete


Complete�
�
�
�
�
�
�
�
�
�
�
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