

1

Abstract— Three dimensional outdoor mapping systems for

robot navigation and obstacle avoidance are in rare use among

hacker communities due to prohibitive costs. We explore a method

of making this technology more affordable by modifying a Kinect

to expand its functionality to outdoor environments. A novel

optical system is described and under testing in order to

accomplish this. Implementation with an ATRV-Jr mobile robot

is shown, and future plans for final implementation are illustrated.

I. INTRODUCTION

OME of the greatest tech companies that we have today

started as simple garage projects [1]; among the most

famous are Hewlett-Packard, Apple, and Google. The struggle

that these inventors face varies from maintaining a working

knowledge of modern development methods to the expenses of

state of the art technology. The Low-Cost 3D Environment

Sensing System (LESS) project aims to ease this anxiety for one

particular aspect of robotics. We seek to bring outdoor 3D

environment sensing to the weekend technology warrior,

opening the garage into the backyard.

Already autonomous vehicles, such as the Kiva robot at

Amazon, are being used for more efficient commercial systems.

The Kiva enhances the packaging process of Amazon by

delivering products inside an expansive warehouse to a human

for packaging [2]. Giving the hobbyist the capability to create a

robot like Kiva that can leave the warehouse could create a

wildfire of innovation. We would like to give our technology to

inventors so they can apply it to other technologies we have yet

to conceive.

Affordable robots already apply technology similar to what

LESS hopes to achieve in homes around the world. The

Roomba can vacuum your floor while you’re at work and the

Winbot can clean your windows. This begs the question, where

is my automatic lawnmower? Besides the obvious safety issues,

the technologies employed in these indoor helper bots only

work in environments that have low levels of sunlight or are not

accurate enough for something like an outdoor helper bot [3].

When this outdoor technology is put in the inventor’s hand, a

new wave of robots can emerge that will perform menial tasks

humans never wanted to do themselves. Ultimately this has the

ability to free up the everyday human’s agenda to do tasks that

robots cannot perform, such as innovative thinking.

In Tables I & II we give the specifications for the two main

systems of our project. Table I describes the requirements for

the Optics systems. These parameters were designed to

maintain the integrity of the base Kinect performance, despite

the wide variety of environments we expect it to be employed

in. For this reason every one of the Kinect’s original field of

view and range requirements were maintained, if not improved

upon. While the final system will improve upon the range

requirements, it will also add distortion to the 3D generation.

This leads to the specifications considering the distortion

between an unmodified Kinect and the LESS. According to

Konolige and Mehelich, the distortions from optical filters on

the Kinect’s IR camera are between 0.1 to 0.2 pixels [4]. Taking

this into account we gave a tolerance on each pixel in the depth

image of 0.1 m.

The Kinect’s IR projector also has a very important

specification for the temperature. The overall temperature of the

IR projector cannot exceed 102°C due to a built in safety

temperature sensor. This sensor is programmed to shut off

power to the projector in cases of extreme heat which could

melt the surrounding parts.

Table II describes the requirements for the Rover system.

Our requirements for the Rover system are designed with both

the physical dimensions of the Rover, and the Kinect hobbyist

community in mind. The horizontal and vertical ranges are

defined such that the Kinect should be able to visualize the

entire height and width of the rover going forward. Additionally

LESS: Low-Cost 3D Environment Sensing

Timothy Tufts, CSE, Alexander Montes McNeil, EE, Gabriela Correa, EE,

and Alexander Maerko, EE

S
TABLE I

KINECT SPECIFICATIONS

Specification Value

Min Render Distance < 0.4 m

Max Render Distance > 4 m
Horizontal Field of View > 57 °

Vertical Field of View > 43 °

Tolerance from Unmodified Kinect < 0.1 m
IR laser projector temperature < 102 °C

 TABLE II

ROVER SPECIFICATIONS

Specification Value

Kinect Horizontal Range > 0.65 m

Kinect Vertical Range > 1.07 m
Rover Footprint Width 0.65 m

Rover Footprint Length 1 m

Rover Clearance Height 1.25 m
GPS Arrival Accuracy 3 m

GPS Travel Speed 0.5 m/s

Kinect Forward Range 0.5 < Range < 2.5 m
Obstacle Avoidance Travel Speed 0.5 m/s

Kinect Operational Frequency 0.25 Hz

2

the footprint and clearance height define the shape of the rover

inside of the software, so if we tweak the parameters in code,

we do need to meet the given values.

Additional rover specific requirements are the GPS speed

and accuracy which are set by the previous work done by

SDP14 team AIR. We can potentially increase these two

performance parameters, but our goal is to not decrease them.

The rest of the parameters are meant to meet the default

settings for the ROS Navigation Stack (described later). Since

this package is used by many hobbyists, we want our hardware

to be compatible with the standard setup. The forward range

value describes the range in front of the rover where an object

is considered an obstacle, so our Kinect must be able to see in

that range. The object avoidance travel speed describes the

maximum speed that the rover can travel at while still avoiding

obstacles. The selected 0.5 m/s is both the standard speed of a

Nav Stack robot and the speed of our GPS travel. Lastly, the

Kinect operational frequency is derived from the previous two

requirements. If the rover travels at 0.5 m/s and the forward

range has a 2 meter length, the Kinect must process an image at

least once every 4 seconds or else an object can move through

the operational range undetected. In reality, the Kinect operates

at 30 Hz, so this requirement is very much satisfied.

II. DESIGN

A. Overview

We took a modular approach to our design with the overall

goal to simplify each module as much as possible for an

extremely adaptable solution. As a result our solution has two

main components: the Kinect System and the Robot System.

The Kinect System is the modified hardware we would market

to hobbyists, while the Robot System represents any robot

running the OpenNI software for Kinect. In our case, the Robot

System is the ATRV-Jr rover which runs ROS with an OpenNI

package[5].

The main innovation in the LESS hardware consists of

modifying the 3D environment building from the Microsoft

Kinect for outdoor use. This technology was selected because

it has yet to be widely applied for 3D environment rendering,

but much more expensive systems have used similar methods

to achieve the same result. Like most LIDAR systems, the

Kinect projects and observes the changes of an infrared signal.

The Kinect’s current system fails because it does not employ

proper filtering systems for outdoor use in order to maintain

effective consumer pricing for the Microsoft Xbox.

Two main alternatives were considered in the first iteration

of the LESS hardware. SDP14 team AIR attempted some basic

object detection on the Mars rover using stereoscopic cameras.

We decided that for our project this was not a sufficient method

due to the simplified geometry assumptions necessary for 3D

object detection using this method [6].

The second was using a conventional 3D LIDAR system.

These systems have been used for extremely effective real time

environment sensing [7], however they are prohibitively

expensive and thus not an option for most hobbyists. The

cheapest LIDAR sensor from Velodyne is approximately $8000

[8]. This would undermine the goal of our project which is to

bring our solution to the hobbyist at a reasonable cost.

Another main competitor to the system was using ultrasonic

sensors [9]. These sensors have been demonstrated to be

effective for object detection in many commercial systems but

also have some major drawbacks for our design. While they

have great range, they suffer from being less accurate than light

based systems. For this reason they are normally part of more

complex sensor systems and equally do not meet our

requirements of creating a simple, adaptable solution [10].

Although similar to LIDAR, what separates our solution

from the previous methods is the way it modifies light for 3D

environment sensing. Instead of observing phase shifts such as

LIDAR or sonar, the Kinect uses an IR projector which passes

its light through a diffraction grating. Once the pattern is

projected onto the environment, the infrared camera on the

Kinect observes and compares it to a reference pattern. Based

on the difference in the patterns, the system can calculate how

far away the point is.

Combining a modified Kinect with object detection and

avoidance, the block diagram in Figure 1 shows our final design

solution. The two main blocks, Optics and Rover, display the

strategy to develop the two largest needs of the design. The

Optics block strives to create a version of the Kinect which can

work in direct sunlight outdoors. While the Rover block creates

Fig. 1. Block Diagram showing the separation and internal workings of the two main systems.

3

a software system that can be easily replicated in a wide variety

of robotics projects when implemented with the optics block.

The Optics block achieves outdoor functionality by further

breaking down into two subsystems. The Filtering block uses

techniques to remove as much of the sun’s interference as

possible. The Control block then makes up this difference by

increasing the power of the laser so it can be distinguished from

the filtered sunlight.

The Rover block uses a similar sub block system in order to

ensure the complete functionality of the system. The Navigation

Inputs block builds the 3D environment using the OpenNI

software provided by Primesense (the same company behind

the Kinect). This information is then passed to the Navigation

Stack where it is analyzed in ROS and object detection and

avoidance is calculated. The GPS Navigation is specific to the

Mars rover prototype. This demonstrates a full system

application of LESS where a robot is given a particular goal,

and uses LESS to ensure it can achieve it without any

complications.

B. Optics: Filtering System

While there is an abundance of information about the Kinect,

the specific design parameters which cause it to fail in direct

sunlight are not released. This created motivation to generate a

series of experiments which characterized the Kinect. While it

would have been ideal for a complete understanding of the

Kinect’s 3D generation system, complete specifications about

the IR projector, diffraction grating, and how OpenNI interprets

the information from the IR Camera to create a 3D environment

are unknown. This led the design of the experiments to

understand the conditions in which the 3D generation system

fails. Once this was understood, the second step was to design

a filtering system that will prevent the Kinect 3D generation

system from failing.

The first set of experiments were designed to examine the

different conditions the Kinect IR Camera faces indoors and

outdoors. The unaltered IR camera output is displayed in figure

2. The conclusion was that in the worst case conditions outdoors

the IR camera was recording the maximum value for the IR

image meaning the pixels were fully saturated. The background

difference between outdoors and indoors is almost the entire

scale of the IR camera.

Once it was clear that the Kinect was failing because its

pixels were fully saturated, a variable IR projector was created

that could mimic these conditions. This source was used to

determine the total amount of emitted power necessary to break

the 3D generation performed by the Kinect and OpenNI

software. This can be observed by the black circle in figure 3.

The amount of total emitted power necessary to interfere with

the Kinect 3D generation was 74 mW. This is validated because

the total amount of power emitted by the Kinects IR projector

is approximately 60 mW. From this we concluded that Kinect’s

3D generation technique fails when the total amount of power

on the environment, from the camera’s perspective, is greater

than the total amount of power the Kinect is emitting on the

environment.

From this result the design process for the optical filtering

system was to remove as much power from the sun as possible

and then to increase the instantaneous power of the laser to

make up the difference. Based off of the ASTM standards for

Irradiance with an air mass of 1.5, the power reduction of

several band pass filters around the wavelength of the Kinect’s

laser is shown in table 3.

The total power is the amount of power from sunlight that

floods the Kinects camera when emitted on the same

environment it is trying to observe. The stock Kinect has an

830nm +/- 100nm filter on it meaning normally it could

experience up to 544W from the sun. This is orders of

magnitude above the Kinects 60mW laser which is why its 3D

generation technique does not work outside.

This leaves two design options for the Kinect with the other

two band pass filters. The specification for the 10nm filter

requires an instantaneous power of 5.8W out of the laser. If a

more accurate IR projector is used with the 2nm filter, the IR

projector needs an instantaneous power emitted of 316mW.

C. Optics: Control

The main goal of the optics control block is to modify the 3D

grid emission system in order to raise the total power radiated

from the system. The original Kinect 360 uses a 60mW laser

Fig. 2. Top Left: Indoors with Kinect IR; Top Right: Outdoors with direct sun;

Bottom Left: Indoors without IR; Bottom Right: Outdoors Cloudy

Fig. 3. IR Interference with Kinect 3D Depth map

TABLE III

REDUCTION OF SUN BY BAND PASS FILTER

Band Pass Filter (nm) Power from the Sun (W)

830 +/- 100 544.000

830 +/- 10 5.800

830 +/- 2 0.316

4

diode located in the projector assembly. It passes through a

focusing lens and, as it passes through the diffraction grating, it

creates a dot pattern projected on the environment. The task of

this block is to increase the output power of the laser diode so

that it has enough power to be detected by the IR camera in

direct sunlight and make it work with the rest of the system [11].

The design chosen increases the instantaneous power of the

laser. This accomplishes the goal of increasing the intensity of

the projector from the Kinect’s perspective while maintaining

the same average power and temperature. We chose a 10% duty

cycle for the 1W laser diode we will be using in our IR

projector. The pulsing circuit topology can be viewed in Figure

4.

The 555 timer and 1N914 switching diodes will be used to

enable complete control of the on/off time for the pulse. The

decoupling capacitors of 0.1 µF and 5 µF control the period of

the pulse. A 220 ohm series resistor in the 2N2222a base circuit

is used to set the base drive level. A 10 ohm collector resistor

provides suitable current limiting. The LED in the emitter

circuit is in parallel with 100 ohm resistor to speed up the fall

time of the charge drain. The 555 and transistor are biased at

the same adjustable level with a common power supply. This

circuit is designed to operate at frequency ~ 1.4 kHz and Tp ~

7 µs, requires 1 Amp at 12V which will be easily provided by

the two 12V, 35 Ah batteries on the rover.

A series of experiments will be designed in order to test the

integrity of the final system. The main concern is heat

dissipation as the IR projector we are building will be utilizing

much more power than the original IR projector and therefore

will require a much better cooling system. Our task is to make

sure the temperature of the laser diode remains constant and

does not exceed the limit of 102°C. This is our primary

requirement, because the Kinect has a temperature sensor built

in for safety measures, which is programed to shut off the power

to the IR projector in case of overheating [12].

D. Rover: Navigation Input

The navigation system relies on GPS in order to get from one

location to another. While separate from the obstacle avoidance

system, the GPS is an integral part to knowing the rover’s

location within an accuracy of three meters. Documentation on

this component of the rover was severely lacking, so the system

had to be reverse engineered from snippets of code distributed

throughout the rover’s onboard computer.

To perform these tasks, skills from previous experience with

Linux had to be used. In addition, ROS had to be learned. This

was done mainly by reading the tutorials found on the ROS

wiki[4] as well as using the ROS answers forum. The ROS

answers forum was invaluable in debugging pieces of ROS

code because the creators of ROS have answered many

questions that involve the intricacies of the software system.

Basics of code understanding taught in introductory

programming were also employed in order to make this

subblock functional. Communication skills learned in team

experiences from iCons were also used in order to effectively

contact previous students with experience on the rover.

In order to launch the GPS system, first one must connect the

main computer to the RFLEX computer and initialize the ROS

core. Next, the WiFi needs to be broadcasted and configured for

external device connection. For our GPS, we used an Android

Phone and connected it to the rover’s configured WiFi. On the

phone, we installed an app called ROS Sensor [13] and input

the ROS core’s IP address. Back on the rover, the GPS goals

needs to be modified, establishing a destination. Next, a

program needs to be run in order to publish the distance of the

rover from the destination. Lastly, a separate program is run to

send the rover to its destination.

The GPS has an accuracy of approximately three meters, so

this tolerance is taken into account while sending the rover to

its destination. As previously demonstrated, if the rover has a

tolerance of less than three meters to its location, it will continue

to circle in the approximate area of the destination since the

GPS cannot accurately establish that it is within three meters to

the destination. This is where some fine-tuning needs to be

done, such that the rover will arrive at the destination and not

circle it.

To test and fine-tune the GPS system for accuracy we plan to

continue test runs in the engineering quad after fine-tuning the

system from our last run where we observed the rover circle

around its final destination. After establishing the rover will

stay at rest after arriving at its destination, we will measure the

accuracy of arrival by using a landmark GPS coordinate we can

acquire from overlaying Google Maps, and measure the rover’s

distance from the final destination. This will allow us to confirm

the arrival accuracy is under three meters, as per subblock

requirements.

E. Rover: Navigation Stack

The rover navigation system will be in charge of driving the

rover to a given destination while avoiding all obstacles on the

way. It takes inputs from the previous block that tell it where to

go and what the environment looks like in front of it. This block

takes the goal computed by the GPS system and computes a

Fig. 4. Create a pulse with a 555 Timer

5

path to get there. This path takes into account the environment

data and avoids getting too close to any points it determines are

obstacles. While this is happening, it also monitors the

environment for any changes that might disrupt the path and

updates the path accordingly. Additionally there are protocols

that will rotate the rover in order to collect data about the

immediate area, that is, it makes movements with observational

motivation rather than goal driven motivation.

In order to create these functionalities, we are using the ROS

navigation stack [14] and the RFLEX driver [15]. The ROS

navigation stack is a standard package for controlling robot

movement. It is designed to be fully configurable and then fully

automatic. Configuration options include which sensors to

subscribe to, how those sensors physically relate to the body of

the robot, and different parameters to control the behavior of

the pathing. Once all of the required configurations have been

made, navigation is as simple as publishing goals to a topic. Our

implementation of the navigation stack is designed around the

speed of the rover and the limitations of the Kinect such that we

don’t get so close to an obstacle that we can no longer see it.

Lastly the RFLEX drivers are specific for the ATRV-Jr and

allow for ROS to communicate with the rover’s physical

systems without any configuration on our end[15].

The main difficulty of this block was learning the entirely

new ROS environment and more specifically the navigation

stack. Just like with the previous block we had to learn how

ROS pieces together and the functions of all of the files

involved. When adding the navigation stack on top of that, we

had to learn about tf transforms [16], goal publishing, and all of

the configuration parameters. Tf transforms are how the

navigation stack relates sensors to the robot in order to interpret

the geometry of the sensor data. This was particularly easy to

learn as we managed to capture the relationship in a one line,

static, xyz relationship. Goal publishing was also easy to learn

as it is just a more specific type of ROS topic and we were able

to learn from examples we found on the ROS wiki.

Configuration parameters were much harder to learn because

it’s one thing to read the description of a parameter in the

documentation, and it’s another to see it driving around the

room.

The trial and error that we used to learn the parameters of the

navigation stack involved driving the rover straight at obstacles

as well as giving it long distance goals and seeing how it reacts.

This experimentation was meant to get the system into a rough

working state for MDR. There are many different orientations

we needed to and continue to try in order to characterize the

pathing of our configuration. For example, we can test the

horizontal field of view and obstacle buffer zone parameters by

placing obstacles off center in front of the rover until the rover

no longer recognized them. These experiments are very

inefficient in nature because we are not actually monitoring the

software output of the pathing algorithm, we are watching the

hardware output which could introduce another layer of bugs.

We cannot monitor the software output because the rover’s

computer crashes when put under a moderate amount of

computational stress. We know this is a bug because we have

plenty of artifacts showing SDP14 team AIR using programs

that crash the computer now.

Once we can fix the crashing problem, we will be able to

actually monitor the path as it’s made in real time and see any

disconnect between software and hardware. We will also be

able to see decisions that are being made in advance instead of

just the decisions that are currently being executed. With this

better insight we will be able to experiment with different

orientations of the Kinect in order to find the position that lets

us see both the closest and widest areas in front of the rover.

Then after we find that we can repeat the configuration tuning

experiments, except with more informative results, until we

reach a configuration that we are satisfied with.

Debugging the software that drives a physical system is very

natural after having taken Computer System Lab. It is certainly

a different task than debugging a purely software system

because all of the outputs are analog and some of the symptoms

can be disguised in that sense, however the hours spent in Duda

have prepared us for this. Beyond that, just general good coding

practice picked up across different courses have helped this

technical block a fair deal and, of course, ROS answers[link]

was invaluable for this block as well.

III. PROJECT MANAGEMENT

So far in our project, we have accomplished a balance of

practical and theoretical tasks. The Rover team has very

concrete goals based around creating systems on the rover and

tuning their performance. On the other hand the Kinect team

has much more physics and electronics oriented goals aimed at

fully characterizing the functionality of the Kinect in order to

improve its capabilities. The two subteams also benefit from

independence because they have two distinct work styles.

While the Rover team has a very iterative and functionality

driven project, the Kinect team has a project that requires

intensive measurements before committing to hardware. There

is a high amount of precision involved when working with these

optics, and our budget would not be able to handle many

purchases that don’t make it into the final project. While the

Kinect team runs their experiments, the Rover team is not held

back waiting for the modified Kinect to be finished and so

parallel progress is achieved.

That being said, the Rover team has implemented the systems

it set out to create, but we still need to tune and improve those

systems to a passable level. Specifically we have successfully

run GPS navigation and indoor obstacle detection and

avoidance with the Kinect. However the GPS interface is rather

clunky and a better mounting position for the GPS device could

be created to reduce noise. Also, the indoor pathing algorithms

have trouble with the field of view of the Kinect, so we need to

TABLE IV

MDR GOALS

Goal Progress

Indoor Obstacle Avoidance Tuning Stages

GPS Functional Tuning Stages

Filtration System Design

Control System Design

Experimentation Stages

Experimentation Stages

6

redesign the positioning of the Kinect as well as tune the

pathing parameters to avoid visual deadzones.

The Kinect team has designed and ran experiments to define

many important constraints on their design, however we need

to run some more specific experiments over the break to get

ready for the implementation of the design in the spring. For

example, we will study the possibility of adding polarization

into the modified system. After some key design choices are

made, some experiments will be run to test the thermal and

intensity integrity of the control block. After the design is

implemented in the spring, more experimentation will be done

to ensure we stay within the system operating constraints.

While the design is not complete for either system, it is an

iterative process that has keeps getting more advanced and

refined.

In both cases, we still need to design what exactly our demo

day deliverables will be in order to properly showcase the work

that we have done.

Our team has been working very well since we divided our

efforts into two sub-teams. We had a problem where the goals

of the group were very clear, but not so much for the individual.

After splitting our goals in two, it was a lot easier for members

to claim responsibility for aspects of the project.

The team has an appropriate spread of expertise for this

project. Alex McNeil is an Electrical Engineer with a minor in

Physics which makes him perfect for the Optics design on the

modified Kinect. Alex Maerko is by far the most hands on

member of the team and has excellent circuit design skills,

which is incredibly helpful with hardware design and

implementation for the modified Kinect, and other hardware on

the rover. Gabriela Correa has a strong Matlab and Linux

background, which has proved useful in data analysis and rover

system debugging/maintenance respectively. Timothy Tufts,

being the only Computer Systems Engineer on the team, is

crucial in getting rover software created and running properly.

There is healthy communication between each sub-team in

the form of contacting individuals from the other team to help

with specific tasks. Notable among these are Alex Maerko

helping the Rover team by creating the power supply for the

indoor Kinect and Gabriela Correa helping with image analysis

on the Kinect team. To communicate, we have two weekly

meetings as well as shared Google Drive / Dropbox storage and

a Facebook message thread for immediate contact. Besides that,

the team has really pulled through with helping struggling

members and putting in the work hours when they are needed.

Figures 5 and 6 show the Gantt chart split between what has

been done and what is planned. All of the experimentation and

design that has been discussed can be seen in Figure 5, as well

as the clear shift from October into November when the sub

teams were established. In Figure 6 we see there is risk

mitigation as we plan to have our modified hardware finished

well before CDR. We have tasks such as tuning and

documentation planned before CDR so we have a comfortable

window of time in case the implementation does not progress

as planned.

IV. CONCLUSION

Currently, the GPS system and the Obstacle avoidance

systems are functional, however much fine-tuning needs to be

done. The preliminary optical design is complete, however

some design options such as the use of a polarizer still need to

be chosen. At the beginning of the semester, we were faced with

an engineering challenge posed by Professor Parente: to build

an obstacle avoidance and navigation system for MIRSL’s

Mars Rover.

 Sept. Oct. Nov.

Task 1 2 3 4 1 2 3 4 1 2 3 4

Preliminary Research X X X X X

Project Design X X X X X

PDR Preparation X X X

Optics - Experiments X X X X

Project Redesign X X X

Rover - GPS X X X X X

Rover - Obstacle
Avoidance

X X X X X

Rover - System
Maintenance

 X X X X

Optics - Final Filter
Design Solution

 X X X

MDR X X X

Fig. 5. Fall Gantt Chart of what has been done.

 Dec. Jan. Feb.

Task 1 2 3 4 1 2 3 4 1 2 3 4

MDR Report X X

Rover - GPS Design
Update X X

Optics - Shutter Design X X X X

Rover - GPS Fine-
tuning X X X

Rover - System
Maintenance X X X X X

Optics - Polarization
Design X X X

Rover - Avoidance Fine-
tuning X X X X X

Optics - Modify Kinect X X X X X

Documentation X X X

Optics - Characterize
Kinect

 X X X

Prepare for CDR X X X

Fig. 6. Spring Gantt Chart of what will be done.

7

We first approached the problem by researching previously

implemented solutions. All the best solutions were expensive,

this led us to reshape our challenge: to build a low-cost 3d

environment sensing system for outdoor use. After exploring

many design alternatives, we settled on creating a new optical

system for the Kinect and integrating it with the rover system.

The first challenges were to build our optical system, and

integrate a Kinect with the rover systems. Now we have our

optical design and a prototype of Kinect-rover integration, our

future contains the task of building our optical system, and fine-

tuning the rover navigation and Kinect integration. Final tests

of the device will include the use of a specifically designed

obstacle course in the engineering quad.

We expect to face technical difficulties with the optical

system, and we will have to modify it in order to meet our

system requirements. We have yet to overcome the challenge

with the rover’s onboard computer crashing as well. Once the

Kinect’s optical system is modified, we will also have to

recalibrate the Kinect-rover integration. This winter we will

continue our work, and by spring we hope to be mostly

debugging and establishing that system requirements are met

through specific system tests, such as the obstacle course.

ACKNOWLEDGMENT

The authors would like to thank Professor Jun Yan and

Professor Bill Leonard for their assistance with the optical

design, Professor Mario Parente and MIRSL for providing us

with the rover and lab space, and lastly SDP14 Team AIR and

Keval Patel for their assistance in reviving old functionality in

the rover.

REFERENCES

[1] W. Isaacson, “How Google Went from School Project to Global Phenom |

Inc.com,” 17-Oct-2014. [Online]. Available: http://www.inc.com/walter-

isaacson/how-google-got-its-start.html. [Accessed: 15-Dec-2014].
[2] D. Tam, “Meet Amazon’s busiest employee -- the Kiva robot - CNET.”

[Online]. Available: http://www.cnet.com/news/meet-amazons-busiest-
employee-the-kiva-robot/. [Accessed: 15-Dec-2014].

[3] J. Layton, “How Robotic Vacuums Work - HowStuffWorks.” [Online].

Available: http://electronics.howstuffworks.com/gadgets/home/robotic-
vacuum.htm. [Accessed: 15-Dec-2014].

[4] Kurt Konolige and Patrick Mihelich, “Technical description of Kinect

calibration,” ROS Wiki. [Online]. Available:
http://wiki.ros.org/kinect_calibration/technical. [Accessed: 15-Dec-2014].

[5] “ATRV-JrTM MOBILE ROBOT TECH SHEET.” Real World Interface.

[6] N. Cornelis, B. Leibe, K. Cornelis, and L. Van Gool, “3d urban scene
modeling integrating recognition and reconstruction,” Int. J. Comput. Vis.,

vol. 78, no. 2–3, pp. 121–141, 2008.

[7] J. Levinson and S. Thrun, “Robust Vehicle Localization in Urban
Environments Using Probabilistic Maps,” Stanford Artificial Intelligence

Laboratory.

[8] “Velodyne Lidar.” [Online]. Available:
http://velodynelidar.com/lidar/lidar.aspx. [Accessed: 15-Dec-2014].

[9] P. E. Ross, “Tesla’s Model S Will Offer 360-degree Sonar,” IEEE

Spectrum, 10-Oct-2014.
[10] D. A. Schoenwald, J. T. Feddema, and F. J. Oppel, “Decentralized

control of a collective of autonomous robotic vehicles,” in American Control

Conference, 2001. Proceedings of the 2001, 2001, vol. 3, pp. 2087–2092.
[11] Tim Carmody, “How Motion Detection Works in Xbox Kinect |

WIRED,” 03-Nov-2010. [Online]. Available:

http://www.wired.com/2010/11/tonights-release-xbox-kinect-how-does-it-
work/all/. [Accessed: 15-Dec-2014].

[12] “Hardware info,” OpenKinect. [Online]. Available:

http://openkinect.org/wiki/Hardware_info. [Accessed: 15-Dec-2014].

[13] Chad Rockey, ROS Android Sensors Driver. 2013.
[14] Eitan Marder-Eppstein, “Navigation,” ROS Wiki, 10-Jul-2014. [Online].

Available: http://wiki.ros.org/navigation. [Accessed: 15-Dec-2014].

[15] Mikhail Medvedev and David V. Lu, “RFLEX,” ROS Wiki. [Online].
Available: http://wiki.ros.org/rflex. [Accessed: 15-Dec-2014].

[16] Tully Foote, Eitan Marder-Eppstein, and Wim Meeussen, “tf,” ROS

Wiki. [Online]. Available: http://wiki.ros.org/tf. [Accessed: 15-Dec-2014].

