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
Abstract—Miscommunication can quickly lead to accidents

resulting in death or injury. The E-µ armband is a wearable device
which serves as a supplemental interface between two people, with
the purpose of reducing communication errors. As a test case, we
assist in navigating large vehicles through difficult or heavily
populated terrain. The device interprets a gesture by analyzing
muscle activity and motion of the wearer’s arm on an embedded
processor. Then, a voice command associated with the gesture is
sent wirelessly over a Bluetooth connection to a speaker in the
driver’s car.

I. INTRODUCTION

N corporate and military settings, large vehicles must be
navigated through both tight areas and through areas with
heavy foot traffic. This leads to accidents which often cause

injury and death. According to the Department of Labor,
nearly two hundred people were killed by large vehicles
backing up between the years of 2005 and 2010 [1]. Figure 1
shows a table of how these deaths were distributed between
large commercial vehicles.

Fig. 1. Deaths from various vehicle backups from 2005 to 2010 [1]

The Texas Department of Insurance suggest using a spotter
to guide the driver with hand signals [2], and the Armed
Forces deploy a ground guide as a standard operating
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procedure while driving through certain high risk zones [14].
Despite these practices, mistakes are still made.

In order to reduce personal injuries, deaths, and damage to
property, we propose a system that would reinforce these
existing hand signals via in-cab audio communications. Our
gesture recognition system will be designed to be generic
enough that it could be used in other applications as well.

II. DESIGN

A. Overview

By reinforcing the communication between the driver and
the ground guide, we can avoid injuries, and reduce the costs
of preventable accidents. We aim to build a system that will
not require additional training, and can seamlessly be
implemented into existing practices.

To monitor the arm signals used by guide personnel, we will
use an inertial measurement unit (IMU) and electromyography
(EMG) sensors. The IMU senses with accelerometers and
gyroscopes, and its data can be used to determine movement.
The EMG sensors read electrical muscular activity at the
surface of the skin. By utilizing both types of sensors, we
predict we will be able to accurately recognize the motion of
the arm and the movements of the wrist and hand.

Once this data is analyzed and a pattern is recognized, our
system will select a voice command from an existing library,
and transmit a character corresponding to that command from
the guide to a speaker inside the cab using Bluetooth
communications. An additional speaker can be placed on the
system with the guide, so they can monitor the functionality of
the system.

Alternative solutions include using handheld radios to
transmit this data, or using radio frequency identification
(RFID) tags on ground personnel that interact with sensors on
the vehicle. The E- µ is preferable to handheld radios because
it does not require existing hand signals to be altered.
Similarly, RFID tags fall short of preventing vehicle backups
involving multiple vehicles, or other physical obstacles. RFID
tags also would not be worn by non-permanent personnel. Our

E-µ Armband

Christopher Allum, CSE & EE, Shehzeen S. Hussain, EE, and Jeffrey A. Maloney, EE

I

TABLE I
DESIGN SPECIFICATIONS

Specification Target Value Achieved Value

Weight < 3 kg 1.5 kg
Height < 12cm 2 cm
Length < 5 cm 40 cm
Battery Life > 3 hours > 8 hours
Range > 10m 10 m
Hardware Production Cost < 80$ 78 $
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system still involves a human element in case of hardware
failure.

Fig. 2. System level block diagram of the E-u

Figure 2 shows the system level block diagram of the E-µ
armband. The armband will be powered by two rechargeable
batteries used as a bipolar supply. A 3.3V regulator will be
used to power the microcontroller unit (MCU). The system
will receive input from the IMU and EMG sensors. After some
analog processing the EMG signal will be passed to the MCU
for digital processing. After the EMG and IMU signals
undergo their respective digital signal processing (DSP)
stages, information will be passed to the pattern recognition
subsystem. This block will utilize the k-nearest neighbors
(KNN) algorithm to determine if a specific gesture is being
performed. The controller will then interpret the output of the
pattern recognition subsystem and send a character over
Bluetooth to a Raspberry Pi computer within the vehicle. The
Raspberry Pi will then transmit audio to a commercial speaker.
The gestures we intend to use and their anticipated sensor
dependencies are shown in Table 2.

B. Electromyography Circuitry

The purpose of the EMG circuit is to take the raw data from
the surface of the user’s skin and to amplify it into a usable
signal. Initially, the electrical signals read at the electrode are
too weak to be used for meaningful data. These signals are
taken from two muscles on the forearm. As such, there are two
channels for the EMG circuitry. Before any processing can be
done, we must amplify these signals from a few millivolts to a
few volts. Also, filtering the signal is necessary, as the only

meaningful content resides in the frequency band 60-500Hz
[3].

Two electrodes are placed on each muscle to feed a
differential signal into a two stage instrumentation amplifier.
Typically, the first stage amplification is set with a gain
resistor, Rg. The gain on this stage is inversely proportional to
Rg, and for the chosen IC, the Texas Instruments INA2128UA
[4], can be set as high as 80dB. The Common Mode gain
remains at 1 regardless of what size resistor used. The second
stage has unity gain by default. Such a configurations was not
possible for our application, however. The EMG signals we
were after were being drowned out by other electrical signals
at the surface of the skin.

The electrodes are placed in close proximity along the axis
of the muscle. The distance between two electrodes was set to
be about 2cm. Even at this close range, DC voltage differences
are present on the arm, and can sometimes be greater than
20mV, which far exceeds the amplitude of the desired signals.
This gave an undesired DC component to the output of the
amplifier, and also limited the gain by pushing the amplifier
into saturation if Rg was set too small. Furthermore, the DC
component was unpredictable, and often changed with the
position of the arm.

Fig. 3. EMG amplifier circuit diagram

This problem was addressed by the addition of two
feedback networks, shown in figure 3. First, a feedback
network was added to remove the DC component from the
output of the amplifier. This network is a first order active
low-pass filter. This feeds the DC component back into the IC
on the reference pin, effectively making the instrumentation
amp function like a high-pass filter. This was simulated with
LT spice and shown to have a cutoff frequency of 60Hz. The
second feedback network addressed the clipping problem.
Because the gain on the first stage is limited, additional gain
needed to be added on the second stage. This is accomplished
with a buffered voltage divider feeding the sense pin on either
channel. To avoid saturation, the first stage gain is set to 26dB.
The second stage gain is 38dB, giving the amplifier a total
gain of 64dB.

The anti-aliasing filter design was added in order to filter
out noise that could corrupt the meaningful data while
sampling, as discussed in the signals and systems analysis
class, ECE 313. This was designed to have a cutoff frequency
of 560Hz, which implies the sampling rate should be at least

TABLE II
GESTURE RECOGNITION

Gesture Motion
Primary

Dependence
Stop Wrist Extension EMG
Slow Down Repeated Wrist Flexion & Extension EMG&IMU
Forward
Reverse
Left
Right

Arm Flexion & Extension (Palm Backward)
Arm Flexion & Extension (Palm Forward)

Repeated Lateral Motion (Palm Left)
Repeated Lateral Motion (Palm Right)

IMU
IMU
IMU
IMU
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1120 samples per second. The ADC on the MCU can far
exceed that rate. In practice, the signals were sampled at 9kHz.
The filter, shown in figure 4, is a Sallen-Key topology filter.
This is a second order filter and was designed to have a Q-
factor of 0.707, giving the magnitude response the shape of a
Butterworth filter.

Fig. 4. Anti-aliasing Filter

To test this system, a commercially available EMG sensor
was used as a known working system. The sensor used was the
Pololu V3 Muscle Sensor [5]. Electrodes were placed on the
forearm of one subject, and two different hand motions were
performed. The hand motions were done once with the
designed system, and again with the Polulu sensor.  Comparing
outputs from both sensors in real time using an oscilloscope
resulted in similar waveforms with slight variations in noise
and amplitude.

The output was finally AC coupled to the ADC of the
microcontroller. This was done so that a 1.5V DC offset could
be applied to place the signal in the middle of the ADC range.
The final result was two amplified EMG channels ranging
from 0.15V to 2.85V

C. Electromyography Digital Signal Processing

EMG signals are composed of action potentials fired by
muscle fibers when performing certain gestures. They are
acquired using surface electrodes placed on the flexor muscles
of the forearm. Multiple approaches have been suggested to
characterize hand movements using both the time and
frequency domain representations of EMG signals.  This is
because for a particular hand gesture, EMG signals provide
distinctive features in both the time and frequency domain.
These features are extracted and compared for classification of
samples and building a gesture library. Papers have identified
features such as standard deviation, mean absolute value,
number of zero line crossings, mod frequency, waveform
length and variance of EMG useful for classifying gestures
[10]. EMG signals were initially processed in MATLAB to
understand key features that would be useful for characterizing
the gestures. The final version of signal processing is done in
real time with the microprocessor on two sets of data from
right and left channels obtained using two pairs of surface
electrodes on the forearm muscles. During real time signal
processing, feature extraction from time and frequency domain
is performed in two modes, namely the training and run mode,

and these features are used in the pattern recognition
subsystem. In training mode, the EMG features extracted were
used to build a library to characterize each of the gestures.

Initially to collect EMG signal samples, we observed the
data with an oscilloscope and then stored the data on a
computer in ‘.csv’ format. A parser was used to format the
stored data in MATLAB before it was ready for processing.

Typically a frequency range of 20-500Hz is used for
frequency domain analysis of the EMG signals [9] as shown in
Figure 5. This establishes a cutoff frequency of 500Hz and
therefore sets our sampling frequency to the Nyquist rate of
1000Hz. The next step is Fast Fourier Transform (FFT) on the
EMG signal and extraction of the desired features. FFT
produces an N point Discrete Fourier Transform of the signal
and provides us with a single frequency spectrum for our EMG
signal. In order to confirm that our FFT produced correct
results we performed this analysis on a sinusoidal input from
the function generator. Parameters such as the fundamental
frequency, mean and standard deviation of the sinusoid input
matched our expected result. Having confirmed that our
MATLAB program works accurately and sampled at a
frequency of 1000Hz, we performed FFT on EMG signals
obtained for six different gestures. Signal processing
techniques we used were mostly an application of concepts
explored in ECE 563 “Introduction to Communications and
Signal Processing”. The results from the MATLAB program
helped develop an idea of signal features in both the time and
frequency domain. Our next steps lead to real time processing
of EMG signals using the microprocessor.

Our software performs real time signal processing on signals
obtained from the armband for six different gestures, in both
the time and frequency domain. Incoming analog signals are
averaged to produce digitized values. Moving windows are
used as a digital smoothing technique in order to reduce noise
in signals before performing real time FFT on them. In the
time domain, the extracted features include mean amplitude,
root mean square of amplitude and number of zero crossings.
The mean amplitude is used to capture signal strength and root
mean square of amplitude is used to quantify the power of the
signal, calculated by squaring each data point, summing the
squares, dividing the sum by the number of observations, and
taking the square root of result. Number of zero crossings is
determined by counting the number of times the amplitude of
the signal crosses the pseudo zero line. A DC offset is added to
the analog EMG signal being read digitally, to avoid loss of
EMG data with negative amplitudes. A more active muscle
will generate more action potentials causing more zero
crossings in the signal. In the frequency domain we extract
features such as mod frequency, mean amplitude and root
mean square of amplitude. Some processing was performed to
achieve the variance of the signal, however this proved to be
less useful when characterizing hand gestures. After
performing FFT to break the EMG signal into its frequency
components, mod frequencies are used to detect the
frequencies at which the highest amplitude occurs.
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Fig. 5. Overview of the digital signal processing subsystem

Fig: 6. MATLAB unprocessed signal FFT

Fig: 7. Microprocessor processed signal FFT

D. Inertial Measurement Unit

The purpose of the inertial measurement unit is to detect
arm movements of the ground guide. This is accomplished
through both the digital sensor MPU-6050 and through
associated software. The MPU-6050 contains a three axis
accelerometer and a three axis gyroscope. Since the sensor is
digital, it is integrated into the device through I2C compatible
pins on the microcontroller. Each reading from the sensor is
interpreted as six column vector including roll, pitch, yaw, and
acceleration in the x, y, and z directions.

There are two components in the digital processing of the
data from the IMU. The first component is a digital low pass
filter. This acts as a way to make the sensors less sensitive to

very small movements. The purpose of this is to get more
consistent data without losing characteristic information of the
gestures.

The second component of the digital processing works to
counter the effects of gravity which initially distort the
acceleration readings. The act of holding up one’s arm in place
accelerates the sensor upward against gravity and this
acceleration changes as the arm rotates [7]. However, since
gravity is a constant acceleration, this is avoided by using the
MCU to determine the derivative of acceleration. While not a
perfect work-around, the resulting readings strongly mitigate
the changes in acceleration from gravity during rotation and
greatly emphasize changes acceleration due to the wearer’s
actions. The units of the processed accelerometer data are in
meters per second cubed, or jerks. Figure 4 depicts the IMU
DSP process.

Fig. 8. Digital signal processing for the inertial motion sensor

E. Pattern Recognition

The purpose of this subsystem is to interpret readings from
the sensors and decide when different gestures are being
performed. The algorithm we use is a variation of the K-
nearest neighbors (KNN) algorithm which was learned both
from a class on intelligent system design, ECE 597C, and its
textbook “Introduction to Pattern Recognition” [12]. The
benchmark for success with the pattern recognition system is
the ability to reliably differentiate between six gestures using
the data from the sensors with a useable response time.

Two dimensional vectors are used to represent patterns of
data that correspond to each motion. Each column is a
different property of the motion as determined by the IMU
DSP and EMG DSP subsystems. Each row of this two
dimensional pattern vector is a unique reading in time.

The input vector is compared against this stored-pattern
vector with the result being a score for each gesture based on
the similarity of the input. To get this score, the distance
between the input and the stored pattern is determined using
the Euclidean distance formula:

Where ‘n’ is the number of features being compared in the
data, ‘p’ is the input vector from the sensor and ‘q’ is a single
row of the stored pattern.

For each row of each pattern, distances are stored relative
to a single input, along with a record of which pattern each
specific distance measurement belongs. The distances are then
sorted from lowest to highest and N of the smallest distances
are considered for scoring. If a distance is above a defined
threshold, no score is assigned. This allows us to ignore
movements of the user which are nothing like any of the
gestures. The pattern with the least distance has its score value
incremented by one.
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In order to smooth out the results after multiple runs we use
a moving window on the score values. There is a delay of
approximately one second using a window size of 80, but a
larger window size means more consistent and accurate results.
After fine tuning a window size of 44 of readings was chosen.
This value allows for both consistency and viable response
time of about a third of a second. Figure 5 depicts an overview
of how this subsystem works.

Fig. 9. Overview of the pattern recognition process

The microprocessor we have chosen to do these calculations
is a 32 bit ARM Cortex-M4 that operates at 72 MHz [13]. The
pattern recognition is the most intensive operation that the
microprocessor will have to perform, and its processing speed
was more than adequate for our needs.

In order to test that this subsystem worked before joining it
with the other subsystems, two pseudo gestures and a set of
mock input data were constructed. The mock input data was
purposely created to match one pseudo gesture more so than
the other. Additionally, the subsystem was tested to work in
real time using sensor data from the IMU and proved to be
accurate.

In order to use the device properly it is necessary to record
your gestures at the start of each use. A training mode was
implemented, allowing the system to accommodate for
deviation in the user’s physical characteristics and deviation in
sensor placement between uses. In this mode the user is
allotted a fixed amount of time to perform all of the six
gestures in order. A series of beeps from a piezoelectric buzzer
helps the user know when to switch gestures and when the
recording starts. Recording new gestures takes about a minute.

When connected to a computer, the E-u outputs the results
of the training to a file so that it can be analyzed. We
performed PCA analysis on a recorded sample of the final
product and graphed the three most dominant axes. Our PCA
graph is included in Figure 6 below. This helped us interpolate
details about our gestures. For example, we discovered that
“Stop” tended to have the highest cluster density and was most
isolated from the others.

Fig. 10. PCA visualization of recorded gestures after training

After integrating all of the systems, we did some final
testing to determine the accuracy of the recognition. Three
subjects performed all the gestures multiple times and for
one recording, the number of successful gesture attempts
was logged. We discovered that success with the product
requires a degree of human training, in that the user should
be consistent with their definition of a gesture. If they do not
perform the gesture similarly to how it was recorded, then it
will not be picked up properly. User one in Figure 7 had the
most success, while users two and three had less consistent
results.

Fig. 11. Results of testing the pattern recognition system.

F. User Interface

There are three modes of operation of the device. In “Run
Mode” the device reads the sensors, compares the readings
to stored values, and outputs via Bluetooth. In “Sleep
Mode” the device does nothing. This mode is meant to have
low power consumption. The “Training Mode” is where the
user records their gestures. By pressing the button on the
arm band the user can switch between modes. A state
diagram depicting the modes and their transitions is shown
below:

Fig. 11. Mode transition abstraction

Run

Train

Sleep

Hold button for 5 seconds

Finished training

Button Press

Hold button for 5 seconds

Button Press
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The user interacts with the device mostly through a button
and a piezoelectric beeper. However, an optional graphical
user interface (GUI) can be provided during training for the
user to visualize the sensor readings and output of the
pattern recognition system. This GUI is shown below in
Figure 8.

The GUI was developed in a language called Processing.
It received information from the E-u over the same serial
port which we used to program the microprocessor. In run
mode it displays all of the important sensor data as well as
the results of the pattern recognition – including a score for
each individual gesture.

Fig. 12. The optional graphical interface

G. PCB and Armband Design

The EMG circuitry, microcontroller, and Bluetooth module
were mounted together on a PCB. The power, IMU and
pushbutton interface were mounted adjacent and wired into
connections on the PCB. The PCB was placed midway down
the forearm between the IMU and the EMG electrodes as seen
in the figure below. Hardware components were sewn into the
fabric sleeve, and Velcro straps were used to hold everything
firmly in place.

Fig. 13. The final E-u arm band and a close up of the PCB

H. Power

The entire device is powered by two 3.7 Lithium Ion
batteries. A bipolar supply was chosen because the
instrumentation amp selected has better performance with a
bipolar supply than a single ended one. Linear voltage
regulators are used to output +3.3V and -3.0V from the two
batteries. Aside from the EMG circuitry, everything on the
armband runs off of the 3.3V supply. In testing, the batteries
could power the entire system for nearly 9 hours between
charges. This far exceeded the initial specification of 3 hours.

Fig. 14. Voltage regulatory circuit

The power supply was kept separate from the rest of the
armband. This is not necessary for future implementations.
The electronics used are not large enough for space to be a
concern, and overheating was not a problem. Aside from the
batteries themselves, the entire power supply could be
integrated into the PCB design.

I. Audio Output Feedback

Our project aims to output audio signal delivered by a speaker
inside the car upon command from armband. Vehicle operator
receives audio commands inside the vehicle more than ten
meters in range from ground guide. Gestures are translated to
commands sent wirelessly over Bluetooth link to car driver.
The two principle components used in the audio output
subsystem are the BlueSMiRF Gold Bluetooth module located
on the armband PCB and Raspberry Pi connected to speakers

EMG Electrodes

PCB

Battery Pack

IMU
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inside the car. A power adapter inside the car is used to power
the Raspberry Pi. The microprocessor on the armband
communicates commands to receiver inside car via Bluetooth
TX RX. Raspberry Pi connected to car charger is set to pair
with armband upon request. A Python script running on the
raspberry Pi is programmed to play one of the six sound files
stored in the SD card in order to voice each of the gestures to
the driver, upon command from the guide’s armband.

III. PROJECT MANAGEMENT

The EMG Circuit successfully amplifies and filters the raw
signal from the surface of the skin for processing. The non-
stable DC has been resolved. The EMG Digital Processing
currently reads in EMG data, further filters the data, and
performs frequency domain analysis on the data, and
accomplishes this all in real time. Waveforms are
characterized by their mod frequency, amplitude, and RMS
energy. The IMU system currently sends data to the pattern
recognition system in the form of a six column vector
containing three dimensions of jerk, roll, pitch, and yaw. The
pattern recognition system is able to use EMG and IMU data
to distinguish between six distinct patterns.

Each subsystem is working, and all subsystems have been
successfully integrated together. Further improvements could
be made to achieve a higher level of success and consistency.
The physical placement of the armband on the user seems to
be the largest factor in inconsistencies between users. If the
electrodes do not form good connections, noise on the EMG
lines renders them useless. The IMU is also able to move over
the course of the day. This results in degraded performance
after about 30 minutes, and the user is forced to rerecord. The
physical layout of the arm band could be improved by
integrating the power system onto the PCB and using a hard
enclosure to ensure the device does not move relative to the
user. This would also allow the user to don the armband more
quickly, and with less difficulty. Furthermore, changes to the
software could result in more accuracy. Among other things,
the group has discussed using PCA or Bayesian matching
algorithm.

The E-µ armband currently is robust enough that it could be
implemented with several other output devices. The Bluetooth
transceiver could be used to talk to a laptop, smartphone, or a
slew of other devices. By allowing users to record any set of
unique gestures, and by outputting something as general as a
character, the armband allows for an output device to make
whatever type of decision that suits it.

IV. CONCLUSION

The E-µ armband is able to read data from two different
types of sensors and accurately determine if one gesture out of
a set is being performed. Custom electronics had to be
designed to reliably isolate EMG muscle signals. Challenges in
digital signal processing had to be met. Data had to be combed
through to determine which characteristics made the best

predictors, and all the hardware had to be fused into a single
wearable device.

Certain inconsistencies between users were addressed by the
implementation of a training mode. Each user can record a set
of gestures that will be unique to their anatomy and different
sensor placements. This can also be customized to suit
different drivers if they prefer one type of signal over another.

By allowing users to define their own gestures, the E-µ can
interface with countless different devices with Bluetooth
connections. The information being conveyed is not limited to
“left”, “right”, “forward”, and so on. A person using the E-µ
can make their own rules. They can decide what gestures to
perform, and they can decide how that information can be
used.
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