

1



Abstract—Three dimensional outdoor mapping systems for

robot navigation and obstacle avoidance are in rare use among

hacker communities, due to prohibitive costs. We explore a

method of making this technology more affordable by expanding

a Microsoft Kinect’s functionality to outdoor environments. A

novel optical system is built and tested in order to accomplish this.

Implementation with an ATRV-Jr mobile robot is shown, and

results for final implementation are presented.

I. INTRODUCTION

OME of the greatest tech companies that we have today

started as simple garage projects [1]; among the most

famous are Hewlett-Packard, Apple, and Google. The struggle

that these inventors face varies from maintaining a working

knowledge of modern development methods, to the expenses of

state of the art technology. The Low-Cost 3D Environment

Sensing System (LESS) project aims to ease this anxiety for one

particular aspect of robotics. We seek to bring outdoor 3D

environment sensing to the weekend technology warrior,

opening the garage into the backyard.

Already autonomous vehicles, such as the Kiva robot at

Amazon, are being used for more efficient commercial systems.

The Kiva enhances the packaging process of Amazon by

delivering products inside an expansive warehouse to a human

for packaging [2]. Giving the hobbyist the capability to create a

robot like Kiva that can leave the warehouse could create a

wildfire of innovation. We would like to give our technology to

inventors so they can apply it to other technologies we have yet

to conceive.

Affordable robots already apply technology similar to what

LESS hopes to achieve in homes around the world—the

Roomba can vacuum your floor while you’re at work and the

Winbot can clean your windows. This begs the question, where

is my automatic lawnmower? Besides the obvious safety issues,

the technologies employed in these indoor helper bots only

work in environments that have low levels of sunlight or are not

accurate enough for something like an outdoor helper bot [3].

When this outdoor technology is put in the inventor’s hand, a

new wave of robots can emerge that will perform menial tasks

humans never wanted to do themselves. Ultimately this has the

ability to free up the everyday human’s agenda to do

exclusively tasks that robots cannot perform, such as innovative

thinking.

In tables I & II we give the initial specifications for the two

main systems of our project. Table I describes the requirements

for the Optics system. These parameters were designed to

maintain the integrity of the base Kinect performance, despite

the wide variety of environments we expect it to be employed

in. For this reason every one of the Kinect’s original field of

view and range requirements were maintained, if not improved

upon. While the final system will improve upon the range

requirements, it will also add distortion to the 3D generation.

This leads to the specifications considering the distortion

between an unmodified Kinect and the LESS. According to

Konolige and Mehelich, the distortions from optical filters on

the Kinect’s IR camera are between 0.1 to 0.2 pixels [4]. Taking

this into account we gave a tolerance on each pixel in the depth

image of 0.1 m.

The Kinect’s IR projector also has a very important

specification for the temperature. The overall temperature of the

IR projector cannot exceed 102°C due to a built in safety

temperature sensor. This sensor is programmed to shut off

power to the projector in cases of extreme heat which could

melt the surrounding parts.

Table II describes the requirements for the Rover system.

Our requirements for the Rover system are designed with both

the physical dimensions of the Rover and the Kinect hobbyist

community in mind. The horizontal and vertical ranges are

LESS: Low-Cost 3D Environment Sensing

Timothy Tufts, CSE, Alexander Montes McNeil, EE, Gabriela Correa, EE,

and Alexander Maerko, EE

S

TABLE I

KINECT SPECIFICATIONS

Specification Value

Min Render Distance < 0.4 m

Max Render Distance > 4 m
Horizontal Field of View > 57 °

Vertical Field of View > 43 °

Tolerance from Unmodified Kinect < 0.1 m
IR laser projector temperature < 102 °C

TABLE II

ROVER SPECIFICATIONS

Specification Value

Kinect Horizontal Range > 0.65 m

Kinect Vertical Range > 1.07 m
Rover Footprint Width 0.65 m

Rover Footprint Length 1 m

Rover Clearance Height 1.25 m
GPS Arrival Accuracy 3 m

GPS Travel Speed 0.5 m/s

Kinect Forward Range 0.5 < Range < 2.5 m
Obstacle Avoidance Travel Speed 0.5 m/s

Kinect Operational Frequency 0.25 Hz

2

defined such that the Kinect should be able to visualize the

entire height and width of the rover going forward. Additionally

the footprint and clearance height define the shape of the rover

inside of the software, so if we tweak the parameters in code,

we do need to meet the given values.

Additional rover specific requirements include the GPS

speed and accuracy, set by the previous work done by SDP14

team AIR. We can potentially increase these two performance

parameters, but our goal is to not decrease them.

The remaining parameters are intended to meet the default

settings for the Robot Operating System (ROS) navigation

stack (described later). Since this package is used by many

hobbyists, we want our hardware to be compatible with the

standard setup. The forward range value describes the range in

front of the rover where an object is considered an obstacle, so

our Kinect must be able to see in that range. The object

avoidance travel speed describes the maximum speed that the

rover can travel at while still avoiding obstacles. The selected

0.5 m/s is both the standard speed of a navigation stack robot

and the speed of our GPS travel. Lastly, the Kinect operational

frequency is derived from the previous two requirements. If the

rover travels at 0.5 m/s and the forward range has a 2 meter

length, the Kinect must process an image at least once every 4

seconds or else an object can move through the operational

range undetected. In reality, the Kinect operates at 30 Hz, so

this requirement is very much satisfied.

II. DESIGN

A. Overview

We took a modular approach to our design with the overall

goal to simplify each module for an extremely adaptable

solution. As a result our solution has two main components: the

Kinect system and the Rover system. The Kinect system is the

modified hardware we would market to hobbyists, while the

Rover system represents any robot running the OpenNI

software for Kinect. In our case, the Rover system is the ATRV-

Jr rover which runs ROS with an OpenNI package [5].

The main innovation in the LESS hardware consists of

modifying the 3D environment building from the Microsoft

Kinect for outdoor use. This technology was selected because

it has yet to be widely applied for 3D environment rendering.

More expensive systems have used similar methods to achieve

the same result, such as Light Detection and Ranging (LIDAR)

systems. Like most LIDAR systems, the Kinect projects and

observes the changes of an infrared signal. The Kinect’s current

system fails because it does not employ proper filtering systems

for outdoor use, in order to maintain effective consumer pricing

for the Microsoft Xbox.

A couple alternatives were considered in the first iteration of

the LESS hardware. Initially, SDP14 team AIR attempted some

basic object detection on the Mars rover using stereoscopic

cameras. We decided that for our project this was not a

sufficient method due to the simplified geometry assumptions

necessary for 3D object detection using this method [6].The

second alternative was using a conventional 3D LIDAR system.

These systems have been used for extremely effective real time

environment sensing [7], however they are prohibitively

expensive and thus not an option for most hobbyists. The

cheapest LIDAR sensor from Velodyne is approximately

$8,000 [8]. This would undermine the goal of our project which

is to bring a solution to hobbyist at a reasonable cost.

Another main competitor to the system was the use of

ultrasonic sensors [9]. These sensors have been demonstrated

to be effective for object detection in many commercial systems

but also have some major drawbacks for our design. While they

have great range, they suffer from being less accurate than light

based systems. For this reason they are normally part of more

complex sensor systems and equally do not meet our

requirements of creating a simple, adaptable solution [10].

Although similar to LIDAR, what separates our solution

from the previous methods is the way it modifies light for 3D

environment sensing. Instead of observing phase shifts such as

LIDAR or sonar technologies, the Kinect uses an IR projector

which passes its light through a diffraction grating. Once the

pattern is projected onto the environment, the infrared camera

on the Kinect observes and compares it to a reference pattern.

Based on the difference in the patterns, the system can calculate

how far away the point is.

Combining a modified Kinect with object detection and

avoidance, the block diagram in figure 1 shows our final design

solution. The two main blocks, Optics and Rover, display the

strategy used to develop the two largest components of the

Fig. 1. Block Diagram showing the separation and internal workings of the two main systems.

3

design. The Optics block strives to create a version of the Kinect

which can work outdoors in direct sunlight. While the Rover

block creates a computer and software system that can be easily

replicated in a wide variety of robotics projects, the Optics

block achieves outdoor functionality by further breaking down

into two subsystems. The Filtering block uses techniques to

remove as much of the sun’s interference as possible. The

Control block then makes up this difference by increasing the

power of the laser so it can be distinguished from the filtered

sunlight.

The Rover block uses a similar sub block system in order to

ensure the complete functionality of the system. The Navigation

Inputs block builds the 3D environment with the OpenNI

software provided by Primesense (the same company behind

the Kinect). This information is then passed to the navigation

stack where it is analyzed in ROS and object detection and

avoidance is calculated. The GPS navigation is specific to the

Mars rover prototype. This demonstrates a full system

application of LESS where a robot is given a particular goal,

and uses LESS to ensure it can achieve it without any

complications.

B. Optics: Filtering System

While there is an abundance of information about the Kinect,

the specific design parameters which cause it to fail in direct

sunlight are not released. This created motivation to generate a

series of experiments which characterized the Kinect. While it

would have been ideal for a complete understanding of the

Kinect’s 3D generation system, complete specifications about

the IR projector, diffraction grating, and how OpenNI interprets

the information from the IR Camera to create a 3D environment

are unknown. This led the design of the experiments to

understand the conditions in which the 3D generation system

fails. Once this was understood, the second step was to design

a filtering system that will prevent the Kinect 3D generation

system from failing.

The first set of experiments were designed to examine the

different conditions the Kinect IR Camera faces indoors and

outdoors. The unaltered IR camera output is displayed in figure

2. The conclusion was that in the worst case conditions outdoors

the IR camera was recording the maximum value for the IR

image meaning the pixels were fully saturated. The background

difference between outdoors and indoors is almost the entire

scale of the IR camera.

Once it was clear that the Kinect was failing due to its pixels

being fully saturated, a variable IR projector was created in

order to mimic these conditions. This projector was used to

determine the total amount of emitted power necessary to break

the 3D generation performed by the Kinect and OpenNI

software. This can be observed by the black circle in figure 3.

The amount of total emitted power necessary to interfere with

the Kinect 3D generation was 74mW. This is validated by the

total amount of power emitted by the Kinects IR projector is

approximately 100mW. From this we concluded that Kinect’s

3D generation technique fails when the total amount of power

on the environment—from the camera’s perspective—

approaches the total amount of power the Kinect is emitting on

the environment.

From this result the design process for the optical filtering

system aimed to remove as much power from the sun as

possible, and then increase the instantaneous power of the laser

to make up the difference. Based off of the ASTM standards for

Irradiance with an air mass of 1.5, the power reduction of

several band pass filters around the wavelength of the Kinect’s

laser is shown in table III.

The total power is the amount of power from sunlight that

floods the Kinects camera when emitted on the same

environment it is trying to observe. The stock Kinect has an 830

nm +/- 100 nm filter on it meaning it could experience up to 544

W from the sun. This is orders of magnitude above the Kinects

100 mW laser which is why its 3D generation technique does

not work outside.

This left two design options for the Kinect with the other

two band pass filters. Due to complications that arose when

trying to use other lasers on the Kinect (discussed in section

III) it became apparent we had to use the laser diode that came

with the stock Kinect. This forced us to choose the +/- 2 nm

option while increasing the instantaneous power by a factor of

4. It was acceptable for us to use such a restrictive filter since

in using the Kinects laser, we could also maintain the thermal

regulation system. This ensured that the laser diode would

maintain a very strict wavelength of 830 nm.

Fig. 3. IR Interference with Kinect 3D Depth map

Fig. 2. Top Left: Indoors with Kinect IR; Top Right: Outdoors with direct sun;

Bottom Left: Indoors without IR; Bottom Right: Outdoors Cloudy

TABLE III

REDUCTION OF SUN BY BAND PASS FILTER

Band Pass Filter (nm) Power from the Sun (W)

830 +/- 100 544.000

830 +/- 10 5.800

830 +/- 2 0.316

4

In addition to the choice of filter, an external shutter was

added outside the filtration system. This was chosen in order

to prevent extra saturation from the sun on the camera that

observes the laser grid on the environment while the laser is

off when it is being pulsed. The shutter follows the design in a

paper by Scholten et al. which uses the voice coil actuator

from a mechanical hard drive for an affordable, easily

manipulated shutter [11] [12].

C. Optics: Control

The main goal of the optics control block is to modify the 3D

grid emission system in order to raise the total power radiated

from the system. The original Kinect 360 uses a 100 mW laser

diode located in the projector assembly. It passes through a

focusing lens and, as it passes through the diffraction grating, it

creates a dot pattern projected on the environment. The task of

this block is to increase the output power of the laser diode so

that it has enough power to be detected by the IR camera in

direct sunlight and make it work with the rest of the system [13].

This goal was achieved with three designs. Shown in figure 4,

main design creates a trigger that goes to the driver for the

shutter and laser diode. The driver for the laser diode is simple

and therefor lumped in this design. The frequency and duty

cycle that appear in the trigger are very sensitive to the power

supply so the second part of the design converted the power

from a car battery to a stable 9.1 V. Lastly the driver for the

shutter was replicated and applied to our design as specified in

Scholten [12].

The trigger generation shown in figure 4 has three main parts.

The first is a 555 timer which generates the trigger. This circuit

uses a 555 timer to create a pulse which is set by the charging

and discharging of a capacitor. The duty cycle is set by the

diode/resistor network directly beneath the top timer in figure

4. After the trigger is created, it is passed to the shutter driver

and passed through a buffer to the driver for the diode. The

lower 555 timer creates a negative voltage in order to pull the

buffered signal down to 0V when the laser is off. The Laser

driver uses a power mosfet and resistor to create a constant

current to pulse the laser diode. This current is then pulsed on

and off by observing the trigger at the gate of the diode.

The trigger ultimately creates a frequency of 60 Hz which was

chosen to be twice the cameras shutter speed. This ensures

when the camera is open it will always observe the environment

with at least one pulse of the grid on it. To maintain normal

functionality of the laser while increasing its continuous wave

power output we chose a duty cycle of 20% and increased the

current through it by a factor of four to 400 mA. This brought

the continuous wave power output of the laser diode to

approximately 390 mW which satisfies the criteria for the

Kinect 360 to work outdoors under any conditions if it utilize

the +/- 2 nm filter.

The power module shown in figure 5 uses the LMZ35003 to

ensure that the pulsing circuit is reliable with a car battery no

matter what the actual voltage might be. A typical car battery

can vary in voltage from 14 to11 V. From this the circuit was

created to accept an input from 10.5 to 15 V and have the

consistent output of 9.1 V to power the trigger. The design was

created using a tool that TI offers which selects a part and

suggests a design with the necessary input/output

specifications.

D. Rover: Navigation Input

The navigation system relies on GPS in order to get from one

location to another. While separate from the obstacle avoidance

system, the GPS is an integral part to knowing the rover’s

location within an accuracy of three meters. Documentation on

this component of the rover was severely lacking, so the system

had to be reverse engineered from snippets of code distributed

throughout the rover’s onboard computer.

To perform these tasks, skills from previous experience with

Linux had to be used. In addition, ROS had to be learned. This

was done mainly by reading the tutorials found on the ROS wiki

[4] as well as using the ROS answers forum. The ROS answers

forum was invaluable in debugging pieces of ROS code because

the creators of ROS have answered many questions that involve

the intricacies of the software system. Basics of code

understanding taught in introductory programming were also

employed in order to make this subblock functional.

Communication skills learned in team experiences from iCons

were also used in order to effectively contact previous students

with experience on the rover.

In order to launch the GPS system, first one must connect the

main computer to the RFLEX computer and initialize the ROS

core. Next, the WiFi needs to be broadcasted and configured for

external device connection. For our GPS, we used an Android

phone and connected it to the rover’s configured WiFi. On the

phone, we installed an application called ROS Sensor [14] and

input the ROS core’s IP address. Back on the rover, the GPS

goals need to be modified, establishing a destination. Next, a

Fig. 4. Create a pulse with a 555 Timer

Fig. 5. DC to DC converter with power regulation

5

program needs to be run in order to publish the distance of the

rover from the destination. Lastly, a separate program is run to

send the rover to its destination.

The GPS has an accuracy of approximately three meters, so

this tolerance is taken into account while sending the rover to

its destination. As previously demonstrated, if the rover has a

tolerance of less than three meters to its location, it will continue

to circle in the approximate area of the destination since the

GPS cannot accurately establish that it is within three meters to

the destination. This is where some fine-tuning needs to be

done, such that the rover will arrive at the destination and not

circle it.

Unfortunately due to the Rover team’s setback described in

section III, GPS tuning was not completed for our project.

Instead we did all our final testing and demoing with a keyboard

command function that we wrote. This function takes WASD

keyboard input and places a goal 1 m away in the corresponding

direction so the rover can display its local path planning and

object avoidance capabilities. The GPS navigation works with

the same mechanic by placing goals at the specified locations,

so it follows that our modified Kinect project will be usable

with the GPS navigation.

We have left the GPS in a working state, so the next group

working on the rover project can utilize either or both of the

GPS and Kinect technologies. We recommend that they first

confirm GPS accuracy against a landmark GPS coordinate and

then do all their tuning with that accuracy in mind.

E. Rover: Navigation Stack

The rover navigation system is in charge of driving the rover

to a given destination while avoiding all obstacles on the way.

It takes inputs from the previous block that tell it where to go

and what the environment looks like in front of it. With goals

generated by either the GPS or keyboard navigation, this block

computes the best path to get there. This path takes into account

the environment data and avoids getting too close to any points

it determines are obstacles. While this is happening, it also

monitors the environment for any changes that might disrupt

the global path and updates the local path accordingly.

Additionally there are protocols that will rotate the rover in

order to collect data about the immediate area, that is, it makes

movements with observational motivation rather than goal

driven motivation.

In order to create these functionalities, we used the ROS

navigation stack [15] and the RFLEX driver [16]. The ROS

navigation stack is a standard package for controlling robot

movement. It is designed to be fully configurable and then fully

automatic. Configuration options include which sensors to

subscribe to, how those sensors physically relate to the body of

the robot, and different parameters to control the behavior of

the pathing. Once all of the required configurations have been

made, navigation is as simple as publishing goals to a topic. Our

implementation of the navigation stack is designed around the

speed of the rover and the limitations of the Kinect such that we

don’t get so close to an obstacle that we can no longer see it.

Lastly the RFLEX drivers are specific for the ATRV-Jr and

allow for ROS to communicate with the rover’s physical

systems without any configuration on our end [16].

The main difficulty of this block was learning the entirely

new ROS environment and more specifically the navigation

stack. Just like with the previous block we had to learn how

ROS pieces together and the functions of all of the files

involved. When adding the navigation stack on top of that, we

had to learn about tf transforms [17], goal publishing, and all of

the configuration parameters. Tf transforms are how the

navigation stack relates sensors to the robot in order to interpret

the geometry of the sensor data. This was particularly easy to

learn as we managed to capture the relationship in a one line,

static, xyz relationship. Goal publishing was also easy to learn

as it is just a more specific type of ROS topic and we were able

to learn from examples we found on the ROS wiki.

Configuration parameters were much harder to learn because

it’s one thing to read the description of a parameter in the

documentation, and it’s another to see it driving around the

room.

Before MDR, we were stuck using a sort of blind trial and

error to learn the parameters for the navigation stack. We would

drive the rover straight at obstacles as well as give it long

distance goals and see how it reacts. This experimentation was

meant to get the system into a rough working state for MDR

due to a computer crashing problem that prohibited us from

using the visualization software. These experiments were very

inefficient in nature because we were not actually monitoring

the software output of the pathing algorithm, we were watching

the hardware output which could introduce another layer of

bugs.

Once we fixed the crashing problem (discussed in section

III), we were able to actually monitor the path as it’s made in

real time and see any disconnect between software and

hardware. We were also able to see decisions that were being

made in advance, instead of just the decisions that were

currently being executed. With this better insight we were able

to experiment with different orientations of the Kinect in order

to find the position that lets us see both the closest and widest

areas in front of the rover. It turned out that the best place for

the Kinect was on a shelf attached to the main tower. By placing

the Kinect back on the rover body and aiming it downwards, we

were able to reduce the amount of blind area in front of the

rover. After we mounted the Kinect up high, we repeated the

configuration tuning experiments, except with more

informative results, until we reached a configuration that we

were satisfied with.

Debugging the software that drives a physical system is very

natural after having taken Computer System Lab. It is certainly

a different task than debugging a purely software system

because all of the outputs are analog and some of the symptoms

can be disguised in that sense, however the hours spent in Duda

have prepared us for this. Beyond that, just general good coding

practice picked up across different courses have helped this

technical block a fair deal and, of course, ROS answers was

invaluable for this block as well.

6

III. PROJECT MANAGEMENT

As our project concludes, it is clear that we have

accomplished a balance of practical and theoretical tasks. The

Rover team had very concrete goals based around creating

systems on the rover and tuning their performance. On the other

hand the Kinect team had much more physics and electronics

oriented goals aimed at fully characterizing the functionality of

the Kinect in order to improve its capabilities. The two

subteams also benefitted from independence because they have

two distinct work styles. While the Rover team had a very

iterative and functionality driven project, the Kinect team had a

project that required intensive measurements before

committing to hardware. There is a high amount of precision

involved when working with these optics, and our budget would

not have been able to handle many purchases that didn’t make

it into the final project. While the Kinect team ran their

experiments, the Rover team was not held back waiting for the

modified Kinect to be finished and so parallel progress was

achieved.

That being said, the Rover team successfully implemented

the systems it set out to create. We ran into some difficulty at

the beginning of the semester as we tried to fix the previously

mentioned crashing problem. As a brief overview, the rover

contains two computers: one which drives the proprietary rover

hardware and one which runs the ROS software. The one

running the ROS software was the one with the crashing issue.

While trying to find the cause of the crashing, the motherboard

stopped working and then soon after we found burn marks on

the board supplying the motherboard with power. We came to

the conclusion that this faulty power board was damaging the

motherboard and causing the crashing. As a result we had to

construct an entirely new computer using recycled parts found

around campus and find a new way to deliver power to it. By

the end of the semester we restored full functionality and were

able to successfully tune the obstacle avoidance such that the

rover avoided all obstacles we tested on indoors.

The Kinect team successfully designed and ran experiments

to define many important constraints on their design.

Throughout the semester we discovered some new

complications that we ultimately couldn’t solve. When we first

constructed the modified Kinect we found that it crashed the

OpenNI software after a short period of use. Considering that

we had to remove the cooling system to install our new laser,

we figured this was a heat issue and dedicated a large amount

of time trying to fix that problem. After some experimentation

with a new Kinect we found that the crashing happens whenever

we are using a different laser, even if we attach a stock Kinect

laser as well.

This indicated that the cooling system removal was not the

fundamental problem; instead a component of the OpenNI code

was realizing the changes made in the system, and reacting by

shutting down the system. By the time we discovered this, we

did not have enough time left to try and modify the OpenNI

software to allow for our pulsing circuit. In the end the Kinect

team provided two versions of the final product. One Kinect

was fully modified with a pulsing laser, shutter, and bandpass

filter while the other was simply the bandpass filter. While the

fully modified Kinect has better performance outside, the filter

version worked well enough that we did not hit anyone during

our outside demonstrations. We are leaving both versions with

Professor Parente for the next rover team in case they can solve

the crashing issue.

Our team dynamics worked very well due to our divided

efforts into two sub-teams. We had a problem where the goals

of the group were very clear, but not so much for the individual.

After splitting our goals in two, it was a lot easier for members

to claim responsibility for aspects of the project.

The team had an appropriate spread of expertise for this

project. Alex McNeil is an Electrical Engineer with a minor in

Physics which made him perfect for the Optics design on the

modified Kinect. Alex Maerko is by far the most hands on

member of the team and has excellent circuit design skills,

which was incredibly helpful with hardware design and

implementation for the modified Kinect, and other hardware on

the rover. Gabriela Correa has a strong Matlab and Linux

background, which has proved useful in data analysis and rover

system debugging/maintenance respectively. Timothy Tufts,

being the only Computer Systems Engineer on the team, was

crucial in getting rover software created and running properly.

There was healthy communication between each sub-team in

the form of contacting individuals from the other team to help

with specific tasks. Notable among these were Alex Maerko

helping the Rover team by creating the power supply for the

indoor Kinect and Gabriela Correa helping with image analysis

on the Kinect team. To communicate, we had two weekly

meetings as well as shared Google Drive / Dropbox storage and

a Facebook message thread for immediate contact. Besides that,

the team really pulled through with helping struggling members

and putting in the work hours when they were needed.

IV. CONCLUSION

At the conclusion of the senior design project course, we

would call our project a success. Throughout the year we were

plagued by bad specification design, for example the

specifications from tables I and II turned out to be unnecessarily

specific for what we were trying to accomplish. As a result we

simplified our specifications to be measurable field of view and

then a barrage of tests comparing the performance with the

unmodified and the modified Kinect to ensure that we preserve

indoor performance and improve outdoor performance. Of the

field of view specifications presented in table IV we managed

to meet all but the height which was arguably the least

important.

As for the performance tests, we saw that the modified Kinect

performed almost exactly as well as the unmodified Kinect

indoors even with the field of view loss. Most importantly our

modified Kinect was able to successfully visualize obstacles

outdoors where the unmodified Kinect would not see anything

reliable. On SDP demo day, we were able to run live tests where

TABLE IV
FIELD OF VIEW SPECIFICATIONS

Field of
View

Goal
(m)

Unmodified
Kinect (m)

Modified Kinect
(m)

Min Range .55 .47 .52

Max Range 2.5 4 3
Height 1.07 .87 .84

Width .65 1.31 .8

7

guests would stand in front of the rover and the rover would

sense them and drive around.

When we first approached the problem by researching

previously implemented solutions, we found that all the best

solutions were highly expensive. This led us to reshape our

project and aim to build a low-cost 3d environment sensing

system for outdoor use. Where the most inexpensive solution

cost around $8,000, our cost estimates in table V show that we

could market this product for around $150. So it is safe to say

that we very comfortably met the low cost objective of our

project.

 Lastly, our own experience with the rover project has

prompted us to prepare documentation for the future rover

projects. Most importantly we have provided Professor Parente

with an addition to his rover booklet that explains the current

state of the rover and how to use our new hardware. We have

also consulted with Professor Parente so he knows needs work

and what future groups could work on. Inevitably this will not

be enough so they will also have our contact information and

we can help get them started as the SDP14 team helped us.

ACKNOWLEDGMENT

The authors would like to thank Professors Jun Yan, Bill

Leonard, and Christopher Salthouse for their assistance with the

optical design, Professor Robert Jackson for his assistance with

circuit design, Fran Caron for all around help, Professor Mario

Parente and MIRSL for providing us with the rover and lab

space, and lastly SDP14 Team AIR and Keval Patel for their

assistance in reviving old functionality in the rover.

REFERENCES

[1] W. Isaacson, “How Google Went from School Project to Global Phenom |

Inc.com,” 17-Oct-2014. [Online]. Available: http://www.inc.com/walter-

isaacson/how-google-got-its-start.html. [Accessed: 15-Dec-2014].
[2] D. Tam, “Meet Amazon’s busiest employee -- the Kiva robot - CNET.”

[Online]. Available: http://www.cnet.com/news/meet-amazons-busiest-

employee-the-kiva-robot/. [Accessed: 15-Dec-2014].
[3] J. Layton, “How Robotic Vacuums Work - HowStuffWorks.” [Online].

Available: http://electronics.howstuffworks.com/gadgets/home/robotic-

vacuum.htm. [Accessed: 15-Dec-2014].
[4] Kurt Konolige and Patrick Mihelich, “Technical description of Kinect

calibration,” ROS Wiki. [Online]. Available:

http://wiki.ros.org/kinect_calibration/technical. [Accessed: 15-Dec-2014].
[5] “ATRV-JrTM MOBILE ROBOT TECH SHEET.” Real World Interface.

[6] N. Cornelis, B. Leibe, K. Cornelis, and L. Van Gool, “3d urban scene

modeling integrating recognition and reconstruction,” Int. J. Comput. Vis.,
vol. 78, no. 2–3, pp. 121–141, 2008.

[7] J. Levinson and S. Thrun, “Robust Vehicle Localization in Urban

Environments Using Probabilistic Maps,” Stanford Artificial Intelligence
Laboratory.

[8] “Velodyne Lidar.” [Online]. Available:

http://velodynelidar.com/lidar/lidar.aspx. [Accessed: 15-Dec-2014].
[9] P. E. Ross, “Tesla’s Model S Will Offer 360-degree Sonar,” IEEE

Spectrum, 10-Oct-2014.

[10] D. A. Schoenwald, J. T. Feddema, and F. J. Oppel, “Decentralized
control of a collective of autonomous robotic vehicles,” in American Control

Conference, 2001. Proceedings of the 2001, 2001, vol. 3, pp. 2087–2092.

[11] Maguire, L. P., S. Szilagyi, and R. E. Scholten. "High Performance
Laser Shutter Using a Hard Disk Drive Voice-coil Actuator." Review of

Scientific Instruments 75.9 (2004): 3077. Web.

[12] Scholten, R. E. "Enhanced Laser Shutter Using a Hard Disk Drive
Rotary Voice-coil Actuator." Review of Scientific Instruments 78.2 (2007):

026101. Web.

[13] Tim Carmody, “How Motion Detection Works in Xbox Kinect |
WIRED,” 03-Nov-2010. [Online]. Available:

http://www.wired.com/2010/11/tonights-release-xbox-kinect-how-does-it-

work/all/. [Accessed: 15-Dec-2014].
[14] Chad Rockey, ROS Android Sensors Driver. 2013.

[15] Eitan Marder-Eppstein, “Navigation,” ROS Wiki, 10-Jul-2014. [Online].

Available: http://wiki.ros.org/navigation. [Accessed: 15-Dec-2014].
[16] Mikhail Medvedev and David V. Lu, “RFLEX,” ROS Wiki. [Online].

Available: http://wiki.ros.org/rflex. [Accessed: 15-Dec-2014].

[17] Tully Foote, Eitan Marder-Eppstein, and Wim Meeussen, “tf,” ROS
Wiki. [Online]. Available: http://wiki.ros.org/tf. [Accessed: 15-Dec-2014].

TABLE V

PRODUCTION COST FOR 1000 UNITS

Part Price

Microsoft Kinect 360 $ 15,000.00

+/- 2 nm Bandpass Filter $ 81,283.20

Hard Drive $ 19,000.00
LMZ35003

LMD18200

NE555
Diodes

Resistors

Capacitors
TOTAL

$ 10,282.50

$ 9,112.50

$ 230.00
$ 777.00

 $ 30.29

$ 3,913.00
$139,628.49

