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Abstract— Three dimensional outdoor mapping systems for 

robot navigation and obstacle avoidance are in rare use among 

hacker communities due to prohibitive costs. We explore a method 

of making this technology more affordable by modifying a Kinect 

to expand its functionality to outdoor environments. A novel 

optical system is described and under testing in order to 

accomplish this. Implementation with an ATRV-Jr mobile robot 

is shown, and future plans for final implementation are illustrated. 

 

I. INTRODUCTION 

OME of the greatest tech companies that we have today 

started as simple garage projects [1]; among the most 

famous are Hewlett-Packard, Apple, and Google. The struggle 

that these inventors face varies from maintaining a working 

knowledge of modern development methods to the expenses of 

state of the art technology. The Low-Cost 3D Environment 

Sensing System (LESS) project aims to ease this anxiety for one 

particular aspect of robotics. We seek to bring outdoor 3D 

environment sensing to the weekend technology warrior, 

opening the garage into the backyard. 

Already autonomous vehicles, such as the Kiva robot at 

Amazon, are being used for more efficient commercial systems. 

The Kiva enhances the packaging process of Amazon by 

delivering products inside an expansive warehouse to a human 

for packaging [2]. Giving the hobbyist the capability to create a 

robot like Kiva that can leave the warehouse could create a 

wildfire of innovation. We would like to give our technology to 

inventors so they can apply it to other technologies we have yet 

to conceive.  

Affordable robots already apply technology similar to what 

LESS hopes to achieve in homes around the world. The 

Roomba can vacuum your floor while you’re at work and the 

Winbot can clean your windows. This begs the question, where 

is my automatic lawnmower? Besides the obvious safety issues, 

the technologies employed in these indoor helper bots only 

work in environments that have low levels of sunlight or are not 

accurate enough for something like an outdoor helper bot [3]. 

When this outdoor technology is put in the inventor’s hand, a 

new wave of robots can emerge that will perform menial tasks 

humans never wanted to do themselves. Ultimately this has the 

ability to free up the everyday human’s agenda to do tasks that 

robots cannot perform, such as innovative thinking. 

In Tables I & II we give the specifications for the two main 

systems of our project. Table I describes the requirements for 

 
 

the Optics systems. These parameters were designed to 

maintain the integrity of the base Kinect performance, despite 

the wide variety of environments we expect it to be employed 

in. For this reason every one of the Kinect’s original field of 

view and range requirements were maintained, if not improved 

upon. While the final system will improve upon the range 

requirements, it will also add distortion to the 3D generation. 

This leads to the specifications considering the distortion 

between an unmodified Kinect and the LESS. According to 

Konolige and Mehelich, the distortions from optical filters on 

the Kinect’s IR camera are between 0.1 to 0.2 pixels [4]. Taking 

this into account we gave a tolerance on each pixel in the depth 

image of 0.1 m.  

The Kinect’s IR projector also has a very important 

specification for the temperature. The overall temperature of the 

IR projector cannot exceed 102°C due to a built in safety 

temperature sensor. This sensor is programmed to shut off 

power to the projector in cases of extreme heat which could 

melt the surrounding parts. 

Table II describes the requirements for the Rover system. 

Our requirements for the Rover system are designed with both 

the physical dimensions of the Rover, and the Kinect hobbyist 

community in mind. The horizontal and vertical ranges are 

defined such that the Kinect should be able to visualize the 

entire height and width of the rover going forward. Additionally 
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TABLE I 

KINECT SPECIFICATIONS 

Specification Value 

Min Render Distance < 0.4 m 

Max Render Distance > 4 m 
Horizontal Field of View > 57 ° 

Vertical Field of View > 43 ° 

Tolerance from Unmodified Kinect < 0.1 m 
IR laser projector temperature < 102 °C 

 

 TABLE II 

ROVER SPECIFICATIONS 

Specification Value 

Kinect Horizontal Range > 0.65 m 

Kinect Vertical Range > 1.07 m 
Rover Footprint Width 0.65 m 

Rover Footprint Length 1 m 

Rover Clearance Height 1.25 m 
GPS Arrival Accuracy 3 m 

GPS Travel Speed 0.5 m/s 

Kinect Forward Range 0.5 < Range < 2.5 m 
Obstacle Avoidance Travel Speed 0.5 m/s 

Kinect Operational Frequency 0.25 Hz 
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the footprint and clearance height define the shape of the rover 

inside of the software, so if we tweak the parameters in code, 

we do need to meet the given values.  

Additional rover specific requirements are the GPS speed 

and accuracy which are set by the previous work done by 

SDP14 team AIR. We can potentially increase these two 

performance parameters, but our goal is to not decrease them. 

The rest of the parameters are meant to meet the default 

settings for the ROS Navigation Stack (described later). Since 

this package is used by many hobbyists, we want our hardware 

to be compatible with the standard setup. The forward range 

value describes the range in front of the rover where an object 

is considered an obstacle, so our Kinect must be able to see in 

that range. The object avoidance travel speed describes the 

maximum speed that the rover can travel at while still avoiding 

obstacles. The selected 0.5 m/s is both the standard speed of a 

Nav Stack robot and the speed of our GPS travel. Lastly, the 

Kinect operational frequency is derived from the previous two 

requirements. If the rover travels at 0.5 m/s and the forward 

range has a 2 meter length, the Kinect must process an image at 

least once every 4 seconds or else an object can move through 

the operational range undetected. In reality, the Kinect operates 

at 30 Hz, so this requirement is very much satisfied. 

II. DESIGN 

A. Overview 

We took a modular approach to our design with the overall 

goal to simplify each module as much as possible for an 

extremely adaptable solution. As a result our solution has two 

main components: the Kinect System and the Robot System. 

The Kinect System is the modified hardware we would market 

to hobbyists, while the Robot System represents any robot 

running the OpenNI software for Kinect. In our case, the Robot 

System is the ATRV-Jr rover which runs ROS with an OpenNI 

package[5].  

The main innovation in the LESS hardware consists of 

modifying the 3D environment building from the Microsoft 

Kinect for outdoor use. This technology was selected because 

it has yet to be widely applied for 3D environment rendering, 

but much more expensive systems have used similar methods 

to achieve the same result. Like most LIDAR systems, the 

Kinect projects and observes the changes of an infrared signal. 

The Kinect’s current system fails because it does not employ 

proper filtering systems for outdoor use in order to maintain 

effective consumer pricing for the Microsoft Xbox. 

Two main alternatives were considered in the first iteration 

of the LESS hardware. SDP14 team AIR attempted some basic 

object detection on the Mars rover using stereoscopic cameras. 

We decided that for our project this was not a sufficient method 

due to the simplified geometry assumptions necessary for 3D 

object detection using this method [6]. 

The second was using a conventional 3D LIDAR system. 

These systems have been used for extremely effective real time 

environment sensing [7], however they are prohibitively 

expensive and thus not an option for most hobbyists. The 

cheapest LIDAR sensor from Velodyne is approximately $8000 

[8]. This would undermine the goal of our project which is to 

bring our solution to the hobbyist at a reasonable cost. 

Another main competitor to the system was using ultrasonic 

sensors [9]. These sensors have been demonstrated to be 

effective for object detection in many commercial systems but 

also have some major drawbacks for our design. While they 

have great range, they suffer from being less accurate than light 

based systems. For this reason they are normally part of more 

complex sensor systems and equally do not meet our 

requirements of creating a simple, adaptable solution [10]. 

Although similar to LIDAR, what separates our solution 

from the previous methods is the way it modifies light for 3D 

environment sensing. Instead of observing phase shifts such as 

LIDAR or sonar, the Kinect uses an IR projector which passes 

its light through a diffraction grating. Once the pattern is 

projected onto the environment, the infrared camera on the 

Kinect observes and compares it to a reference pattern. Based 

on the difference in the patterns, the system can calculate how 

far away the point is. 

Combining a modified Kinect with object detection and 

avoidance, the block diagram in Figure 1 shows our final design 

solution. The two main blocks, Optics and Rover, display the 

strategy to develop the two largest needs of the design. The 

Optics block strives to create a version of the Kinect which can 

work in direct sunlight outdoors. While the Rover block creates 

 
Fig. 1. Block Diagram showing the separation and internal workings of the two main systems. 
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a software system that can be easily replicated in a wide variety 

of robotics projects when implemented with the optics block. 

The Optics block achieves outdoor functionality by further 

breaking down into two subsystems. The Filtering block uses 

techniques to remove as much of the sun’s interference as 

possible. The Control block then makes up this difference by 

increasing the power of the laser so it can be distinguished from 

the filtered sunlight. 

The Rover block uses a similar sub block system in order to 

ensure the complete functionality of the system. The Navigation 

Inputs block builds the 3D environment using the OpenNI 

software provided by Primesense (the same company behind 

the Kinect). This information is then passed to the Navigation 

Stack where it is analyzed in ROS and object detection and 

avoidance is calculated. The GPS Navigation is specific to the 

Mars rover prototype. This demonstrates a full system 

application of LESS where a robot is given a particular goal, 

and uses LESS to ensure it can achieve it without any 

complications. 

B. Optics: Filtering System 

While there is an abundance of information about the Kinect, 

the specific design parameters which cause it to fail in direct 

sunlight are not released. This created motivation to generate a 

series of experiments which characterized the Kinect. While it 

would have been ideal for a complete understanding of the 

Kinect’s 3D generation system, complete specifications about 

the IR projector, diffraction grating, and how OpenNI interprets 

the information from the IR Camera to create a 3D environment 

are unknown. This led the design of the experiments to 

understand the conditions in which the 3D generation system 

fails. Once this was understood, the second step was to design 

a filtering system that will prevent the Kinect 3D generation 

system from failing. 

The first set of experiments were designed to examine the 

different conditions the Kinect IR Camera faces indoors and 

outdoors. The unaltered IR camera output is displayed in figure 

2. The conclusion was that in the worst case conditions outdoors 

the IR camera was recording the maximum value for the IR 

image meaning the pixels were fully saturated. The background 

difference between outdoors and indoors is almost the entire 

scale of the IR camera. 

Once it was clear that the Kinect was failing because its 

pixels were fully saturated, a variable IR projector was created 

that could mimic these conditions. This source was used to 

determine the total amount of emitted power necessary to break 

the 3D generation performed by the Kinect and OpenNI 

software. This can be observed by the black circle in figure 3.  

The amount of total emitted power necessary to interfere with 

the Kinect 3D generation was 74 mW. This is validated because 

the total amount of power emitted by the Kinects IR projector 

is approximately 60 mW. From this we concluded that Kinect’s 

3D generation technique fails when the total amount of power 

on the environment, from the camera’s perspective, is greater 

than the total amount of power the Kinect is emitting on the 

environment.  

From this result the design process for the optical filtering 

system was to remove as much power from the sun as possible 

and then to increase the instantaneous power of the laser to 

make up the difference. Based off of the ASTM standards for 

Irradiance with an air mass of 1.5, the power reduction of 

several band pass filters around the wavelength of the Kinect’s 

laser is shown in table 3. 

The total power is the amount of power from sunlight that 

floods the Kinects camera when emitted on the same 

environment it is trying to observe. The stock Kinect has an 

830nm +/- 100nm filter on it meaning normally it could 

experience up to 544W from the sun. This is orders of 

magnitude above the Kinects 60mW laser which is why its 3D 

generation technique does not work outside. 

This leaves two design options for the Kinect with the other 

two band pass filters. The specification for the 10nm filter 

requires an instantaneous power of 5.8W out of the laser. If a 

more accurate IR projector is used with the 2nm filter, the IR 

projector needs an instantaneous power emitted of 316mW. 

C. Optics: Control 

The main goal of the optics control block is to modify the 3D 

grid emission system in order to raise the total power radiated 

from the system. The original Kinect 360 uses a 60mW laser 
 

Fig. 2. Top Left: Indoors with Kinect IR; Top Right: Outdoors with direct sun; 

Bottom Left: Indoors without IR; Bottom Right: Outdoors Cloudy  

 
Fig. 3. IR Interference with Kinect 3D Depth map 

TABLE III 

REDUCTION OF SUN BY BAND PASS FILTER 

Band Pass Filter (nm) Power from the Sun (W) 

830 +/- 100 544.000 

830 +/- 10 5.800 

830 +/- 2 0.316 
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diode located in the projector assembly. It passes through a 

focusing lens and, as it passes through the diffraction grating, it 

creates a dot pattern projected on the environment. The task of 

this block is to increase the output power of the laser diode so 

that it has enough power to be detected by the IR camera in 

direct sunlight and make it work with the rest of the system [11].  

The design chosen increases the instantaneous power of the 

laser. This accomplishes the goal of increasing the intensity of 

the projector from the Kinect’s perspective while maintaining 

the same average power and temperature. We chose a 10% duty 

cycle for the 1W laser diode we will be using in our IR 

projector. The pulsing circuit topology can be viewed in Figure 

4. 

The 555 timer and 1N914 switching diodes will be used to 

enable complete control of the on/off time for the pulse. The 

decoupling capacitors of 0.1 µF and 5 µF control the period of 

the pulse. A 220 ohm series resistor in the 2N2222a base circuit 

is used to set the base drive level. A 10 ohm collector resistor 

provides suitable current limiting. The LED in the emitter 

circuit is in parallel with 100 ohm resistor to speed up the fall 

time of the charge drain. The 555 and transistor are biased at 

the same adjustable level with a common power supply. This 

circuit is designed to operate at frequency ~ 1.4 kHz and Tp ~ 

7 µs, requires 1 Amp at 12V which will be easily provided by 

the two 12V, 35 Ah batteries on the rover.  

A series of experiments will be designed in order to test the 

integrity of the final system. The main concern is heat 

dissipation as the IR projector we are building will be utilizing 

much more power than the original IR projector and therefore 

will require a much better cooling system. Our task is to make 

sure the temperature of the laser diode remains constant and 

does not exceed the limit of 102°C. This is our primary 

requirement, because the Kinect has a temperature sensor built 

in for safety measures, which is programed to shut off the power 

to the IR projector in case of overheating [12].  

D. Rover: Navigation Input 

The navigation system relies on GPS in order to get from one 

location to another. While separate from the obstacle avoidance 

system, the GPS is an integral part to knowing the rover’s 

location within an accuracy of three meters. Documentation on 

this component of the rover was severely lacking, so the system 

had to be reverse engineered from snippets of code distributed 

throughout the rover’s onboard computer. 

To perform these tasks, skills from previous experience with 

Linux had to be used. In addition, ROS had to be learned. This 

was done mainly by reading the tutorials found on the ROS 

wiki[4] as well as using the ROS answers forum. The ROS 

answers forum was invaluable in debugging pieces of ROS 

code because the creators of ROS have answered many 

questions that involve the intricacies of the software system. 

Basics of code understanding taught in introductory 

programming were also employed in order to make this 

subblock functional. Communication skills learned in team 

experiences from iCons were also used in order to effectively 

contact previous students with experience on the rover. 

In order to launch the GPS system, first one must connect the 

main computer to the RFLEX computer and initialize the ROS 

core. Next, the WiFi needs to be broadcasted and configured for 

external device connection. For our GPS, we used an Android 

Phone and connected it to the rover’s configured WiFi. On the 

phone, we installed an app called ROS Sensor [13] and input 

the ROS core’s IP address. Back on the rover, the GPS goals 

needs to be modified, establishing a destination. Next, a 

program needs to be run in order to publish the distance of the 

rover from the destination. Lastly, a separate program is run to 

send the rover to its destination.  

The GPS has an accuracy of approximately three meters, so 

this tolerance is taken into account while sending the rover to 

its destination. As previously demonstrated, if the rover has a 

tolerance of less than three meters to its location, it will continue 

to circle in the approximate area of the destination since the 

GPS cannot accurately establish that it is within three meters to 

the destination. This is where some fine-tuning needs to be 

done, such that the rover will arrive at the destination and not 

circle it. 

To test and fine-tune the GPS system for accuracy we plan to 

continue test runs in the engineering quad after fine-tuning the 

system from our last run where we observed the rover circle 

around its final destination. After establishing the rover will 

stay at rest after arriving at its destination, we will measure the 

accuracy of arrival by using a landmark GPS coordinate we can 

acquire from overlaying Google Maps, and measure the rover’s 

distance from the final destination. This will allow us to confirm 

the arrival accuracy is under three meters, as per subblock 

requirements. 

E. Rover: Navigation Stack 

The rover navigation system will be in charge of driving the 

rover to a given destination while avoiding all obstacles on the 

way. It takes inputs from the previous block that tell it where to 

go and what the environment looks like in front of it. This block 

takes the goal computed by the GPS system and computes a 

 
Fig. 4. Create a pulse with a 555 Timer 
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path to get there. This path takes into account the environment 

data and avoids getting too close to any points it determines are 

obstacles. While this is happening, it also monitors the 

environment for any changes that might disrupt the path and 

updates the path accordingly. Additionally there are protocols 

that will rotate the rover in order to collect data about the 

immediate area, that is, it makes movements with observational 

motivation rather than goal driven motivation. 

In order to create these functionalities, we are using the ROS 

navigation stack [14] and the RFLEX driver [15]. The ROS 

navigation stack is a standard package for controlling robot 

movement. It is designed to be fully configurable and then fully 

automatic. Configuration options include which sensors to 

subscribe to, how those sensors physically relate to the body of 

the robot, and different parameters to control the behavior of 

the pathing. Once all of the required configurations have been 

made, navigation is as simple as publishing goals to a topic. Our 

implementation of the navigation stack is designed around the 

speed of the rover and the limitations of the Kinect such that we 

don’t get so close to an obstacle that we can no longer see it. 

Lastly the RFLEX drivers are specific for the ATRV-Jr and 

allow for ROS to communicate with the rover’s physical 

systems without any configuration on our end[15]. 

The main difficulty of this block was learning the entirely 

new ROS environment and more specifically the navigation 

stack. Just like with the previous block we had to learn how 

ROS pieces together and the functions of all of the files 

involved. When adding the navigation stack on top of that, we 

had to learn about tf transforms [16], goal publishing, and all of 

the configuration parameters. Tf transforms are how the 

navigation stack relates sensors to the robot in order to interpret 

the geometry of the sensor data. This was particularly easy to 

learn as we managed to capture the relationship in a one line, 

static, xyz relationship. Goal publishing was also easy to learn 

as it is just a more specific type of ROS topic and we were able 

to learn from examples we found on the ROS wiki. 

Configuration parameters were much harder to learn because 

it’s one thing to read the description of a parameter in the 

documentation, and it’s another to see it driving around the 

room. 

The trial and error that we used to learn the parameters of the 

navigation stack involved driving the rover straight at obstacles 

as well as giving it long distance goals and seeing how it reacts. 

This experimentation was meant to get the system into a rough 

working state for MDR. There are many different orientations 

we needed to and continue to try in order to characterize the 

pathing of our configuration. For example, we can test the 

horizontal field of view and obstacle buffer zone parameters by 

placing obstacles off center in front of the rover until the rover 

no longer recognized them. These experiments are very 

inefficient in nature because we are not actually monitoring the 

software output of the pathing algorithm, we are watching the 

hardware output which could introduce another layer of bugs. 

We cannot monitor the software output because the rover’s 

computer crashes when put under a moderate amount of 

computational stress. We know this is a bug because we have 

plenty of artifacts showing SDP14 team AIR using programs 

that crash the computer now. 

Once we can fix the crashing problem, we will be able to 

actually monitor the path as it’s made in real time and see any 

disconnect between software and hardware. We will also be 

able to see decisions that are being made in advance instead of 

just the decisions that are currently being executed. With this 

better insight we will be able to experiment with different 

orientations of the Kinect in order to find the position that lets 

us see both the closest and widest areas in front of the rover. 

Then after we find that we can repeat the configuration tuning 

experiments, except with more informative results, until we 

reach a configuration that we are satisfied with. 

Debugging the software that drives a physical system is very 

natural after having taken Computer System Lab. It is certainly 

a different task than debugging a purely software system 

because all of the outputs are analog and some of the symptoms 

can be disguised in that sense, however the hours spent in Duda 

have prepared us for this. Beyond that, just general good coding 

practice picked up across different courses have helped this 

technical block a fair deal and, of course, ROS answers[link] 

was invaluable for this block as well. 

III. PROJECT MANAGEMENT 

 

So far in our project, we have accomplished a balance of 

practical and theoretical tasks. The Rover team has very 

concrete goals based around creating systems on the rover and 

tuning their performance. On the other hand the Kinect team 

has much more physics and electronics oriented goals aimed at 

fully characterizing the functionality of the Kinect in order to 

improve its capabilities. The two subteams also benefit from 

independence because they have two distinct work styles. 

While the Rover team has a very iterative and functionality 

driven project, the Kinect team has a project that requires 

intensive measurements before committing to hardware. There 

is a high amount of precision involved when working with these 

optics, and our budget would not be able to handle many 

purchases that don’t make it into the final project. While the 

Kinect team runs their experiments, the Rover team is not held 

back waiting for the modified Kinect to be finished and so 

parallel progress is achieved. 

That being said, the Rover team has implemented the systems 

it set out to create, but we still need to tune and improve those 

systems to a passable level. Specifically we have successfully 

run GPS navigation and indoor obstacle detection and 

avoidance with the Kinect. However the GPS interface is rather 

clunky and a better mounting position for the GPS device could 

be created to reduce noise. Also, the indoor pathing algorithms 

have trouble with the field of view of the Kinect, so we need to 

TABLE IV 

MDR GOALS 

Goal Progress 

Indoor Obstacle Avoidance Tuning Stages 

GPS Functional Tuning Stages 

Filtration System Design 

Control System Design 

Experimentation Stages 

Experimentation Stages 
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redesign the positioning of the Kinect as well as tune the 

pathing parameters to avoid visual deadzones. 

The Kinect team has designed and ran experiments to define 

many important constraints on their design, however we need 

to run some more specific experiments over the break to get 

ready for the implementation of the design in the spring. For 

example, we will study the possibility of adding polarization 

into the modified system. After some key design choices are 

made, some experiments will be run to test the thermal and 

intensity integrity of the control block. After the design is 

implemented in the spring, more experimentation will be done 

to ensure we stay within the system operating constraints. 

While the design is not complete for either system, it is an 

iterative process that has keeps getting more advanced and 

refined. 

In both cases, we still need to design what exactly our demo 

day deliverables will be in order to properly showcase the work 

that we have done. 

Our team has been working very well since we divided our 

efforts into two sub-teams. We had a problem where the goals 

of the group were very clear, but not so much for the individual. 

After splitting our goals in two, it was a lot easier for members 

to claim responsibility for aspects of the project. 

The team has an appropriate spread of expertise for this 

project. Alex McNeil is an Electrical Engineer with a minor in 

Physics which makes him perfect for the Optics design on the 

modified Kinect. Alex Maerko is by far the most hands on 

member of the team and has excellent circuit design skills, 

which is incredibly helpful with hardware design and 

implementation for the modified Kinect, and other hardware on 

the rover. Gabriela Correa has a strong Matlab and Linux 

background, which has proved useful in data analysis and rover 

system debugging/maintenance respectively. Timothy Tufts, 

being the only Computer Systems Engineer on the team, is 

crucial in getting rover software created and running properly. 

There is healthy communication between each sub-team in 

the form of contacting individuals from the other team to help 

with specific tasks. Notable among these are Alex Maerko 

helping the Rover team by creating the power supply for the 

indoor Kinect and Gabriela Correa helping with image analysis 

on the Kinect team. To communicate, we have two weekly 

meetings as well as shared Google Drive / Dropbox storage and 

a Facebook message thread for immediate contact. Besides that, 

the team has really pulled through with helping struggling 

members and putting in the work hours when they are needed. 

Figures 5 and 6 show the Gantt chart split between what has 

been done and what is planned. All of the experimentation and 

design that has been discussed can be seen in Figure 5, as well 

as the clear shift from October into November when the sub 

teams were established. In Figure 6 we see there is risk 

mitigation as we plan to have our modified hardware finished 

well before CDR. We have tasks such as tuning and 

documentation planned before CDR so we have a comfortable 

window of time in case the implementation does not progress 

as planned. 

IV. CONCLUSION 

Currently, the GPS system and the Obstacle avoidance 

systems are functional, however much fine-tuning needs to be 

done. The preliminary optical design is complete, however 

some design options such as the use of a polarizer still need to 

be chosen. At the beginning of the semester, we were faced with 

an engineering challenge posed by Professor Parente: to build 

an obstacle avoidance and navigation system for MIRSL’s 

Mars Rover. 

 

 Sept. Oct. Nov. 

Task 1 2 3 4 1 2 3 4 1 2 3 4 

Preliminary Research X X X X X        

Project Design  X X X X X       

PDR Preparation     X X X      

Optics - Experiments      X X X X    

Project Redesign       X X X    

Rover - GPS       X X X X X  

Rover - Obstacle 
Avoidance 

       
X X X X X 

Rover - System 
Maintenance 

     
 X X X X   

Optics - Final Filter 
Design Solution 

        
 X X X 

MDR          X X X 
 

Fig. 5. Fall Gantt Chart of what has been done. 

 

 Dec. Jan. Feb.  

Task 1 2 3 4 1 2 3 4 1 2 3 4  

MDR Report X X            

Rover - GPS Design 
Update X X           

 

Optics - Shutter Design X X X X          

Rover - GPS Fine-
tuning  X X X         

 

Rover - System 
Maintenance  X X X X X       

 

Optics - Polarization 
Design   X X X   

      

Rover - Avoidance Fine-
tuning  X X X X X       

 

Optics - Modify Kinect     X X X X X     

Documentation      X X X      

Optics - Characterize 
Kinect 

   
     X X X  

 

Prepare for CDR          X X X  

 

Fig. 6. Spring Gantt Chart of what will be done. 
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We first approached the problem by researching previously 

implemented solutions. All the best solutions were expensive, 

this led us to reshape our challenge: to build a low-cost 3d 

environment sensing system for outdoor use. After exploring 

many design alternatives, we settled on creating a new optical 

system for the Kinect and integrating it with the rover system. 

The first challenges were to build our optical system, and 

integrate a Kinect with the rover systems. Now we have our 

optical design and a prototype of Kinect-rover integration, our 

future contains the task of building our optical system, and fine-

tuning the rover navigation and Kinect integration. Final tests 

of the device will include the use of a specifically designed 

obstacle course in the engineering quad.  

We expect to face technical difficulties with the optical 

system, and we will have to modify it in order to meet our 

system requirements. We have yet to overcome the challenge 

with the rover’s onboard computer crashing as well. Once the 

Kinect’s optical system is modified, we will also have to 

recalibrate the Kinect-rover integration. This winter we will 

continue our work, and by spring we hope to be mostly 

debugging and establishing that system requirements are met 

through specific system tests, such as the obstacle course.  
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