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 

Abstract—Three dimensional outdoor mapping systems for 

robot navigation and obstacle avoidance are in rare use among 

hacker communities, due to prohibitive costs. We explore a 

method of making this technology more affordable by expanding 

a Microsoft Kinect’s functionality to outdoor environments. A 

novel optical system is built and tested in order to accomplish this. 

Implementation with an ATRV-Jr mobile robot is shown, and 

results for final implementation are presented. 

 

I. INTRODUCTION 

OME of the greatest tech companies that we have today 

started as simple garage projects [1]; among the most 

famous are Hewlett-Packard, Apple, and Google. The struggle 

that these inventors face varies from maintaining a working 

knowledge of modern development methods, to the expenses of 

state of the art technology. The Low-Cost 3D Environment 

Sensing System (LESS) project aims to ease this anxiety for one 

particular aspect of robotics. We seek to bring outdoor 3D 

environment sensing to the weekend technology warrior, 

opening the garage into the backyard. 

Already autonomous vehicles, such as the Kiva robot at 

Amazon, are being used for more efficient commercial systems. 

The Kiva enhances the packaging process of Amazon by 

delivering products inside an expansive warehouse to a human 

for packaging [2]. Giving the hobbyist the capability to create a 

robot like Kiva that can leave the warehouse could create a 

wildfire of innovation. We would like to give our technology to 

inventors so they can apply it to other technologies we have yet 

to conceive.  

Affordable robots already apply technology similar to what 

LESS hopes to achieve in homes around the world—the 

Roomba can vacuum your floor while you’re at work and the 

Winbot can clean your windows. This begs the question, where 

is my automatic lawnmower? Besides the obvious safety issues, 

the technologies employed in these indoor helper bots only 

work in environments that have low levels of sunlight or are not 

accurate enough for something like an outdoor helper bot [3]. 

When this outdoor technology is put in the inventor’s hand, a 

new wave of robots can emerge that will perform menial tasks 

humans never wanted to do themselves. Ultimately this has the 

ability to free up the everyday human’s agenda to do 

exclusively tasks that robots cannot perform, such as innovative 

thinking. 

 
 

In tables I & II we give the initial specifications for the two 

main systems of our project. Table I describes the requirements 

for the Optics system. These parameters were designed to 

maintain the integrity of the base Kinect performance, despite 

the wide variety of environments we expect it to be employed 

in. For this reason every one of the Kinect’s original field of 

view and range requirements were maintained, if not improved 

upon. While the final system will improve upon the range 

requirements, it will also add distortion to the 3D generation. 

This leads to the specifications considering the distortion 

between an unmodified Kinect and the LESS. According to 

Konolige and Mehelich, the distortions from optical filters on 

the Kinect’s IR camera are between 0.1 to 0.2 pixels [4]. Taking 

this into account we gave a tolerance on each pixel in the depth 

image of 0.1 m.  

The Kinect’s IR projector also has a very important 

specification for the temperature. The overall temperature of the 

IR projector cannot exceed 102°C due to a built in safety 

temperature sensor. This sensor is programmed to shut off 

power to the projector in cases of extreme heat which could 

melt the surrounding parts. 

Table II describes the requirements for the Rover system. 

Our requirements for the Rover system are designed with both 

the physical dimensions of the Rover and the Kinect hobbyist 

community in mind. The horizontal and vertical ranges are 
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TABLE I 

KINECT SPECIFICATIONS 

Specification Value 

Min Render Distance < 0.4 m 

Max Render Distance > 4 m 
Horizontal Field of View > 57 ° 

Vertical Field of View > 43 ° 

Tolerance from Unmodified Kinect < 0.1 m 
IR laser projector temperature < 102 °C 

 

 
TABLE II 

ROVER SPECIFICATIONS 

Specification Value 

Kinect Horizontal Range > 0.65 m 

Kinect Vertical Range > 1.07 m 
Rover Footprint Width 0.65 m 

Rover Footprint Length 1 m 

Rover Clearance Height 1.25 m 
GPS Arrival Accuracy 3 m 

GPS Travel Speed 0.5 m/s 

Kinect Forward Range 0.5 < Range < 2.5 m 
Obstacle Avoidance Travel Speed 0.5 m/s 

Kinect Operational Frequency 0.25 Hz 
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defined such that the Kinect should be able to visualize the 

entire height and width of the rover going forward. Additionally 

the footprint and clearance height define the shape of the rover 

inside of the software, so if we tweak the parameters in code, 

we do need to meet the given values.  

Additional rover specific requirements include the GPS 

speed and accuracy, set by the previous work done by SDP14 

team AIR. We can potentially increase these two performance 

parameters, but our goal is to not decrease them. 

The remaining parameters are intended to meet the default 

settings for the Robot Operating System (ROS) navigation 

stack (described later). Since this package is used by many 

hobbyists, we want our hardware to be compatible with the 

standard setup. The forward range value describes the range in 

front of the rover where an object is considered an obstacle, so 

our Kinect must be able to see in that range. The object 

avoidance travel speed describes the maximum speed that the 

rover can travel at while still avoiding obstacles. The selected 

0.5 m/s is both the standard speed of a navigation stack robot 

and the speed of our GPS travel. Lastly, the Kinect operational 

frequency is derived from the previous two requirements. If the 

rover travels at 0.5 m/s and the forward range has a 2 meter 

length, the Kinect must process an image at least once every 4 

seconds or else an object can move through the operational 

range undetected. In reality, the Kinect operates at 30 Hz, so 

this requirement is very much satisfied. 

II. DESIGN 

A. Overview 

We took a modular approach to our design with the overall 

goal to simplify each module for an extremely adaptable 

solution. As a result our solution has two main components: the 

Kinect system and the Rover system. The Kinect system is the 

modified hardware we would market to hobbyists, while the 

Rover system represents any robot running the OpenNI 

software for Kinect. In our case, the Rover system is the ATRV-

Jr rover which runs ROS with an OpenNI package [5].  

The main innovation in the LESS hardware consists of 

modifying the 3D environment building from the Microsoft 

Kinect for outdoor use. This technology was selected because 

it has yet to be widely applied for 3D environment rendering. 

More expensive systems have used similar methods to achieve 

the same result, such as Light Detection and Ranging (LIDAR) 

systems. Like most LIDAR systems, the Kinect projects and 

observes the changes of an infrared signal. The Kinect’s current 

system fails because it does not employ proper filtering systems 

for outdoor use, in order to maintain effective consumer pricing 

for the Microsoft Xbox. 

A couple alternatives were considered in the first iteration of 

the LESS hardware. Initially, SDP14 team AIR attempted some 

basic object detection on the Mars rover using stereoscopic 

cameras. We decided that for our project this was not a 

sufficient method due to the simplified geometry assumptions 

necessary for 3D object detection using this method [6].The 

second alternative was using a conventional 3D LIDAR system. 

These systems have been used for extremely effective real time 

environment sensing [7], however they are prohibitively 

expensive and thus not an option for most hobbyists. The 

cheapest LIDAR sensor from Velodyne is approximately 

$8,000 [8]. This would undermine the goal of our project which 

is to bring a solution to hobbyist at a reasonable cost. 

Another main competitor to the system was the use of 

ultrasonic sensors [9]. These sensors have been demonstrated 

to be effective for object detection in many commercial systems 

but also have some major drawbacks for our design. While they 

have great range, they suffer from being less accurate than light 

based systems. For this reason they are normally part of more 

complex sensor systems and equally do not meet our 

requirements of creating a simple, adaptable solution [10]. 

Although similar to LIDAR, what separates our solution 

from the previous methods is the way it modifies light for 3D 

environment sensing. Instead of observing phase shifts such as 

LIDAR or sonar technologies, the Kinect uses an IR projector 

which passes its light through a diffraction grating. Once the 

pattern is projected onto the environment, the infrared camera 

on the Kinect observes and compares it to a reference pattern. 

Based on the difference in the patterns, the system can calculate 

how far away the point is. 

Combining a modified Kinect with object detection and 

avoidance, the block diagram in figure 1 shows our final design 

solution. The two main blocks, Optics and Rover, display the 

strategy used to develop the two largest components of the 

 
Fig. 1. Block Diagram showing the separation and internal workings of the two main systems. 
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design. The Optics block strives to create a version of the Kinect 

which can work outdoors in direct sunlight. While the Rover 

block creates a computer and software system that can be easily 

replicated in a wide variety of robotics projects, the Optics 

block achieves outdoor functionality by further breaking down 

into two subsystems. The Filtering block uses techniques to 

remove as much of the sun’s interference as possible. The 

Control block then makes up this difference by increasing the 

power of the laser so it can be distinguished from the filtered 

sunlight. 

The Rover block uses a similar sub block system in order to 

ensure the complete functionality of the system. The Navigation 

Inputs block builds the 3D environment with the OpenNI 

software provided by Primesense (the same company behind 

the Kinect). This information is then passed to the navigation 

stack where it is analyzed in ROS and object detection and 

avoidance is calculated. The GPS navigation is specific to the 

Mars rover prototype. This demonstrates a full system 

application of LESS where a robot is given a particular goal, 

and uses LESS to ensure it can achieve it without any 

complications. 

B. Optics: Filtering System 

While there is an abundance of information about the Kinect, 

the specific design parameters which cause it to fail in direct 

sunlight are not released. This created motivation to generate a 

series of experiments which characterized the Kinect. While it 

would have been ideal for a complete understanding of the 

Kinect’s 3D generation system, complete specifications about 

the IR projector, diffraction grating, and how OpenNI interprets 

the information from the IR Camera to create a 3D environment 

are unknown. This led the design of the experiments to 

understand the conditions in which the 3D generation system 

fails. Once this was understood, the second step was to design 

a filtering system that will prevent the Kinect 3D generation 

system from failing. 

The first set of experiments were designed to examine the 

different conditions the Kinect IR Camera faces indoors and 

outdoors. The unaltered IR camera output is displayed in figure 

2. The conclusion was that in the worst case conditions outdoors 

the IR camera was recording the maximum value for the IR 

image meaning the pixels were fully saturated. The background 

difference between outdoors and indoors is almost the entire 

scale of the IR camera. 

Once it was clear that the Kinect was failing due to its pixels 

being fully saturated, a variable IR projector was created in 

order to mimic these conditions. This projector was used to 

determine the total amount of emitted power necessary to break 

the 3D generation performed by the Kinect and OpenNI 

software. This can be observed by the black circle in figure 3.  

The amount of total emitted power necessary to interfere with 

the Kinect 3D generation was 74mW. This is validated by the 

total amount of power emitted by the Kinects IR projector is 

approximately 100mW. From this we concluded that Kinect’s 

3D generation technique fails when the total amount of power 

on the environment—from the camera’s perspective—

approaches the total amount of power the Kinect is emitting on 

the environment.  

From this result the design process for the optical filtering 

system aimed to remove as much power from the sun as 

possible, and then increase the instantaneous power of the laser 

to make up the difference. Based off of the ASTM standards for 

Irradiance with an air mass of 1.5, the power reduction of 

several band pass filters around the wavelength of the Kinect’s 

laser is shown in table III. 

The total power is the amount of power from sunlight that 

floods the Kinects camera when emitted on the same 

environment it is trying to observe. The stock Kinect has an 830 

nm +/- 100 nm filter on it meaning it could experience up to 544 

W from the sun. This is orders of magnitude above the Kinects 

100 mW laser which is why its 3D generation technique does 

not work outside. 

This left two design options for the Kinect with the other 

two band pass filters. Due to complications that arose when 

trying to use other lasers on the Kinect (discussed in section 

III) it became apparent we had to use the laser diode that came 

with the stock Kinect. This forced us to choose the +/- 2 nm 

option while increasing the instantaneous power by a factor of 

4. It was acceptable for us to use such a restrictive filter since 

in using the Kinects laser, we could also maintain the thermal 

regulation system. This ensured that the laser diode would 

maintain a very strict wavelength of 830 nm. 

 
Fig. 3. IR Interference with Kinect 3D Depth map 

 
Fig. 2. Top Left: Indoors with Kinect IR; Top Right: Outdoors with direct sun; 

Bottom Left: Indoors without IR; Bottom Right: Outdoors Cloudy  

TABLE III 

REDUCTION OF SUN BY BAND PASS FILTER 

Band Pass Filter (nm) Power from the Sun (W) 

830 +/- 100 544.000 

830 +/- 10 5.800 

830 +/- 2 0.316 
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In addition to the choice of filter, an external shutter was 

added outside the filtration system. This was chosen in order 

to prevent extra saturation from the sun on the camera that 

observes the laser grid on the environment while the laser is 

off when it is being pulsed. The shutter follows the design in a 

paper by Scholten et al. which uses the voice coil actuator 

from a mechanical hard drive for an affordable, easily 

manipulated shutter [11] [12]. 

C. Optics: Control 

The main goal of the optics control block is to modify the 3D 

grid emission system in order to raise the total power radiated 

from the system. The original Kinect 360 uses a 100 mW laser 

diode located in the projector assembly. It passes through a 

focusing lens and, as it passes through the diffraction grating, it 

creates a dot pattern projected on the environment. The task of 

this block is to increase the output power of the laser diode so 

that it has enough power to be detected by the IR camera in 

direct sunlight and make it work with the rest of the system [13].  

This goal was achieved with three designs. Shown in figure 4, 

main design creates a trigger that goes to the driver for the 

shutter and laser diode. The driver for the laser diode is simple 

and therefor lumped in this design. The frequency and duty 

cycle that appear in the trigger are very sensitive to the power 

supply so the second part of the design converted the power 

from a car battery to a stable 9.1 V. Lastly the driver for the 

shutter was replicated and applied to our design as specified in 

Scholten [12]. 

The trigger generation shown in figure 4 has three main parts. 

The first is a 555 timer which generates the trigger. This circuit 

uses a 555 timer to create a pulse which is set by the charging 

and discharging of a capacitor. The duty cycle is set by the 

diode/resistor network directly beneath the top timer in figure 

4. After the trigger is created, it is passed to the shutter driver 

and passed through a buffer to the driver for the diode. The 

lower 555 timer creates a negative voltage in order to pull the 

buffered signal down to 0V when the laser is off. The Laser 

driver uses a power mosfet and resistor to create a constant 

current to pulse the laser diode. This current is then pulsed on 

and off by observing the trigger at the gate of the diode. 

The trigger ultimately creates a frequency of 60 Hz which was 

chosen to be twice the cameras shutter speed. This ensures 

when the camera is open it will always observe the environment 

with at least one pulse of the grid on it. To maintain normal 

functionality of the laser while increasing its continuous wave 

power output we chose a duty cycle of 20% and increased the 

current through it by a factor of four to 400 mA. This brought 

the continuous wave power output of the laser diode to 

approximately 390 mW which satisfies the criteria for the 

Kinect 360 to work outdoors under any conditions if it utilize 

the +/- 2 nm filter. 

The power module shown in figure 5 uses the LMZ35003 to 

ensure that the pulsing circuit is reliable with a car battery no 

matter what the actual voltage might be. A typical car battery 

can vary in voltage from 14 to11 V. From this the circuit was 

created to accept an input from 10.5 to 15 V and have the 

consistent output of 9.1 V to power the trigger. The design was 

created using a tool that TI offers which selects a part and 

suggests a design with the necessary input/output 

specifications.  

D. Rover: Navigation Input 

The navigation system relies on GPS in order to get from one 

location to another. While separate from the obstacle avoidance 

system, the GPS is an integral part to knowing the rover’s 

location within an accuracy of three meters. Documentation on 

this component of the rover was severely lacking, so the system 

had to be reverse engineered from snippets of code distributed 

throughout the rover’s onboard computer. 

To perform these tasks, skills from previous experience with 

Linux had to be used. In addition, ROS had to be learned. This 

was done mainly by reading the tutorials found on the ROS wiki 

[4] as well as using the ROS answers forum. The ROS answers 

forum was invaluable in debugging pieces of ROS code because 

the creators of ROS have answered many questions that involve 

the intricacies of the software system. Basics of code 

understanding taught in introductory programming were also 

employed in order to make this subblock functional. 

Communication skills learned in team experiences from iCons 

were also used in order to effectively contact previous students 

with experience on the rover. 

In order to launch the GPS system, first one must connect the 

main computer to the RFLEX computer and initialize the ROS 

core. Next, the WiFi needs to be broadcasted and configured for 

external device connection. For our GPS, we used an Android 

phone and connected it to the rover’s configured WiFi. On the 

phone, we installed an application called ROS Sensor [14] and 

input the ROS core’s IP address. Back on the rover, the GPS 

goals need to be modified, establishing a destination. Next, a 

 
Fig. 4. Create a pulse with a 555 Timer 

 
Fig. 5. DC to DC converter with power regulation 
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program needs to be run in order to publish the distance of the 

rover from the destination. Lastly, a separate program is run to 

send the rover to its destination.  

The GPS has an accuracy of approximately three meters, so 

this tolerance is taken into account while sending the rover to 

its destination. As previously demonstrated, if the rover has a 

tolerance of less than three meters to its location, it will continue 

to circle in the approximate area of the destination since the 

GPS cannot accurately establish that it is within three meters to 

the destination. This is where some fine-tuning needs to be 

done, such that the rover will arrive at the destination and not 

circle it. 

Unfortunately due to the Rover team’s setback described in 

section III, GPS tuning was not completed for our project. 

Instead we did all our final testing and demoing with a keyboard 

command function that we wrote. This function takes WASD 

keyboard input and places a goal 1 m away in the corresponding 

direction so the rover can display its local path planning and 

object avoidance capabilities. The GPS navigation works with 

the same mechanic by placing goals at the specified locations, 

so it follows that our modified Kinect project will be usable 

with the GPS navigation. 

We have left the GPS in a working state, so the next group 

working on the rover project can utilize either or both of the 

GPS and Kinect technologies. We recommend that they first 

confirm GPS accuracy against a landmark GPS coordinate and 

then do all their tuning with that accuracy in mind. 

E. Rover: Navigation Stack 

The rover navigation system is in charge of driving the rover 

to a given destination while avoiding all obstacles on the way. 

It takes inputs from the previous block that tell it where to go 

and what the environment looks like in front of it. With goals 

generated by either the GPS or keyboard navigation, this block 

computes the best path to get there. This path takes into account 

the environment data and avoids getting too close to any points 

it determines are obstacles. While this is happening, it also 

monitors the environment for any changes that might disrupt 

the global path and updates the local path accordingly. 

Additionally there are protocols that will rotate the rover in 

order to collect data about the immediate area, that is, it makes 

movements with observational motivation rather than goal 

driven motivation. 

In order to create these functionalities, we used the ROS 

navigation stack [15] and the RFLEX driver [16]. The ROS 

navigation stack is a standard package for controlling robot 

movement. It is designed to be fully configurable and then fully 

automatic. Configuration options include which sensors to 

subscribe to, how those sensors physically relate to the body of 

the robot, and different parameters to control the behavior of 

the pathing. Once all of the required configurations have been 

made, navigation is as simple as publishing goals to a topic. Our 

implementation of the navigation stack is designed around the 

speed of the rover and the limitations of the Kinect such that we 

don’t get so close to an obstacle that we can no longer see it. 

Lastly the RFLEX drivers are specific for the ATRV-Jr and 

allow for ROS to communicate with the rover’s physical 

systems without any configuration on our end [16]. 

The main difficulty of this block was learning the entirely 

new ROS environment and more specifically the navigation 

stack. Just like with the previous block we had to learn how 

ROS pieces together and the functions of all of the files 

involved. When adding the navigation stack on top of that, we 

had to learn about tf transforms [17], goal publishing, and all of 

the configuration parameters. Tf transforms are how the 

navigation stack relates sensors to the robot in order to interpret 

the geometry of the sensor data. This was particularly easy to 

learn as we managed to capture the relationship in a one line, 

static, xyz relationship. Goal publishing was also easy to learn 

as it is just a more specific type of ROS topic and we were able 

to learn from examples we found on the ROS wiki. 

Configuration parameters were much harder to learn because 

it’s one thing to read the description of a parameter in the 

documentation, and it’s another to see it driving around the 

room. 

Before MDR, we were stuck using a sort of blind trial and 

error to learn the parameters for the navigation stack. We would 

drive the rover straight at obstacles as well as give it long 

distance goals and see how it reacts. This experimentation was 

meant to get the system into a rough working state for MDR 

due to a computer crashing problem that prohibited us from 

using the visualization software. These experiments were very 

inefficient in nature because we were not actually monitoring 

the software output of the pathing algorithm, we were watching 

the hardware output which could introduce another layer of 

bugs. 

Once we fixed the crashing problem (discussed in section 

III), we were able to actually monitor the path as it’s made in 

real time and see any disconnect between software and 

hardware. We were also able to see decisions that were being 

made in advance, instead of just the decisions that were 

currently being executed. With this better insight we were able 

to experiment with different orientations of the Kinect in order 

to find the position that lets us see both the closest and widest 

areas in front of the rover. It turned out that the best place for 

the Kinect was on a shelf attached to the main tower. By placing 

the Kinect back on the rover body and aiming it downwards, we 

were able to reduce the amount of blind area in front of the 

rover. After we mounted the Kinect up high, we repeated the 

configuration tuning experiments, except with more 

informative results, until we reached a configuration that we 

were satisfied with. 

Debugging the software that drives a physical system is very 

natural after having taken Computer System Lab. It is certainly 

a different task than debugging a purely software system 

because all of the outputs are analog and some of the symptoms 

can be disguised in that sense, however the hours spent in Duda 

have prepared us for this. Beyond that, just general good coding 

practice picked up across different courses have helped this 

technical block a fair deal and, of course, ROS answers was 

invaluable for this block as well. 
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III. PROJECT MANAGEMENT 

 

As our project concludes, it is clear that we have 

accomplished a balance of practical and theoretical tasks. The 

Rover team had very concrete goals based around creating 

systems on the rover and tuning their performance. On the other 

hand the Kinect team had much more physics and electronics 

oriented goals aimed at fully characterizing the functionality of 

the Kinect in order to improve its capabilities. The two 

subteams also benefitted from independence because they have 

two distinct work styles. While the Rover team had a very 

iterative and functionality driven project, the Kinect team had a 

project that required intensive measurements before 

committing to hardware. There is a high amount of precision 

involved when working with these optics, and our budget would 

not have been able to handle many purchases that didn’t make 

it into the final project. While the Kinect team ran their 

experiments, the Rover team was not held back waiting for the 

modified Kinect to be finished and so parallel progress was 

achieved. 

That being said, the Rover team successfully implemented 

the systems it set out to create. We ran into some difficulty at 

the beginning of the semester as we tried to fix the previously 

mentioned crashing problem. As a brief overview, the rover 

contains two computers: one which drives the proprietary rover 

hardware and one which runs the ROS software. The one 

running the ROS software was the one with the crashing issue. 

While trying to find the cause of the crashing, the motherboard 

stopped working and then soon after we found burn marks on 

the board supplying the motherboard with power. We came to 

the conclusion that this faulty power board was damaging the 

motherboard and causing the crashing. As a result we had to 

construct an entirely new computer using recycled parts found 

around campus and find a new way to deliver power to it. By 

the end of the semester we restored full functionality and were 

able to successfully tune the obstacle avoidance such that the 

rover avoided all obstacles we tested on indoors. 

The Kinect team successfully designed and ran experiments 

to define many important constraints on their design. 

Throughout the semester we discovered some new 

complications that we ultimately couldn’t solve. When we first 

constructed the modified Kinect we found that it crashed the 

OpenNI software after a short period of use. Considering that 

we had to remove the cooling system to install our new laser, 

we figured this was a heat issue and dedicated a large amount 

of time trying to fix that problem. After some experimentation 

with a new Kinect we found that the crashing happens whenever 

we are using a different laser, even if we attach a stock Kinect 

laser as well.  

This indicated that the cooling system removal was not the 

fundamental problem; instead a component of the OpenNI code 

was realizing the changes made in the system, and reacting by 

shutting down the system. By the time we discovered this, we 

did not have enough time left to try and modify the OpenNI 

software to allow for our pulsing circuit. In the end the Kinect 

team provided two versions of the final product. One Kinect 

was fully modified with a pulsing laser, shutter, and bandpass 

filter while the other was simply the bandpass filter. While the 

fully modified Kinect has better performance outside, the filter 

version worked well enough that we did not hit anyone during 

our outside demonstrations. We are leaving both versions with 

Professor Parente for the next rover team in case they can solve 

the crashing issue. 

Our team dynamics worked very well due to our divided 

efforts into two sub-teams. We had a problem where the goals 

of the group were very clear, but not so much for the individual. 

After splitting our goals in two, it was a lot easier for members 

to claim responsibility for aspects of the project. 

The team had an appropriate spread of expertise for this 

project. Alex McNeil is an Electrical Engineer with a minor in 

Physics which made him perfect for the Optics design on the 

modified Kinect. Alex Maerko is by far the most hands on 

member of the team and has excellent circuit design skills, 

which was incredibly helpful with hardware design and 

implementation for the modified Kinect, and other hardware on 

the rover. Gabriela Correa has a strong Matlab and Linux 

background, which has proved useful in data analysis and rover 

system debugging/maintenance respectively. Timothy Tufts, 

being the only Computer Systems Engineer on the team, was 

crucial in getting rover software created and running properly. 

There was healthy communication between each sub-team in 

the form of contacting individuals from the other team to help 

with specific tasks. Notable among these were Alex Maerko 

helping the Rover team by creating the power supply for the 

indoor Kinect and Gabriela Correa helping with image analysis 

on the Kinect team. To communicate, we had two weekly 

meetings as well as shared Google Drive / Dropbox storage and 

a Facebook message thread for immediate contact. Besides that, 

the team really pulled through with helping struggling members 

and putting in the work hours when they were needed. 

IV. CONCLUSION 

At the conclusion of the senior design project course, we 

would call our project a success. Throughout the year we were 

plagued by bad specification design, for example the 

specifications from tables I and II turned out to be unnecessarily 

specific for what we were trying to accomplish. As a result we 

simplified our specifications to be measurable field of view and 

then a barrage of tests comparing the performance with the 

unmodified and the modified Kinect to ensure that we preserve 

indoor performance and improve outdoor performance. Of the 

field of view specifications presented in table IV we managed 

to meet all but the height which was arguably the least 

important.  

As for the performance tests, we saw that the modified Kinect 

performed almost exactly as well as the unmodified Kinect 

indoors even with the field of view loss. Most importantly our 

modified Kinect was able to successfully visualize obstacles 

outdoors where the unmodified Kinect would not see anything 

reliable. On SDP demo day, we were able to run live tests where 

TABLE IV 
FIELD OF VIEW SPECIFICATIONS 

Field of 
View 

Goal 
(m) 

Unmodified 
Kinect (m) 

Modified Kinect 
(m) 

Min Range .55  .47 .52 

Max Range 2.5 4 3 
Height 1.07 .87 .84 

Width .65 1.31 .8 
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guests would stand in front of the rover and the rover would 

sense them and drive around. 

When we first approached the problem by researching 

previously implemented solutions, we found that all the best 

solutions were highly expensive. This led us to reshape our 

project and aim to build a low-cost 3d environment sensing 

system for outdoor use. Where the most inexpensive solution 

cost around $8,000, our cost estimates in table V show that we 

could market this product for around $150. So it is safe to say 

that we very comfortably met the low cost objective of our 

project.  

 Lastly, our own experience with the rover project has 

prompted us to prepare documentation for the future rover 

projects. Most importantly we have provided Professor Parente 

with an addition to his rover booklet that explains the current 

state of the rover and how to use our new hardware. We have 

also consulted with Professor Parente so he knows needs work 

and what future groups could work on. Inevitably this will not 

be enough so they will also have our contact information and 

we can help get them started as the SDP14 team helped us. 
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TABLE V 

PRODUCTION COST FOR 1000 UNITS 

Part Price 

Microsoft Kinect 360 $  15,000.00  

+/- 2 nm Bandpass Filter $  81,283.20 

Hard Drive $  19,000.00 
LMZ35003 

LMD18200 

NE555 
Diodes 

Resistors 

Capacitors 
TOTAL 

$  10,282.50 

$    9,112.50 

$       230.00 
$       777.00 

 $         30.29 

$    3,913.00 
$139,628.49 

 


