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Abstract —BMW  (Brainwave Manipulated Wagon) is a robotic 

car that can be remotely controlled using the user’s brain signals. 

This system uses BCI (Brainwave Computer Interface) to provide 

communication between our brain, the computer application and 

the robotic car. It uses a commercial EEG headset to acquire EEG 

data, classifies and interprets the data set on the computer 

application, and achieves desired commands on the robotic car 

based on the classification. The purpose of the BMW is to 

demonstrates the feasibility of applying in BCI helping people 

with physical disabilities, as will be shown with the demonstration 

of controlling the robotic car. 

I. INTRODUCTION 

 eople with motor disabilities are limited in the physical 

activities they can perform in daily life due to their 

constraints, such as not being able to walk or move 

independently. In the US, physically disabled individuals make 

up the largest minority group of the US, and about 74.6 million 

people have some kinds of physical disability [1][2].
  
Some 

existent solutions are present to solve the problems of physical 

limitations, which include implementing prosthetic limbs, 

using wheelchairs, or hiring someone to take care of them. 

These solutions have solved part of the problems and allowed 

the people in the group to live normal lives. For those who lose 

their limbs, they are able to implement the prosthetic limbs or 

walk with crutches so that they can move freely. However, for 

people who could not move their hands or feet flexibly (e.g: 

paralyzed), they even have a hard time controlling their 

surroundings by themselves using a wheelchair. Therefore, a 

regular wheelchair could not fulfill their needs. At this point, a 

better solution would be the BCI (Brainwave Computer 

Interface). 
BCI allows direct communication between brainwaves 

and the external world. With BCI, non-muscular 

communication and control is no longer speculation [3]. The 

person’s messages and commands are not expressed by 

external control such as pushing a button; they are controlled by 

electrophysiological phenomena such as MEG 

(Megnetoencephalography) and EEG (Electroencephalography) 

features. EEG measures the voltage potentials generated by 

neural currents. It reveals the information of our brains. Over 

the past two decades, many studies have evaluated the 

possibility that brain signals recorded from the scalp could 

provide new technology that does not require muscle control 

[4]. The BCI solution is beneficial for the individual who is  
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paralyzed without brain issues. The patients communicate with 

the external device , such as a wheelchair, with their brains, 

which is a huge improvement in their lives. And the problem in 

society about this specific group could be largely resolved 

because they are now more like normal people who could 

control their movements freely. 
           In our project, we are not going to build a complete 

wheelchair using BCI; instead, we are building a robotic car for 

demonstration because of time limitations. A real BCI 

controlled wheelchair takes time to build up and implement. If 

the robotic car is implemented successfully, the functionalities 

are applicable to a real wheelchair system. There are a few 

specifications of the robotic car. The robotic car is associated 

with a Neurosky EEG headset for control. It requires basic 

movements such as moving forward, stopping, and turning, just 

like a real car does. The remote distance should be at least 

within 30m, as we would only need to control the car within eye 

sight. The battery life is required to be three hours or longer. 

This is a reasonable time endurance as it doesn’t need to be too 

long. The robotic car should be compatible for every user. 

Software is developed to help training, and the training set data 

is collected for analyzing. Here is our specification table:  

II. DESIGN 

A. Overview 

To build a BCI controlled robotic car, we will use a 

commercial headset to retrieve the EEG data and send it to a 

computer software application. On the back-end of the 

computer application, the Fast Fourier Transform (FFT) will be 

performed on the acquired EEG data, which will be used by the 

command algorithm to classify different commands. On the 

front-end, a user interface will direct the user to perform the 

training and control process. To communicate with the robotic 

car, the computer will send the classified command as digital 

data through the serial port to a transmitter(TX) module. The 

transmitter (TX) module will then transmit the signal to the 

receiver (RX) module located on the robotic car. Both the TX 

and RX module will consist of a microcontroller and a wireless 

radio, more specifically, Arduino Uno and XBee radio. 
We chose to use the Neurosky Mindwave [4] headset as 

the solution to obtain the EEG signal. The reasons for choosing 
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TABLE I 
SPECIFICATIONS 

Specification Value 

Car Direction Forward/Stop/Turn 
Remote distance 

Battery Life 

30 m  

<3 hours 

Compatibility 
Command Accuracy 

Every user 
75%  
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this headset are primarily due to its affordable price, its 

software development kit(SDK) resource, and the amount of 

BCI research using the Neurosky headset that is available for 

study. Having the BCI controlled using Neurosky usually takes 

advantage of the attention and mediation values, computed by 

Neurosky’s proprietary eSense™ algorithm. However, 

Neurosky only contains a dry EEG electrode placed at FP1 

location, which is located on the forehead above the left eye[4]. 

Since we can only retrieve EEG data from one location, more 

specifically, the frontal lobe of the brain, it limits the number of 

commands that we can distinguish with the EEG data, as a 

typical BCI system generally takes the signal from different 

channels and classifies it[5]. However, in the research paper 

Mental Task Classification Using Single-Electrode Brain 

Computer Interfaces [6], the  Neurosky Mindset headset was 

used to attempt to achieve the classification of three tasks, with 

an average accuracy of 77.6 % using a Bayesian classifier [6]. 
     Alternative methods for retrieving EEG data for BCI 

control include using another headset, Emotiv [7] and an EEG 

amplifier. Emotiv was one of our choices, as it includes more 

EEG sensors located in different region of the brain, but the 

price of the EEG version of the headset is above the given 

budget, making it unaffordable for us. An EEG amplifier and 

active electrode system was also considered, but the setup 

process requires correct placement of the electrode, which was 

complicated for different users to set-up a similar system in 

previous experiments. 
Also, we decided to design a software application on the 

computer, instead of using an embedded solution or directly 

connecting with the robotic car for two reasons. First, the 

headset uses Bluetooth v3.0 protocol, which supports remote 

distances up to 10m [8]. Thus, a direct connection between the 

robotic car and the headset is undesirable, as it limits the remote 

distance connection. Second, a training set is required for BCI, 

as listed in the feature properties in A Review of Classification 

Algorithms for EEG-based Brain–Computer Interface [5]. We 

need to decide the stimuli that we can use for this particular 

headset, and a computer application is an appropriate choice for 

setting up a standard experiment. 

 
Fig.1: System block diagram 

 

 Fig. 1 illustrates our system block diagram, which includes 

several main blocks. 

 

1. Data Retrieval/ Signal Processing:  
This block is responsible for retrieving EEG data from 

the Neurosky Mindwave headset, which uses the 

Bluetooth v3.0 protocol. The Fast Fourier Transform 

(FFT) is performed on the acquired EEG data for 

analysis. 
2. Command Classification Algorithm: 

This block is responsible for utilizing the retrieved EEG 

data and classifying different commands. The criteria for 

classification are based on the collected training data sets 

from the database.  
3. Graphical User Interface (GUI): 

This block will allow user to start the control, while 

providing sets of standard stimuli to display and help the 

user with the control.  

4. TX(Transmitter) Module: 
This block consists of an Arduino Uno and a XBEE radio. 

The Arduino Uno will receive the digital signal of the 

resulting command from the software. It will then send 

this signal to the receiver module on the car. 
5. RX(Receiver) Module/ Robotic Car: 

The RX(Receiver) Module consists of an Arduino Uno 

and an XBee radio. The RX module will receive the 

signal from the TX module. The RX module will send the 

received signal to the Arduino, which will control the 

robotic car based on the resulting command. 
 

B. Data Retrieval 

Data retrieval is the first task as it acquires EEG data from 

the Neurosky MindWave headset. The developer provides a 

library called Thinkgear for the users to utilize [9]. This library 

obtains functions that allow users to extract values from the 

headset directly for further analysis. Raw EEG data from the 

library is in terms of voltage. The sample rate of the headset is 

set to 512 samples per second, which means that every raw data 

point is outputted for every 2ms. Raw EEG data is important 

since it allows us to perform the FFT (Fast Fourier Transform). 

Other values that are useful in our project include attention 

level, meditation level, and Alpha/Beta power spectrum. 

Attention and Meditation values are presented as numbers 

ranging from 1 to 100. For example, attention level measures 

your concentration, and the number increases as users try to 

focus more. Attention is the main parameter for the project so 

far to achieve binary commands of LED light at MDR.  
 

C. Command Classification Algorithm 

This block is responsible for classifying commands for the 

robotic car based on the incoming EEG data, such as alpha and 

beta band power spectrums. Different commands are associated 

with the corresponding tasks that the user are directed to do. 

However, to achieve binary command for MDR, we use the 

attention value that Neurosky headset computed. According to 

Neurosky's user guide, the Attention value can be controlled 

through a visual focus, such staring at a point on the screen, or 

focusing on imagining the action user hoped to accomplish 

[10].  
Currently, we chose to use only attention level in our 

algorithm, because we are still in the process of discovering the 

tasks and the association with band power that we can classify 

with one sensor. Also, attention level did reflect the 

concentration of users as we tested on different  people. In 
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addition, the implementation would still be similar after the 

associated wave band power is defined.  
For MDR, since we are working toward distinguishing 

two states with attention values, we determined the classifying 

point between the two states, concentrated and not concentrated, 

as illustrated in Figure 2. 

 

 
Figure 2: Command classification algorithm in MDR for two states 

 

First, the training data set consists of a set of attention 

values collected while the user is concentrating and staring at 

the blinking light on the screen. Our algorithm sorts those data 

using merge sort, since merge sort has a faster runtime and does 

not affect the performance of our system. Then, we calculate 

the classifying point by averaging the middle third of the 

training data. This approach eliminates the outlier, such as the 

situation when user is not fully accomplishing the task during 

the training session. However, while we are testing it, we have 

discovered that using only the threshold to distinguish between 

two states may not yield a stable result. For instance, sometimes 

the test subject has a hard time sustaining the concentrated state 

in long intervals, even though the subject is still staring at the 

blinking light. 
To stabilize the classifying result, we decided to include 

two other criteria. The first criteria is that, the algorithm will 

only classify the attention level as high when the input attention 

value is larger than 90% of the classifying point. In this case, 

input attention value will still be considered as high, even if it 

drops below the classifying point by a little bit. Otherwise, the 

input attention value will be considered as low attention level. 

The second criteria is that, if the user is at the concentrated state 

originally, two consecutive low attention inputs will change the 

state from concentrated to not concentrated. This criteria 

address the problem of when the user only has a short instance 

when they are unable to sustain the concentrated state, but they 

are still trying to do so and shortly recover after that instance. 
During the experimental process with this algorithm, 

several observations were noted. If the user is fully committed 

to a single thought and is staring at the LED light intensively 

during the training process, the computed classifying point will 

be really high, and thus makes it difficult to go into the 

concentrated state during the control process. Also, if the user is 

in the concentrated state and is trying not to concentrate, 

avoiding staring at the blinking light on the screen, it will take 

at least two seconds to change the state because the algorithm 

requires two low attention levels to be considered as not 

concentrated.  
To look at the possibility for having multiple commands, 

it is necessary for us to look beyond attention level and discover 

the correlation between band power and different external or 

internal stimuli. That is: we are trying to utilize Event Related 

Potentials(ERP), which is a phenomenon where exposures to 

external and internal stimuli could generate responses in an 

EEG wave [11].  Discovering the appropriate stimuli that can 

be used to stimulate an ERP response at the frontal lobe region 

is required. To determine the stimuli to test on,  it is required for 

us to look at research in neuroscience, to understand the frontal 

lobe region, and what the past BCI control has been using. 
To distinguish the band power pattern of using each 

stimulus, we will use Naive Bayes classifier [12]. This is a 

probabilistic classifier that utilizes the previous classification 

data to determine the current classification. The Naive Bayes 

classifier has several advantages. First, it has a linear run time, 

so it will not reduce the performance of our system significantly. 

Second, since it is a probabilistic classifier, more data will 

improve the accuracy of the classification. In this case, we will 

use a database to store all the band power data with different 

stimuli, and that data will serve as the input to the classifier. In 

addition, the Naive Bayes classifier will dynamically 

recompute a set of probabilities distribution when a new 

training data for specific stimulus is available. In this case, the 

user does not have control over the classification criteria. 
However, we are currently facing some challenges 

regarding use of the Naive Bayes Classifier. In order to use it, 

with the sets of stimuli to test on, we still need to know what 

correlation to expect with one single EEG sensor, instead of 

relying on Bayes classifier entirely. Otherwise, if the Naive 

Bayes Classifier fails to classify the effect between two stimuli, 

it will be unknown to us whether the two stimuli are 

indistinguishable due to the fact that we only have one sensor or 

because we didn’t have enough data. Furthermore, a large 

number of experiments and datasets will be needed to improve 

the accuracy of the classifier.   
 

D. Software Flow/User Interface 

The primary purpose of including a user interface block is 

to have a training interface that gather the user's training data 

with different stimuli, in order to achieve a better control after 

generalizing those patterns. The secondary purpose is to have a 

platform for a standard experiment to test the stimuli that could 

potentially work well with our goal. On the back-end, the 

software needs to handle the state change based on the user's 

operation, such as a button click. On the front end, the user 

interface is also responsible for displaying the selected stimuli 

to help user to achieve the control that they hope to accomplish. 

The output command is also displayed on the screen in order for 

the user to monitor the command being made. 
To build the user interface, Visual C# was chosen as the 

development platform, as it has native graphical features for 

better visualization and is easy to put on different stimuli for 

testing. On the development side, C# includes a relatively easy 

interface for the developer to create different events, which is 

essential for the purpose of detecting the button click to trigger 

the program as well as setting up a fixed-time training interface 

with timer events. 
To create a standard software flow, a preliminary state 

diagram is created to layout the necessary process that must 

happens within the software. Each state is dedicated to a certain 
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task at this stage, but future state reduction and combination 

will be needed to eliminate the complicity of state transition. 

The state diagram design processes are adapted from ECE112, 

Introduction to ECE, and ECE373, Software Intensive 

Engineering. To speed up the data collection process, the use of 

multithreading is considered and will need to be learned to 

apply in C#. The concept of multithreading has been elaborated 

in Software Intensive Engineering as well. 

 
Figure 3: State diagram of the software 

 

The current state diagram of the software is outlined in 

Figure 3. The current design for this stage is aimed for an 

experiment interface until we determine the usable stimuli for 

different commands. For now, basically, the program will start 

in the Initial Idle state, where the user would click the button to 

trigger the connection with the headset. If the connection is 

established successfully, it will then go onto the training state, 

where user will be directed to concentrate and stare at the 

stimuli for 20 seconds. After 20 seconds, the program will 

transition into the command algorithm state, which the 

collected data from the training state will be used to analyze. In 

the case when the headset does not attach to the head at a proper 

position, a new attention value will not be computed, and a poor 

signal value, computed by the headset, will indicate a non-zero 

number. When the poor signal value is non-zero during the 

training process, the collected training data is discarded. Then, 

if the command algorithm does not have enough training data to 

use, it will transition back to the training state, where the user 

will be asked to re-train and perform the same task. If the 

command algorithm does have enough training data, it will 

transition to the idle-before-control state, where the user could 

click the button again to start the control. During the control 

state, the user can click on the button to terminate the program. 
 

Figure 4 illustrates the current GUI layout. The interface 

contains buttons for user to control the program. During the 

control state, it will inform user the output of the command 

algorithm, whether the user is classified as concentrated or not. 

It also displays some warning message. For instance, it will 

inform user if the user is not wearing the headset properly. It 

will also give indication of the state that the program is at.  
 

 
Figure 4. Current GUI layout shown on computer 

 

E. TX/RX and Robotic Car 

This subsystem is used to control our car with the 

command generated after command classification and consists 

of two parts. The first part is the Transmitter/Receiver pairs. 

They are required to be compatible with not only computers, 

but also the robotic car that we will build. They should also 

communicate with each other with sufficient speed and a long 

distance. The Arduino Uno and XBee were chosen to build this 

subsystem. We chose XBee as the wireless solution because it 

has the indoor range of 40 meters [13], which is sufficient for 

our needs. The Arduino Uno can also interact with XBee. We 

have four important steps to complete this subsystem. The first 

step is to transmit the signal from the computer to the Arduino. 

Then, we need to connect the Arduino and XBee and perform 

configuration. The third step is to establish the communication 

between the two XBees. The last step is to send the signal from 

Arduino Uno to the car.  
We need to learn how to configure the XBee to 

successfully interface with the Arduino Uno. After build up all 

of the parts, we can easily test the subsystem by sending a 

signal from the computer and checking to see if there is the 

same signal measured after Arduino in the receiver terminal.    
The other part is the robotic car, which will be designed 

for movements forward, backward, stopping, turning left or 

right, speeding up, slowing down and triggering power on or 

off, all while showing its status of action and having sufficient 

battery life. Since the receiver will get the digital signal, we will 

use an A/D converter to translate the digital signal to an analog 

signal, which will be used to drive our car directly after a power 

amplifier. The A/D converter is covered in Electrics I and the 

Power Amplifier is covered in Electrics II. Furthermore, we 

need a display to show what state our car is at. Finally, power is 

also an important constraint, so we will need to learn about the 

power system. 
To test the whole block, we can send a chosen signal to 

check if the robotic is doing the expected operation and 

showing the correct state in the display. We can measure the 

power consumption in the system and then calculate the battery 

life.   

F. Signal Processing 

Signal processing is the sub part that establishes a 

connection between the headset and command algorithms in 

order to achieve controls. However, at the point of MDR, the 

result of signal processing has not yet utilized by the project 

itself.   
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With the present library available, we utilized the 

functions there to extract the raw EEG data and its 

corresponding attention level. The raw EEG data is assumed to 

be reliable. Noise filtering is not considered as important for the 

FFT analysis because the headset itself filtered out extraneous 

noise and electrical interference [9]. The dominant noise comes 

from the noise of muscle movement. This noise is detectable by 

observing the raw EEG data because it is very similar to the 

noise of eye blinking, which is an external function that is 

provided by the headset. If muscle movement noise is presented, 

obvious spikes will be observed from the raw EEG data. 

Therefore, the raw data extracted directly from the headset is 

reliable, and noise filtering could be ignored at this point. 

MATLAB is used as the main research tool so far to performing 

FFT analysis. C# language will replace MATLAB for FFT 

analysis because MATLAB is not favorable for our project 

development, as noted in our PDR presentation. The purpose of 

the FFT analysis is to look for the relationship between the 

brainwave signals and the attention level so that relationship is 

better defined. In order to achieve multiple controls, having the 

value of attention level is not enough. We focused on extracting 

the alpha wave power spectrum from FFT which is ranged from 

8Hz to 12Hz. Figure 5 shows the distribution of the result. 
Alpha Power Spectrum (FFT) vs Attention Level (headset)

 
 

Figure 5. The graph is plotted using SAS (Static Analysis Software)[14] for 
analyzing. It shows a linear-like relationship between the alpha power and the 

attention level. 
Figure 5 shows the relationship between the alpha wave 

power spectrum that is calculated from MATLAB and the 

attention level, that is computed by the headset itself. The units 

of alpha wave power spectrum are in watts, but the number is 

arbitrary due to a few conversions. However, it would not mess 

up the relationship because all points have the same scale. From 

the distribution, we could see that the alpha power spectrum has 

a linear-like relationship with respect with the attention level. 

The slope of the linear relationship is negative, which means 

that as the attention level increases, the alpha power spectrum 

decreases. However, the linear relationship is not too obvious. 

The scale of the power spectrum is in thousands, but the slope is 

only in tenths, which is too small to conclude the negative 

linear relationship. Therefore, we cannot make a solid 

conclusion at this point. That is the reason why signal 

processing has not yet been integrated with the command 

algorithm for controlling the LED. Also, one of the problems of 

the analysis is that the data set is taken without any environment 

setup. If multiple controls are desired, a well-defined 

experiment is required.  
 

III. PROJECT MANAGEMENT 

 

Table II below lists the MDR goal of our project.  

Specification Completion 

Retrieval of EEG data from Neurosky 100% 

GUI - Software Interface Prototype 100% 

Determine Binary command from algorithm 100% 

Demonstration of controlling LED on/off 100% 

 

We have accomplished our MDR goals successfully. For 

MDR, we are mostly concerned with the task of achieving 

binary BCI control. Thus, we placed our focus entirely on the 

software and data analysis. We have demonstrated the 

connection between the Neurosky Mindwave headset, the 

computer, and the Arduino Uno. Our C# application is capable 

of displaying information to the user. On the back-end, the 

application can receive data from the Neurosky headset. The 

command algorithm can also classify binary commands, 

namely whether user is concentrated or not. In this case, we are 

directing the user to concentrate by staring at the blinking light 

on the GUI. The output of the classified command is sent to the 

Arduino board, which will control the LED light on or off. 
To look beyond binary commands and attempt to control a 

robotic car, we are trying to analyze the relationship between 

the EEG band power spectrum and attention values. We have 

implemented the FFT in MATLAB, which allowed us to 

analyze the EEG band power data. It will be useful later as we 

define experiments to test with different stimuli. 
Figure 6 illustrates our Gantt chart up to MDR. 
 

 
Figure 6: Gantt chart for MDR 
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The remaining part of our project includes building a 

robotic car that can be remotely controlled by the application. 

This will be done during winter break and the first two week of 

spring semester to ensure that we can integrate it before CDR. 

Furthermore, the software application also needs to setup a 

database for command classification to access, and the GUI 

needs to become more user-friendly. 
Most importantly, we want to improve our command 

algorithm to achieve more controls using EEG waves. However, 

projects that we found using Neurosky headset can only 

achieve a maximum of three different commands using either 

its attention or meditation value and the detection of an 

eye-blink[6]. We are not optimistic about classifying different 

mental tasks to achieve multiple commands through the 

experience working with the headset, since we only have one 

sensor to work with. As an alternative, we can detect eye-blink 

using the Neurosky headset by observing an obvious spike on 

the raw wave data, as it is caused by the presence of muscle 

movement. It deviates from our goal to achieve controls 

utilizing only an EEG signal, which leads to our decision to 

switch to a EEG headset with more sensors, Emotiv [7], for 

CDR.  
To make this plan feasible, we will start the software 

implementation without the Emotiv headset during winter 

break. With the Emotiv headset, the possibility of achieving 

multiple commands increases greatly. For instance, the SSVEP 

(Steady-state visual evoked potential) -based BCI system has 

been developed using Emotiv EPOC, where the system utilizes 

the blinking light at different frequencies as external stimuli to 

create corresponding ERP responses at the occipital lobe of the 

brain [15]. After we complete our research and defined the form 

of stimuli that we can utilize, we can then implement the FFT 

and Bayesian classifier in C# application. There is also a need 

to revise the GUI based on the stimuli that we decide to use.  
Figure 7 is our Gantt chart for CDR.  
 

 

Figure 7: Gantt chart for CDR 

 

 

Team Contributions 

Each member in Team BMW made a significant 

contribution to the project. All members used their expertise to 

deliver valuable information to the team. Xueling is the EE of 

the group. She was responsible for data retrieval from the 

Neurosky headset to ensure that the connection was established 

successfully. She also worked on analyzing the FFT for raw 

EEG data and looking for relationship between the brainwaves 

and the attention level.  Man is the other EE of the group, who 

is responsible for the hardware components. He was 

responsible for finding the relationship between the alpha and 

beta power spectrums, which are provided directly from the 

headset. He will be building a robotic car and working on the 

wireless communication between the robotic car and Arduino. 

Tiffany is the CSE of the group and the Webmaster. She was 

responsible for designing the graphic user interface and 

database for our application. Zijian is the CSE of the group and 

is a good software programmer. He was responsible for 

implementing the command algorithm and providing the 

technique support for other software parts of the project. He is 

also the team manager. 
Each team member helps each other, and, in order to 

communicate with each other conveniently, we created an 

online chatting group to share our opinions at any time. We also 

used Google Docs to share our research information as well. 

Each team member is aware of the current progress of other 

members, and we all provide feedback to each other. Besides 

the online communication, we have at least one team meeting in 

person each week before our regular meeting with our advisor, 

Professor Xia. In our group meeting, we discuss our progress 

and collect feedback such as questions, challenges and opinions. 

Then, we start to integrate all the parts together. In the regular 

meeting with our advisor, we talk to Professor Xia about our 

project progress, and the questions and concerns that we have 

about the project. 
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IV. CONCLUSION 

In this first stage, we built a simple system to test our 

control using an LED light. As a  result, we have controlled the 

LED light to turn on or off with brainwaves successfully. The 

attention level value directly from the headset is utilized as the 

main parameter. With most of the sub-blocks connecting 

together, the control of the LED light is considered stable most 

of the time. However, we are controlling a robotic car rather 

than a LED as our final goal. The robotic car requires more than 

two controls; therefore, attention value is not enough for 

achieving multiple controls due to the limitation. Alpha and 

Beta waves are important and have to be involved for replacing 

attention level. 
One of the biggest challenges so far is that the Neurosky 

headset we are using only contains one sensor. Even though we 

knew it was a disadvantage before we ordered it, more 

unsolvable difficulties and challenges popped up as we tried to 

achieve accurate multiple controls. Throughout the course of 

the semester, we have been trying to look at multiple controls 

with Neurosky or one sensor. However, a BCI system with one 

sensor is usually an SSVEP-based system, in which the sensor 

will be placed on the occipital lobe of the brain to discover such 

an ERP signal [16]. In addition, the sample rate of the headset is 

fixed to be 512Hz, and the calculated values are outputted per 

second, which is considered as slow if we want to minimize the 

time-delay.   
Thus, after the MDR, we discussed this concern with our 

faculty advisor, Professor Xia, and our group has voted and 

reached a conclusion: if we want to control the robotic car to do 

more than stably moving forward or stop using EEG, it is 

necessary for us to have a headset with more sensors. Emotiv is 

the only commercial headset in the market that has multiple 

sensors covering at different regions of the brain [7]. Although 

we will need to interface the headset with our software and 

research on the stimuli that can be use in this headset, it is more 

promising to yield a reliable multiple command classification, 

as we can reference some of the BCI system to look at.   
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