
1

AutoTabber: A Frustration-Free Guitar Tabbing System
Taryk Alsagoff, CSE, Michael Murphy, EE, Michaela Shtilman-Minkin, CSE, and Matthew Wojick, EE

Abstract—We introduce AutoTabber, a product designed
to aid musicians, particularly electric guitarists, in
transcribing what they play into the readable musical
format known as “tablature.” The system is designed to
be a modular attachment to already-existing guitars
without permanently damaging or modifying them.
AutoTabber utilizes the hexaphonic split-pickup, most
commonly seen in guitar synthesizers to detect notes
played on each string separately allowing for a near-exact
representation of notes played.

I. INTRODUCTION

DUE to the design of the guitar, there is a significant degree
of ambiguity in the interpretation of standard music notation
when playing the instrument. That is, there is no 1:1 mapping
from standard music notation (also known as staff notation)
to what is actually played on the guitar. Because of this, it is
extremely difficult for amateur guitarists to learn to read
standard music notation [1]. Instead, the idea of the tablature
(“tab” for short) was introduced to alleviate this difficulty [2].
A tab, rather than just a note, represents a physical location
along the neck of the instrument in a 1:1 fashion, thus leaving
the guitarist with no questions as to where to play a given
note.

However, the process of creating a tab is far from trivial.
When a user is playing a new song by ear, they are not
typically conscious of what fret numbers are utilized. So they
must play a small section of the song, memorize the fret
numbers, type it into tablature, and then repeat. This is a very
tiring process, and it can discourage players from creating
and sharing their songs with others.

Originally, tabs were only written by hand or using a text
editor. Now, various software applications exist for the
writing and editing of tablature, such as Guitar Pro [3].
Additional features such as MIDI-based playback, practice
modes, and metronomes have been implemented in these
software applications. However, these only improve the
quality of the tabs; creating a tab from this type of software is
not much easier than before.

Numerous attempts have also been made at purely
software-based conversions to tablature via machine learning,
pathing, and optimization algorithms with varying success
[4][5]. Others have attempted to read the output of the
guitar’s native pickups and process that signal [6]. However,
these systems ultimately end up guessing the optimal way of
playing a sequence rather than preserving what was actually

played. By using a hexaphonic pickup, as well as additional
hardware, AutoTabber is different than previous purely
software-based implementations in that it can determine
exactly which string the notes are coming from. This would
allow no ambiguity as to where the notes are being played.
Such a solution would make the process of tablature
generation a much more efficient and enjoyable experience to
those who want to share their music to the world.

II. DESIGN

A. Overview

Our goal is to create a compact module that can be
unobtrusively installed on a guitar without permanent guitar
modification. This module will do analog to digital
conversion and some basic signal analysis before sending that
data to the software to be interpreted and converted to
tablature. We would like to be able to output tablature that is
>80% accurate when playing basic songs, such as Mary Had
a Little Lamb.

The hardware will consist of a guitar pickup for each string, a
basic preamp on each of the pickup coils, 3 ADCs (each
handling two of the strings), and a microcontroller (see
Figure 1). It will initially be powered by, and communicate
over USB. Future features such as battery power and wireless
are a possibility. Doing some processing in hardware on the
guitar will reduce bandwidth requirements between the
module and the PC, simplifying the communication. The
ADCs we are considering have programmable signal
conditioning features built in; most importantly, an adjustable
amplifier with automatic gain control. Having these features
inside the ADC greatly simplifies our hardware design,
lowers cost, and decreases required PCB size. The most
important operation of the microcontroller will be to perform
Fourier transforms on the 6 input signals and send relevant
information to the PC so that notes can be identified. After
considering a few different microcontrollers with different
advantages and disadvantages, we chose to use the high-
performance, but low-power, TMS320C5535 DSP from
Texas Instruments (TI). The hardware FFT implementation
on the C5535 is 3.8 times faster than performing the same
computation on the CPU and 6 times more power efficient. It
can perform a 1024 point FFT in hardware in under 100
nanoseconds.

2

Figure 1: Block Diagram

Block I: Pickup

The pickups are part of what makes AutoTabber substantially
different from other systems. Instead of looking at the output
of the guitar’s native pickups, AutoTabber utilizes a magnetic
hexaphonic pickup as a modular insert for the end-user’s
guitar. This will allow six separate signals to be processed
while preserving the original string information. This is not
possible with the guitar’s native pickups as they typically use
only one coil which generates a single signal.

The pickup will serve as the entry point for our system.
Mechanical vibrations from the end-users guitar will be
translated into a small electrical signal by the pickup which
will be passed on to an amplifier.

Our prototype pickups are built using a Solidworks CAD
model with a high-end 3D printer. Each coil is a separately
printed piece wound with 44 gauge enamel coated wire.
Currently, the wire is wrapped around each piece manually
using a power drill.

The specifications for each pickup coil are as follows:

Single Pickup Specifications
Height <10mm
Diameter <10mm
Output Voltage >10mV
Variation b/w coils (ohms) < ±10%

The pickup dimensions come from the spacing between the
strings on the guitar as well as the available spacing under the
strings. In addition, we want the six coils on the guitar to be
consistent, such that they are each produce the same output
voltage, and thus hold similar resistive values (< ±10%). This
means that the pickups need to be wound with a similar
amount of turns each time. This is very difficult to achieve
with a power drill, so we are designing an automatic pickup

winder machine that will automate the process, while achieve
greater consistency.

The prototype pickups have successfully generated a signal
around 300mV on average (averaged between six separate
pickups). However, because there is a large variance in the
input signals (the volume the guitar is played at may not be
constant), characterizing the pickups has proven difficult with
just oscilloscopes, since we do not have a way to consistently
pluck the string each time. A method that can be used to
reduce the number of variables involves propagating a signal
from a function generator into a pickup, which will then
propagate to another pickup through magnetic fields. With
this we can generate a reliable set of frequency response
curves that will help us better analyze the pickups. Classes
such as Physics II and Fields and Waves have helped us
understand the physical behavior of pickups and how to
better optimize them for our desired specifications.

Block 2: Amplifier and ADC

These two sub-blocks are concerned with taking the analog
signals from the pickups, and converting them to digital.
Before the signal can pass through an analog to digital
converter (ADC), the signal that is generated from the
pickups must be amplified to be usable for the ADC. The
amps will be placed right next to the pickups on the guitar
(there will be six of them, one next to each pickup), so that
the weak signal from the pickups do not travel far and collect
too much noise before the amp. In order to amplify the signal,
we will be using operational amplifiers (op amps), in a non-
inverting configuration [7]. Classes such as Electronics I & II
and Circuit Analysis I & II have provided us sufficient
background knowledge to deal with these design
considerations.

In our first prototype, we utilized the TL072 op amps from
TI. The main issues with these are their high minimum rail-
to-rail supply voltage needed (7V), and relatively low GBW
(3MHz) [8]. We needed an amplifier that would work on a
single 3.3V rail (due to the voltage requirements of the other
chips in the system), and one with a higher GBW (that would
support 100+ gain and 20 kHz bandwidth at the same time).
So we decided to switch to the OPA320s from TI. The
OPA320 series is ideal for low-power (min 1.8V rail-to-rail),
single-supply applications, such as ours. Low-noise
(7nV/√Hz) and high-speed operation (20 MHz GBW) also
make them well-suited for driving sampling ADCs [9]. These
will allow us to amplify the signal in a single gain stage,
rather than the two stages needed previously. As for now,
though, the two stage configuration meets the required
gain/bandwidth, as can be seen in Fig. 2.

While testing both pickups and amps together (with an
oscilloscope), we noticed that there is a wide range of
amplitudes that could be detected, depending on how loud the

3

guitar is being played. Because of this, there is a possibility
that the signal will get clipped if there is too much gain, or
will not be visible if there is too little gain. Therefore, we also
need to be concerned with gain control. This can be achieved
with a separate circuit dedicated to automatic gain control
(AGC), or we can use the integrated AGC that is found in the
ADC that we have chosen.

The ADC we will be testing is the PCM1863 from TI. Each
chip contains 2 ADCs, so we will need 3 chips in total for all
6 pickups. This ADC has our preferred control and digital
audio interfaces (SPI and I2S, respectively), has a maximum
sample rate of 192 kHz (we require around 40 kHz), and 24
bits of resolution (we require 16 bits) [10]. It also has a useful
feature called ‘Energysense’ [10], which will allow the ADCs
to power down if they are not currently in use (that is, the
strings associated with those particular ADCs are not
currently being played). The ADC needs to be able to
successfully sample the analog signal coming from the
amplifier at the specified rate. In order to test that it is
working, we can graph the memory contents to a computer
using TI’s free IDE, Code Composer Studio (CCS) [11]. The
debugger can plot data from a specified range of memory
addresses when code execution is paused, which can be done
over JTAG [12]. This can also be done (albeit slower) by
simply dumping the memory contents to a spreadsheet using
a serial port.

Fig. 2. This shows an amplification of ~100 at 20 kHz.

Block 3: Microcontroller

 The microcontroller involves taking the signal produced by
the ADC and converting this digital time domain information
into frequencies. We have decided to do this conversion in
hardware rather than in software in order to save bandwidth.
In other words, when we convert the signal to the frequency
domain, we will be able to cut off frequencies that are not of
interest, therefore reducing the amount of information that

needs to be sent to software. This will allow us to utilize low
bandwidth connections, such a Bluetooth.

The microcontroller we have chosen to use is the
TMS320C5535 from TI, with the deciding factor being the
FFT coprocessor in TI’s C5535 DSPs, since our project
depends heavily on FFT performance. Performance data
published by TI suggests that it is capable of completing over
9,000 1024 point FFTs per second, with example code for
extending this to 2048 points using software [13]. The BGA
package the chip comes in is difficult to work with and will
increase PCB costs, but performing FFTs in hardware will
greatly increase performance (see Figure 3). We chose the
C5535 processor because unlike the C5505 and C5515, it can
be used on a 4 layer board. The 5505 and 5515 have more
pins and a tighter pitch. This requires a 6 layer board, which
we cannot get cheaply. The C5535 only differs by not having
an external memory controller [14]. The processor has 4 I2S
busses with DMA [14], although we only require 3 in order to
stream 6 channels of audio.

TI provides a developer board (dev board) with many
peripherals and sample code to operate it, and, with Code
Composer Studio, the dev board can be programmed using a
USB Bootloader. We can connect the other hardware in our
system to the dev board’s edge connector until we are ready
to order a PCB.

Figure 3: The table shows that for the test conditions used,
HWAFFT is 2.2-3.8 times faster than the CPU

Block 4: Software Analysis

The spectrum analyzer will output frequencies, amplitudes,
and timestamps from the microcontroller. The PC’s main task
is to interpret and analyze the data in order to determine the
most probable notes and their corresponding timestamp. One
that is done, the results will be packaged in a format readable
to the GUI such that they could be displayed to the user.

The interpretation, analysis, and packaging steps will all be
done in Python. The following steps will be done for each of
the 6 streams, each representing a guitar string, coming from
the microcontroller. First, the onset of the notes will be
determined using the Python reference implementation of the
SuperFlux onset detection algorithm [15][16]. The program
will then use the onset timestamps to divide the stream of
FFTs into individual chunks each representing a singular

4

note. For each partition, the software will run several
algorithms that will estimate the fundamental frequency.
Those algorithms include estimating by counting zero-
crossings, estimating frequency from the peak of the FFT,
estimating frequency using autocorrelation, and estimating
frequency using harmonic product spectrum. The program
will then determine the most likely fundamental frequency
based on these results and assign it to the note it represents
for the given string. If there is significant uncertainty, the
program may be trained to estimate undetermined notes
through artificial intelligence and machine learning
techniques, such as Hidden Markov Model or the Viterbi
algorithm. Once completed, the list of notes and their
corresponding time stamps will be packaged and sent to the
GUI.

The development of this block required techniques from
several courses and out of school experience. Signals &
Systems (ECE 313) provided a general understanding of
signals, sampling, and FFTs such that I am now able to
determine which algorithms would work best for determining
the fundamental frequencies. Introduction to Algorithms
(CMPSCI 311) provided me with a more in-depth knowledge
of the design and runtime of algorithms and dynamic
programming techniques. The rest of the techniques used in
this block self-taught and through experience gained at a
summer internship as a software engineer. Most of the basic
knowledge for designing this block is in place, so much of the
work will involve learning more about Python syntax and
libraries [17]. However, a more in-depth understanding of
signal processing and analysis will allow for better algorithm
design and implementation.

In order to ensure the notes are getting correct assignments,
several recordings of different and similar notes from
different strings will be processed in order to simulate the
input to the block. These processed inputs will be then be
analyzed by the code, which will return what it determined to
be the correct notes. The analysis of this experiment is fairly
straightforward. If the notes the system returns correspond to
the notes that were placed through the system, then we will
know that the system is able to suitably identify notes.
However, if the notes are incorrect, further testing and
experiments will have to be designed in order to determine
the issue, which may be caused by various factors. The new
wave of tests will have to account for the quality of the signal
received by the microcontroller, the processing done by the
microcontroller, and the various algorithms mentioned earlier
that are used to determine the fundamental frequency.

Block 5: Graphical User Interface

The GUI will be a minimalistic user interface allowing for
file I/O, viewing, and editing of basic tablature. For
compatibility purposes, the application will be written in
Java. Specifically, the Java Swing library is a strong option

for developing compatible user interfaces. Furthermore,
polymorphism and inheritance, practiced heavily in GUI
development, are particularly simple to implement with Java.
As an object-oriented language, unit-testing for each class
will be possible. For interfacing between spectrum analysis
software and the GUI, a simulated test file will be written in
the same fashion as it will be in the final product for
independent testing. UX feedback will be incorporated in
later stages of development.

III. PROJECT MANAGEMENT

MDR Deliverable What has been
accomplished?

Purchase and prototype
pickup

The prototype worked, and
successfully generated a
signal around 300mV

Generate and propagate
signal to AFE

The signal was successfully
propagated.

Amplify signal from pickup The signal was amplified
with 100+ gain

Select and purchase
hardware capable of FFTs

Hardware has been selected.
The order has yet to be
placed due to financial
considerations.

Identify a single note along
with its corresponding onset
timestamp

A note has been successfully
identified and the timestamp
is correct.

GUI with tablature display Due to the C++ widget’s
incompatibility with
Windows 8.1, a different
approach has been designed
and will be implemented in
the coming weeks.

Our team is certainly multitalented. Mike does mechanical
design and prototyping, 3D modeling, hardware testing. He
has experience working with microcontrollers and PCB
design. Matt does analog design for the amplifiers. Michaela
designs the algorithms for the microcontroller and
implements algorithms for the spectrum analyzer to detect the
correct notes and their onset. Taryk designs user-friendly
graphical interfaces that present meaningful data. All team
members have been in constant communication both in-
person and via email and discussing the project at least 3
times a week and holding an additional weekly meeting with
the faculty advisor.

IV. CONCLUSION

Most of what we had planned to accomplish by MDR is
working as described with the exception of the GUI. We are
expecting some issues with programming the MCU and with
software portability and reliability. Another major issue is
accurate note and onset detection. Our future plans have been
laid out in the Gantt chart below.

5

Gantt Chart: Fall 2014-Spring 2015

V. References

[1] Reid, H , "On Guitars and Musical Notation". Retrieved
December, 2014 Available:
http://www.woodpecker.com/writing/essays/guitarnotati
on.html

[2] Krenz, S , "Guitar Tab vs. Standard Notation". Retrieved
December, 2014 Available:
http://www.learnandmaster.com/guitar-blog/gibsons-
learn-master-guitar/guitar-tab-standard-notation

[3] "Guitar Pro". Retrieved December, 2014 Available:
http://www.guitar-pro.com/en/index.php

[4] Tuohy, D.R. et al., A Genetic Algorithm for the
Automatic Generation of Playable Guitar Tablature ,
Artificial Intelligence Center

[5] Boley, S. et al., AutoTab Automatic Guitar Tablature
Generation, 2014

[6] Barbancho, I et al., Inharmonicity-Based Method for the
Automatic Generation of Guitar Tablature, IEEE
Transactions on Audio, Speech, and Language
Processing, vol 20 , no 6, Aug. 2012.

[7] Sedra & Smith, Microelectronic Circuits. pg. 67. The
Noninverting Configuration.

[8] "TL072". Retrieved December, 2014 Available:
http://www.ti.com/product/TL072

[9] "OPA320". Retrieved December, 2014 Available:
http://www.ti.com/product/opa320

[10] "PCM1863". Retrieved December, 2014 Available:

http://www.ti.com/product/PCM1863/description
[11] "Code Composer Studio (CCS) Integrated Development

Environment (IDE)". Retrieved December, 2014
Available: http://www.ti.com/tool/ccstudio

[12] Tomar, A , "Texas Instruments: Code Composer Studio
(CCStudio) IDE Overview". Retrieved December, 2014
Available:
http://www.element14.com/community/docs/DOC-
39427/l/texas-instruments-code-composer-studio-
ccstudio-ide-overview

[13] McKeown, M , "FFT Implementation on the
TMS320VC5505, TMS320C5505, and TMS320C5515
DSPs". Retrieved December, 2014 Available:
http://www.ti.com/lit/an/sprabb6b/sprabb6b.pdf

[14] "TMS320C5535 (ACTIVE) Fixed-Point Digital Signal
Processor ". Retrieved December, 2014 Available:
http://www.ti.com/product/TMS320C5535/datasheet

[15] Sebastian Böck and Gerhard Widmer, “Maximum Filter
Vibrato Suppression for Onset Detection”, 2013

[16] Sebastian Böck and Gerhard Widmer, “Local Group
Delay Based Vibrato and Tremolo Suppression for Onset
Detection”, 2013

[17] Mark Lutz, Learning Python, 5th edition. Sebastopol:
O’Reilly Media, 2013

http://www.woodpecker.com/writing/essays/guitarnotation.html
http://www.woodpecker.com/writing/essays/guitarnotation.html
http://www.learnandmaster.com/guitar-blog/gibsons-learn-master-guitar/guitar-tab-standard-notation
http://www.learnandmaster.com/guitar-blog/gibsons-learn-master-guitar/guitar-tab-standard-notation

