Acknowledgments

- Wayne Burleson, Advisor
- Dan Holcomb, Advisor
- Lt. Thrasher, UMass Police Department
- Officer Sullivan, UMass Police Department
- Suzan Young, UMPD IT Coordinator

Agenda

- F.I.R.E System Requirements
- Use and Threat Models
- Block Diagrams
 - Previous
 - Updated
- MDR Deliverables
 - Proposed
 - Current

- Microphone Unit
- Sensor Evaluation Module
- PCB Preliminary Design
- Camera Unit

F.I.R.E System Requirements

 Chest-mounted video camera connected to box on officer's belt Sensor activated when officer removes weapon from duty belt •Small, reliable, easy to use, emphasized by UMPD

Use Models

- Entering building
 - Camera automatically activated if officer draws weapon
 - Camera activated manually if situation potentially dangerous
- Traffic stop
 - Camera activated manually if situation potentially dangerous
 - Camera automatically activated if officer draws handcuffs
- Officer caught unaware (Ferguson)
 - No time to manually activate, camera automatically activated if officer draws weapon
 - Pre-record feature will detect why weapon was drawn

Threat Model

Controlled:

- Officer attempts to access the data
 - Data is encrypted only accessible when downloaded to computer
- Officer doesn't want/forgets to turn the camera on
 - Sensor array will activate it anyway
- Hacker attempts to steal data from servers
 - Data is encrypted
- Tampered data loaded onto
- server

Data signed with key contained in camera

Uncontrolled:

- Local Memory Unit was 'lost'/ stolen (either by officer or attacker)
- Officer covered the camera

Previous Block Diagram

Updated Block Diagram

Previous MDR Deliverables

- Prototype for RFID sensor array on officer duty belt
- Components of local memory unit connected via breadboard
- Camera unit functional and mounting option decided upon
- Software at the police station prototype

Updated MDR Deliverables

- Microphone record and playback demonstration
- Activation Sensors evaluation module demonstration
- Camera record and compression
 demonstration
- Preliminary PCB design and list of Local Memory Unit components for custom PCB

Block Diagram

Microphone Unit components

- Microphone Preamp System
- ISD 4002/Arduino Subsystem
- Postamp Speaker subsystem

PUI Electret Microphone TL074CN JFET quad op-amp

ISD 4002 Record-Playback Device

8 ohm mini speaker

Arduino Uno microcontroller

LM386 audio power amp

Team Member: Andrew Kelley (EE)

Microphone Unit schematic

Block Diagram

Sensor Evaluation Module

- NFC Reader 13.56 MHz
- Determine functionalities of TRF7970A transponder using provided GUI to create custom software

Figure 1. TRF7970A EVM (Top Side)

Evaluation Module GUI

Required Commands:

- Inventory (Code: 0x01)
- Stay Quiet (Code: 0x02)
- Select (Code: 0x25)

Optional Commands:

- Read Single Block (Code 0x20)
- Write Single Block (Code 0x21)

5693 14443A 14443B FeliC Commands	Tag Flags Registers NFl	C-PP Test Data Coding Mode #	UID M.	IRQ status
C Read Single Block Write Single Block Lock Block Read Multiple Blocks Write Multiple Blocks	 Focus out out out out out out out out out out	1 out of 4 Full Power Half Power Set Protocol		Rx Framing FIFO S/EOF CRC Coll.
Stay Quiet Select Reset to Ready Write AFI Lock AFI Write DSFID Lock DSFID Get System Info	UID (First) Block Number Number of Blocks Data DSFID AFI		Tag Info Number of Blocks Block Size ☐	Level Level High Cow Level High Cow # Full Lupdate Reset FIFO Special functions AGC on Winin channel AM
G Get Mult.Blk.Sec Status			Exect	ute Select Port
1:53:41.804 COM5 1:53:41.804 COM4 1:53:41.805 COM3 1:53:41.805 COM2 1:53:41.805 COM1 1:53:41.806 COM0				

I MassAmherst

Low Power NFC Reader

Figure 6. ULP Card Presence Detection and NFC/RFID Reader Circuit

20pF

RX I

RX II

1MΩ

- Samples then measures the time it takes for • signal to decay
- Unable to implement yet because of incorrect cable to download firmware

= 13.56MHz

Filterin

Block Diagram

Camera Unit

BeagleBone Black

- Camera Cape
- 1.26MP Camera Sensor
- Ultra-low-power

- Outputs data in YUV4:2:2 format
- Capable of 1280x720 at 30 fps (adjustable)

Camera Data Processing

Quality 51

Quality 25

Quality 0

End Point Storage / Software

- Police frowned upon cloud storage
- Will be creating an end point interface
 - Manage software / permissions on device
 - Ability to catalogue and tag videos

Block Diagram

Custom PCB justification

- BeagleBone Black impractical both in terms of size and features
- Custom design allows for a smaller Local Memory Unit
- Power supply will be integrated (no built in solution for BeagleBone Black)

Local Memory Unit Specifics

- ✓ AM335x 1GHz ARM Cortex-A8 processor
- Mini HDMI Port
- MicroSDHC Port
- ✓ USB PC interface
- × Encryption hardware
 - Atmel At24C32D
 - AES Algorithm with 128 bit keys
- × Battery
 - TPS65217CRSLT power management IC
 - 3.7V LiPo battery
- × Microphone
 - ISD 4002 Record-Playback Device
- USB host
- DC Power Connector
 - Cape Support
 - Ethernet Port

Key	
✓ On BBB	
× Not on BBB	
On BBB but Unneeded	

Demonstrations and Questions

