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Abstract—We introduce AutoTabber, a product designed 
to aid musicians, particularly electric guitarists, in 
transcribing what they play into the readable musical 
format known as “tablature.” The system is designed to 
be a modular attachment to already-existing guitars 
without permanently damaging or modifying them. 
AutoTabber utilizes the hexaphonic split-pickup, most 
commonly seen in guitar synthesizers to detect notes 
played on each string separately allowing for a near-exact 
representation of notes played. 

I. INTRODUCTION 

DUE to the design of the guitar, there is a significant degree 
of ambiguity in the interpretation of standard music notation 
when playing the instrument. That is, there is no 1:1 mapping 
from standard music notation (also known as staff notation) 
to what is actually played on the guitar. Because of this, it is 
extremely difficult for amateur guitarists to learn to read 
standard music notation [1]. Instead, the idea of the tablature 
(“tab” for short) was introduced to alleviate this difficulty [2]. 
A tab, rather than just a note, represents a physical location 
along the neck of the instrument in a 1:1 fashion, thus leaving 
the guitarist with no questions as to where to play a given 
note. 

However, the process of creating a tab is far from trivial. 
When a user is playing a new song by ear, they are not 
typically conscious of what fret numbers are utilized. So they 
must play a small section of the song, memorize the fret 
numbers, type it into tablature, and then repeat. This is a very 
tiring process, and it can discourage players from creating 
and sharing their songs with others.  

Originally, tabs were only written by hand or using a text 
editor. Now, various software applications exist for the 
writing and editing of tablature, such as Guitar Pro [3]. 
Additional features such as MIDI-based playback, practice 
modes, and metronomes have been implemented in these 
software applications. However, these only improve the 
quality of the tabs; creating a tab from this type of software is 
not much easier than before. 

Numerous attempts have also been made at purely 
software-based conversions to tablature via machine learning, 
pathing, and optimization algorithms with varying success 
[4][5]. Others have attempted to read the output of the 
guitar’s native pickups and process that signal [6]. However, 
these systems ultimately end up guessing the optimal way of 
playing a sequence rather than preserving what was actually 

played. By using a hexaphonic pickup, as well as additional 
hardware, AutoTabber is different than previous purely 
software-based implementations in that it can determine 
exactly which string the notes are coming from. This would 
allow no ambiguity as to where the notes are being played. 
Such a solution would make the process of tablature 
generation a much more efficient and enjoyable experience to 
those who want to share their music to the world. 

 
II. DESIGN 
 

A. Overview 
 

Our goal is to create a compact module that can be 
unobtrusively installed on a guitar without permanent guitar 
modification. This module will do analog to digital 
conversion and some basic signal analysis before sending that 
data to the software to be interpreted and converted to 
tablature. We would like to be able to output tablature that is 
>80% accurate when playing basic songs, such as Mary Had 
a Little Lamb. 
 
The hardware will consist of a guitar pickup for each string, a 
basic preamp on each of the pickup coils, 3 ADCs (each 
handling two of the strings), and a microcontroller (see 
Figure 1). It will initially be powered by, and communicate 
over USB. Future features such as battery power and wireless 
are a possibility. Doing some processing in hardware on the 
guitar will reduce bandwidth requirements between the 
module and the PC, simplifying the communication. The 
ADCs we are considering have programmable signal 
conditioning features built in; most importantly, an adjustable 
amplifier with automatic gain control. Having these features 
inside the ADC greatly simplifies our hardware design, 
lowers cost, and decreases required PCB size. The most 
important operation of the microcontroller will be to perform 
Fourier transforms on the 6 input signals and send relevant 
information to the PC so that notes can be identified. After 
considering a few different microcontrollers with different 
advantages and disadvantages, we chose to use the high-
performance, but low-power, TMS320C5535 DSP from 
Texas Instruments (TI). The hardware FFT implementation 
on the C5535 is 3.8 times faster than performing the same 
computation on the CPU and 6 times more power efficient. It 
can perform a 1024 point FFT in hardware in under 100 
nanoseconds. 
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Figure 1: Block Diagram 
 
Block I: Pickup 

The pickups are part of what makes AutoTabber substantially 
different from other systems. Instead of looking at the output 
of the guitar’s native pickups, AutoTabber utilizes a magnetic 
hexaphonic pickup as a modular insert for the end-user’s 
guitar. This will allow six separate signals to be processed 
while preserving the original string information. This is not 
possible with the guitar’s native pickups as they typically use 
only one coil which generates a single signal. 

The pickup will serve as the entry point for our system. 
Mechanical vibrations from the end-users guitar will be 
translated into a small electrical signal by the pickup which 
will be passed on to an amplifier. 

Our prototype pickups are built using a Solidworks CAD 
model with a high-end 3D printer. Each coil is a separately 
printed piece wound with 44 gauge enamel coated wire. 
Currently, the wire is wrapped around each piece manually 
using a power drill. 

The specifications for each pickup coil are as follows: 

Single Pickup Specifications 
Height <10mm 
Diameter <10mm 
Output Voltage >10mV 
Variation b/w coils (ohms) < ±10% 
 

The pickup dimensions come from the spacing between the 
strings on the guitar as well as the available spacing under the 
strings. In addition, we want the six coils on the guitar to be 
consistent, such that they are each produce the same output 
voltage, and thus hold similar resistive values (< ±10%). This 
means that the pickups need to be wound with a similar 
amount of turns each time. This is very difficult to achieve 
with a power drill, so we are designing an automatic pickup 

winder machine that will automate the process, while achieve 
greater consistency. 

The prototype pickups have successfully generated a signal 
around 300mV on average (averaged between six separate 
pickups).  However, because there is a large variance in the 
input signals (the volume the guitar is played at may not be 
constant), characterizing the pickups has proven difficult with 
just oscilloscopes, since we do not have a way to consistently 
pluck the string each time. A method that can be used to 
reduce the number of variables involves propagating a signal 
from a function generator into a pickup, which will then 
propagate to another pickup through magnetic fields. With 
this we can generate a reliable set of frequency response 
curves that will help us better analyze the pickups. Classes 
such as Physics II and Fields and Waves have helped us 
understand the physical behavior of pickups and how to 
better optimize them for our desired specifications. 

Block 2: Amplifier and ADC 

These two sub-blocks are concerned with taking the analog 
signals from the pickups, and converting them to digital. 
Before the signal can pass through an analog to digital 
converter (ADC), the signal that is generated from the 
pickups must be amplified to be usable for the ADC. The 
amps will be placed right next to the pickups on the guitar 
(there will be six of them, one next to each pickup), so that 
the weak signal from the pickups do not travel far and collect 
too much noise before the amp. In order to amplify the signal, 
we will be using operational amplifiers (op amps), in a non-
inverting configuration [7]. Classes such as Electronics I & II 
and Circuit Analysis I & II have provided us sufficient 
background knowledge to deal with these design 
considerations. 

In our first prototype, we utilized the TL072 op amps from 
TI. The main issues with these are their high minimum rail-
to-rail supply voltage needed (7V), and relatively low GBW 
(3MHz) [8]. We needed an amplifier that would work on a 
single 3.3V rail (due to the voltage requirements of the other 
chips in the system), and one with a higher GBW (that would 
support 100+ gain and 20 kHz bandwidth at the same time). 
So we decided to switch to the OPA320s from TI. The 
OPA320 series is ideal for low-power (min 1.8V rail-to-rail), 
single-supply applications, such as ours. Low-noise 
(7nV/√Hz) and high-speed operation (20 MHz GBW) also 
make them well-suited for driving sampling ADCs [9]. These 
will allow us to amplify the signal in a single gain stage, 
rather than the two stages needed previously. As for now, 
though, the two stage configuration meets the required 
gain/bandwidth, as can be seen in Fig. 2. 

While testing both pickups and amps together (with an 
oscilloscope), we noticed that there is a wide range of 
amplitudes that could be detected, depending on how loud the 
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guitar is being played. Because of this, there is a possibility 
that the signal will get clipped if there is too much gain, or 
will not be visible if there is too little gain. Therefore, we also 
need to be concerned with gain control. This can be achieved 
with a separate circuit dedicated to automatic gain control 
(AGC), or we can use the integrated AGC that is found in the 
ADC that we have chosen. 

The ADC we will be testing is the PCM1863 from TI. Each 
chip contains 2 ADCs, so we will need 3 chips in total for all 
6 pickups. This ADC has our preferred control and digital 
audio interfaces (SPI and I2S, respectively), has a maximum 
sample rate of 192 kHz (we require around 40 kHz), and 24 
bits of resolution (we require 16 bits) [10]. It also has a useful 
feature called ‘Energysense’ [10], which will allow the ADCs 
to power down if they are not currently in use (that is, the 
strings associated with those particular ADCs are not 
currently being played). The ADC needs to be able to 
successfully sample the analog signal coming from the 
amplifier at the specified rate. In order to test that it is 
working, we can graph the memory contents to a computer 
using TI’s free IDE, Code Composer Studio (CCS) [11]. The 
debugger can plot data from a specified range of memory 
addresses when code execution is paused, which can be done 
over JTAG [12]. This can also be done (albeit slower) by 
simply dumping the memory contents to a spreadsheet using 
a serial port.  

 

 
Fig. 2. This shows an amplification of ~100 at 20 kHz. 
 

Block 3: Microcontroller 

 The microcontroller involves taking the signal produced by 
the ADC and converting this digital time domain information 
into frequencies. We have decided to do this conversion in 
hardware rather than in software in order to save bandwidth. 
In other words, when we convert the signal to the frequency 
domain, we will be able to cut off frequencies that are not of 
interest, therefore reducing the amount of information that 

needs to be sent to software. This will allow us to utilize low 
bandwidth connections, such a Bluetooth.  

The microcontroller we have chosen to use is the 
TMS320C5535 from TI, with the deciding factor being the 
FFT coprocessor in TI’s C5535 DSPs, since our project 
depends heavily on FFT performance. Performance data 
published by TI suggests that it is capable of completing over 
9,000 1024 point FFTs per second, with example code for 
extending this to 2048 points using software [13]. The BGA 
package the chip comes in is difficult to work with and will 
increase PCB costs, but performing FFTs in hardware will 
greatly increase performance (see Figure 3). We chose the 
C5535 processor because unlike the C5505 and C5515, it can 
be used on a 4 layer board. The 5505 and 5515 have more 
pins and a tighter pitch. This requires a 6 layer board, which 
we cannot get cheaply. The C5535 only differs by not having 
an external memory controller [14]. The processor has 4 I2S 
busses with DMA [14], although we only require 3 in order to 
stream 6 channels of audio.  

TI provides a developer board (dev board) with many 
peripherals and sample code to operate it, and, with Code 
Composer Studio, the dev board can be programmed using a 
USB Bootloader. We can connect the other hardware in our 
system to the dev board’s edge connector until we are ready 
to order a PCB. 

Figure 3: The table shows that for the test conditions used, 
HWAFFT is 2.2-3.8 times faster than the CPU 

Block 4:  Software Analysis 

The spectrum analyzer will output frequencies, amplitudes, 
and timestamps from the microcontroller. The PC’s main task 
is to interpret and analyze the data in order to determine the 
most probable notes and their corresponding timestamp. One 
that is done, the results will be packaged in a format readable 
to the GUI such that they could be displayed to the user. 
 
The interpretation, analysis, and packaging steps will all be 
done in Python. The following steps will be done for each of 
the 6 streams, each representing a guitar string, coming from 
the microcontroller. First, the onset of the notes will be 
determined using the Python reference implementation of the 
SuperFlux onset detection algorithm [15][16]. The program 
will then use the onset timestamps to divide the stream of 
FFTs into individual chunks each representing a singular 
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note. For each partition, the software will run several 
algorithms that will estimate the fundamental frequency. 
Those algorithms include estimating by counting zero-
crossings, estimating frequency from the peak of the FFT, 
estimating frequency using autocorrelation, and estimating 
frequency using harmonic product spectrum. The program 
will then determine the most likely fundamental frequency 
based on these results and assign it to the note it represents 
for the given string. If there is significant uncertainty, the 
program may be trained to estimate undetermined notes 
through artificial intelligence and machine learning 
techniques, such as Hidden Markov Model or the Viterbi 
algorithm. Once completed, the list of notes and their 
corresponding time stamps will be packaged and sent to the 
GUI.  
 
The development of this block required techniques from 
several courses and out of school experience. Signals & 
Systems (ECE 313) provided a general understanding of 
signals, sampling, and FFTs such that I am now able to 
determine which algorithms would work best for determining 
the fundamental frequencies. Introduction to Algorithms 
(CMPSCI 311) provided me with a more in-depth knowledge 
of the design and runtime of algorithms and dynamic 
programming techniques. The rest of the techniques used in 
this block self-taught and through experience gained at a 
summer internship as a software engineer. Most of the basic 
knowledge for designing this block is in place, so much of the 
work will involve learning more about Python syntax and 
libraries [17]. However, a more in-depth understanding of 
signal processing and analysis will allow for better algorithm 
design and implementation. 
 
In order to ensure the notes are getting correct assignments, 
several recordings of different and similar notes from 
different strings will be processed in order to simulate the 
input to the block. These processed inputs will be then be 
analyzed by the code, which will return what it determined to 
be the correct notes. The analysis of this experiment is fairly 
straightforward. If the notes the system returns correspond to 
the notes that were placed through the system, then we will 
know that the system is able to suitably identify notes. 
However, if the notes are incorrect, further testing and 
experiments will have to be designed in order to determine 
the issue, which may be caused by various factors. The new 
wave of tests will have to account for the quality of the signal 
received by the microcontroller, the processing done by the 
microcontroller, and the various algorithms mentioned earlier 
that are used to determine the fundamental frequency. 
 
Block 5: Graphical User Interface 

The GUI will be a minimalistic user interface allowing for 
file I/O, viewing, and editing of basic tablature. For 
compatibility purposes, the application will be written in 
Java. Specifically, the Java Swing library is a strong option 

for developing compatible user interfaces. Furthermore, 
polymorphism and inheritance, practiced heavily in GUI 
development, are particularly simple to implement with Java. 
As an object-oriented language, unit-testing for each class 
will be possible. For interfacing between spectrum analysis 
software and the GUI, a simulated test file will be written in 
the same fashion as it will be in the final product for 
independent testing. UX feedback will be incorporated in 
later stages of development. 

III. PROJECT MANAGEMENT 

MDR Deliverable What has been 
accomplished? 

Purchase and prototype 
pickup 

The prototype worked, and 
successfully generated a 
signal around 300mV 

Generate and propagate 
signal to AFE 

The signal was successfully 
propagated. 

Amplify signal from pickup The signal was amplified 
with 100+ gain 

Select and purchase 
hardware capable of FFTs 

Hardware has been selected. 
The order has yet to be 
placed due to financial 
considerations. 

Identify a single note along 
with its corresponding onset 
timestamp 

A note has been successfully 
identified and the timestamp 
is correct. 

GUI with tablature display Due to the C++ widget’s 
incompatibility with 
Windows 8.1, a different 
approach has been designed 
and will be implemented in 
the coming weeks. 

 

Our team is certainly multitalented. Mike does mechanical 
design and prototyping, 3D modeling, hardware testing. He 
has experience working with microcontrollers and PCB 
design.  Matt does analog design for the amplifiers. Michaela 
designs the algorithms for the microcontroller and 
implements algorithms for the spectrum analyzer to detect the 
correct notes and their onset. Taryk designs user-friendly 
graphical interfaces that present meaningful data. All team 
members have been in constant communication both in-
person and via email and discussing the project at least 3 
times a week and holding an additional weekly meeting with 
the faculty advisor. 

IV. CONCLUSION 

Most of what we had planned to accomplish by MDR is 
working as described with the exception of the GUI. We are 
expecting some issues with programming the MCU and with 
software portability and reliability. Another major issue is 
accurate note and onset detection. Our future plans have been 
laid out in the Gantt chart below. 
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Gantt Chart: Fall 2014-Spring 2015
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