

Abstract—BLuEye is a navigation system that will guide the
blind and visually impaired in unfamiliar indoor and outdoor
environments. The system utilizes a mobile application that
communicates with Bluetooth Low Energy beacons to establish
user location and provide voice instructions for guidance to a
specified destination. The application uses RSSI values from the
beacons to determine the distance between the blind user node
and predefined reference nodes. These distances are passed to a
localization algorithm to provide the location of the user. The user
location and desired destination are then passed to a shortest path
algorithm. The path will be translated into voice instructions to
guide the user to their destination.

I. INTRODUCTION

Having the ability to navigate from place to place is an
essential part of our daily lives. However, navigating in an
unfamiliar environment poses a difficult challenge for most
individuals. Navigating in an environment while being visually
impaired poses a much greater challenge. Currently, there are
limited number of systems that help navigate the visually
impaired both indoor and outdoor environments, which limit
their access to certain environments without the help of others.

It is reported by Lighthouse International that about 285
million people in the world are visually impaired, of which 39
million are blind and 246 million are moderate to severely
visually impaired. It is also predicted that the numbers will rise
up to 75 million blind and 200 million visually impaired by the
year 2020 [1].

Several solutions have been proposed in the recent years to
help the blind navigate. For example, PEREPT uses RFID tags
that will transmit signals to a Smartphone that will show the
current location of the user [2]. Drawbacks to the system are
that it can only be used in short-range communication and
indoor environments.

There are also a few non-technical solutions that can help
the bind navigate, like human aids or guide dogs. These
solutions definitely have some downsides for the users. For
example, having a human aid eliminates the person's
independence. Not only that, but the cost of having a human
aid by your side every day is expensive. Having a guide dog is
a major inconvenience for the user and prevents the users from
going to locations that do not allow animals.

SFO, LightHouse, and an Australian based company called
Indoors recently developed a system for the blind. It allows the
user to navigate throughout the terminals of the San Francisco
Airport. The system required beacons to transmit current
location signals to the user’s mobile device to give proper
directions to the user [3]. BluEye offers similar services, but
with some changes.

BluEye allows users to navigate both indoor and outdoor
environments, providing a continuous system. Having a
continuous system for both environments is necessary,because
we want to create a system that helps the user navigate to a
building as well as find rooms/facilities within the building.

Since the increase of mobile devices in the recent years,
human-technology interactions have changed significantly.
With the rapid development of touch screen based technology
such as the iPhone and tablets, more and more people are
dependent on these devices. The goal of our research is to help
the visually impaired population navigate both indoor and
outdoor environments through the use of a mobile application
that receives signals from RFID based beacons.

BluEye’s system uses both short and long-range Bluetooth
Low Energy (BLE) beacons. An iPhone application will
communicate with the beacons to receive RF signals that will
later be translated into the current location of the user. The
application uses a visionless user interface that will help the
blind operate the application.

 Table 1: System Requirements

User and Facilities
Requirements

System Requirements

Easy to access and use Voice instructions every 15 seconds
for outdoor
Ex: turn right, turn left, open door

Inexpensive Voice instructions every 10 seconds
for indoor

Practical for facilities to
deploy

Complete beacon coverage of
environment

Compatible to Apple
products

Provide location that is accurate to 3
feet

Beacon battery life of at least 3
months

The system will use Estimote beacons for the outdoor

deployment and Gimbal Series 10 beacons for the indoor
deployment. The beacons will be deployed throughout the
Engineering quad and the first floor of Marcus. When the user
enters an environment covered by our system, he will request
his destination on his Smartphone device using the
Smartphone accessibility features. Through the Smartphone,
BLuEye will provide audible instructions to the user until he
has reached his destination.

BluEye

Thomas Kelly, EE, Krista Lohr, CSE, Stephen Fialli, EE, and Divya Reddy, CSE

1

II.DESIGN

A. Overview

BLuEye will provide guidance to the user by implementing
a network of wireless tags in communication with an iOS
mobile application on the user’s device. At this stage in our
design we have focused mainly on the indoor implementation.
BLE tags were chosen for their low power consumption and
their compatibility with new generation mobile devices. There
are currently 20 Gimbal Proximity Series 10 beacons deployed
on the first floor of Marcus Hall, which will be used for
navigation through the main hallway of the first floor. These
beacons are a Qualcomm product chosen for their low cost ($5
each) and battery life (up to 1 year)[4]. The tags transmit at a
frequency of 2.4 GHz, a power of 0 dBm, and on an interval of
645ms [5][6].

The mobile application used in BLuEye will be on the
iOS platform. The user interface will be designed to be
compatible with Apple’s accessibility application, Voiceover.
The visionless user interface will consist of a list of
destinations in the system environment. When in the system
environment, the user will choose a destination and the system
will provide clear voice instructions to guide the user to that
destination.

BLuEye is divided into indoor and outdoor subsystems
because the separate environments will require different
methods of localization, navigation, and RSSI
characterization. Each subsystem has its own block diagram,
which are divided into real time and offline components. Real-
time refers to the parts of the system that depend on various
inputs at the current time. Offline refers to the parts of the
system that are predefined and determined through data
collection. The offline aspect of the system includes a digital
space, which will be used to map user and reference node
locations. The digital space for the indoor system is a set of
coordinates that correspond to locations in Marcus Hall. The
digital space for the outdoor system will be obtained in real
time using GPS (Google Maps). GPS will be used in outdoor
localization but beacons are still necessary due to inadequacy
of GPS in certain areas of the quad (near the buildings). RSSI
characterization is also determined offline through
experimental data and will provide the values necessary to
convert the received signal from the beacons into estimated
distances in feet.

The real time portion of the system begins with
communication between the beacons and the mobile device.
The RSSI values corresponding to the signals transmitted by
the beacons will be converted to distances and used in a
localization algorithm that will provide the user’s current
location node. This node will be passed to a program that
computes the shortest path to a destination defined using the
visionless user interface. Once the shortest path is computed,
instructions for navigating to the destination will be generated
and delivered to the user.

Fig. 1. Indoor Block Diagram

Fig. 2. Outdoor Block Diagram

B. Communication Between Beacons and Mobile Device:

One of the first steps that needed to be completed to start
work on our indoor system was connecting the Gimbal
Bluetooth beacons to our phone application. This allowed us
to be able to read values from the beacons and set what value
the beacon transmitted as its ID value. To start this process,
each of our beacons was registered with Gimbal to give each
beacon its own unique identifier [8]. Using the beacon
manager on the Gimbal site, we registered each beacon as
Beacon 1 – Beacon 20 to easily identify them.

Figure 3. Gimbal Beacon Manager

2

After this, we wrote objective-c code to make our
application Gimbal enabled. There is a Software Development
Kit for the Gimbal beacons that was used to make this possible
[9] and also many guides on the Gimbal website [4]. We had
to enable Bluetooth in the application, include Bluetooth
frameworks as well as frameworks made by Gimbal, and add
objective-C code to start the Gimbal service. Through the
Gimbal website, you enter the name of the application you are
making in XCode and it gives you an ID and secret that you
use in your code to make your application work with the
beacons you register. If beacons are active that are not
registered, they simply do not show up in your application.
This is for security purposes. The application ID as well as the
secret is a 32 byte hexadecimal number and are linked directly
to the beacons that you add to your account. Without these, the
beacons are unusable, even without using Gimbal frameworks.

Fig. 4. Application that is Gimbal Enabled

Now that the application we have created is Gimbal
enabled, you can use methods from the software development
kits that are triggered each time the Bluetooth antenna on the
phone receives a signal from the beacons. The method that was
used for our application was receivedSighting, which had
parameters of a NSString that was a beacon ID, a NSNumber
that was received signal strength (RSSI value), and also the
time that the sighting happened. This method acts as a
callback, and is called every time a beacon’s signal is received.
Once this was working, when you ran the application on the
phone, the terminal within Xcode showed the values being
received from each beacon.

The next task was to make managing our beacons a part of
our user interface to be able to read the values on the actual
phone without being plugged into XCode. This was done by
using UILabel’s in Objective-C and extracting values from the
receivedSighting method. This was done using the beacon ID’s
and if statements. If a certain beacon received a sighting, then
the corresponding UILabel would be updated to show the
beacon values changing in real time. These statements were
written inside receivedSighting method so that at each callback

the labels are updated. The RSSI characterization algorithms
were also added to this, so code was written to convert the
RSSI value into a value of feet to visualize the accuracy of our
characterization.

Fig. 5. Showing Beacon Sightings in the User Interface

C. Indoor Beacon Deployment

We determined the best way to deploy our beacons indoors
to receive the best signals and have constant coverage. We
deployed our beacons starting at the doors entering the hallway
from the main entrance of Marcus Hall until the door that
enters Marston Hall on the first floor. We placed a beacon at
each possible destination that the user of our system would
request, and this gave us 100% coverage throughout the
hallway showing a minimum of four beacons at all times. One
additional beacon was needed at the corner to smooth the
transition of turning the corner, because the signals around the
corner were blocked. This is much more coverage than what
will be needed to complete our project, so addition tests will
be made to minimize beacons to minimize cost. At first, we
tried deploying the beacons on the ceiling, but we found that
the ceiling tiles blocked the signals almost completely if you
were not very close to the beacons. In the end, we placed the
beacons slightly above each doorway, or on the protruding
walls next to the doors so the walls did not block the signals.
The beacons were placed up high to reduce disturbances and
reflections from by passers, and placed at the same height
above the ground for consistency. To place them up on the
wall, we uses Velcro on each destination so we can easily put
the beacons up for testing and remove them when done. The
orientation of the beacon on the wall did not matter in terms of
signal strength, but we deploy each beacon facing down for
consistency.

D. RSSI Characterization

This block of the BLuEye system involves converting RSSI
values into estimated distances. These distances are used in the
localization algorithm. After establishing communication
between the Gimbal beacons and the user device (iPhone 5s),
we were able to display RSSI values and corresponding
beacons. We used this information during indoor deployment.

3

Once the beacons were deployed, we collected RSSI data at
several locations. This data is displayed in Fig. 6 and Fig. 7.

Fig. 6. Marcus First Floor Plan. This map shows the locations at which RSSI
data in Fig. 4. was collected.

Fig. 7. RSSI data. L1-L20 denote the locations at which the data was taken.

The RSSI values varied within a range of about 6 dBm at each
location, so it was necessary to take the average values. The
model we are using is exponential, so small variations in RSSI
can cause a large variation in the distance estimation. For
example a difference of 5 dBm in the RSSI values can cause a
difference of 90 ft in the distance estimation. Therefore we
will need to develop methods to stabilize the RSSI values we
use in our calculations. Fig 4. shows that the device is in
communication with at least four beacons at all of the
locations. At this stage we are using the general path loss
model in order to convert RSSI values into estimated
distances. This model is shown below.[7]

RSSI[dBm] = -nlog10(d)+A[dBm] (1)

RSSI[dBm] = Received Signal Strength Indicator from beacon
n= path loss exponent
d = estimated distance (meters)
A[dBm] = RSSI value obtained when tag is 1 meter from
device

We can manipulate this equation to solve for the unknown
value d.

d = 10(A[dBm]-RSSI[dBm])/n (2)
Using this model, we can characterize the conversion between
the RSSI value and distance by determining values for
A[dBm] and n. A[dBm] was easily obtained by recording the
RSSI value while the device was 1 meter from a beacon. We
are using the value -65. The value for n is the most important
aspect of the RSSI characterization. This value is known as the
path loss exponent and is highly dependent on the
environment. In free space, the value for n is 2. The value for
n in a shadowed urban area can be in the range of 2.7 to 5.
Inside a building with the tag in line of sight, n can be in the
range of 1.6 to 1.8. With obstruction, n can be from 4 to 6 [8].
We collected data in an area that we hoped to be close to free
space in order to test the model. The results after applying an
exponential regression curve to the data are shown in Fig. 5.

Fig. 8. Distance vs RSSI. The dashed line represents measured data after
applying exponential regression.

As Fig. 5. shows, our data seems to have a similar curve as the
model when n=5. We expect that the environment we tested in
is more like a shadowed urban area than free space.

It is clear that our system will not be accurate if we use a
single value for n. The system environment is full of walls and
obstructions that can reflect and attenuate signals. We
investigated a method to dynamically calibrate the system so
that the value for n could be periodically calculated for the
current state of the environment. Unfortunately, the adaptive
calibration method in [8] requires that the beacons be able to
communicate and evaluate RSSI values between each other.
Our beacons do not have that capability, so we have moved on
to developing a method for static calibration of the system. In
order to improve the accuracy of our RSSI to distance
conversion, we must section the system environment into
several spaces. Each of these spaces will have a corresponding
value of n that can be calculated during calibration. Each space
will have multiple calibration points to ensure that the
calculation is not specific to one point in the space. Further
measurements and tests will be completed for CDR in order to
achieve the best distance estimates.

4

E. Localization

This block is responsible for providing the current location
of the user. The localization algorithm will take the estimated
distances from at least three beacons as inputs. The method for
localization we are using requires the user’s distance from
three reference nodes with known coordinates because it
utilizes the geometry of triangles [7]. Each beacon location
represents a vertex of a triangle, while each estimated distance
represents a side of the triangle. This is called trilateration.
The method from [7] was confirmed in MATLAB. The
coordinates of each beacon were stored in the program using a
corner of the hallway as the origin. The MATLAB program
was designed to take user input values for beacon
identification and the corresponding distance between the user
and those beacons. With user input distances to beacon A, B,
and C, equations (3.1), (3.2), (3.3), and (3.4) were used to
determine the X and Y coordinates of the user.

va = [(db
2-dc

2)-(xb
2-xc

2)-(y b
2-y c

2)]/2 (3.1)

vb = [(db
2-da^2)-(x b

2-xa^2)-(y b
2-y c

2)]/2 (3.2)

y = [vb(xc-xb)- va (xa-xb)]/[(ya-yb)(xc-xb)-(yc-yb)(xa-xb) (3.3)

x = [va-y(yc-yb)]/[xc-xb] (3.4)

Where (xi,yi) are the coordinates of the beacon and di is the
distance from the user to the beacon in feet. Completed indoor
localization is a deliverable for CDR. In order to achieve
desired results this method of localization must be expanded to
three dimensions to account for the height at which the user is
holding their device. We also must account for the fact that the
distances from the user to the beacons will be purely
estimation due to inaccuracy of the RSSI to distance
conversion. Our current plan is to use a threshold of about -85
dBm to decide what beacons to consider in each trilateration
calculation. We will attempt to use multiple iterations of the
algorithm and use the average as the result. This sub block will
require a significant amount of testing before CDR. Ultimately
this block will need to pass the current node of the user to the
shortest path algorithm.

F. Visionless User Interface

The main portion of the project, besides the beacons, is the
mobile application. An application is nothing without a user
interface. We have decided to develop our mobile application
on the iPhone. We are using an Apple Developer account and
XCode to create our application and run it on our phones.
Apple uses a language called Objective C. Although Objective
C had never been taught in any of our courses, it is similar to
the C language, which was taught in several of our classes. It
follows the same basic format, making it fairly easy to learn. In
order to create a user interface, tutorials provided by Apple
were used and applied to previous knowledge to make a user
interface that is appropriate to our application.

The user interface currently has three main menu page. The
first is the title page. This page has a button to start the
navigation and another button for debugging purposes that will
manage the beacons. The other two menu will allow the user
to select an outdoor location (a building in the engineering
quad) and an indoor location (a room number or facility within
or focus building, Marcus).

The hardest part will be making the application compatible
with the accessibility feature, Voiceover. Without
accessibility, the application is useless to our target user, the
visually impaired. Further work is necessary to make the user
interface compatible with Voiceover.

G. Outdoor Shortest Path Algorithm

The shortest path algorithms take input of the user's location
and the user's destination to determine a path that will bring
the user to their destination the fastest. In the outdoor
environment, the user's location is determined by GPS or by a
localization algorithm using the Estimote beacon signals. The
GPS works on the pathways of the engineering quad, but is
very inaccurate near the entrances of the four buildings. The
localization will use information from the beacons when the
user is close to the entrance of their destination.

The second part of the navigation algorithm is a map that
will be a page of the user interface. When the user chooses an
outdoor destination, it will bring him/her to this map. Using
the Google maps SDK, the map focuses on the engineering
quad and has a drawn path from the user's position to their
destination. This path can only be created if the user is within
the quad and the path always follows the actual pathways of
the quad.

To create the navigation algorithm, several nodes were
determined. The nodes were placed in front of the entrances of
the buildings, at the intersections of pathways, and at the ends
of pathways. To use these nodes in the code, I gathered several
coordinates from the engineering quad. These coordinates
were used to determine the user's location. They also were
used to draw the path from the user's location to each node that
in the path.

To test that the algorithm was working correctly, we went
out to the engineering quad with the application already
downloaded onto my phone. I then stood on all of the
pathways and determined if the correct path was given to me
after choosing each of the building destinations. It was during
this testing that I realized that the GPS is not as accurate when
close to the buildings. This is why the beacons are essential to
the navigation, not just in the indoor environment, but in the
outdoor environment as well.

H. Indoor Shortest Path Algorithm

The main part of the mobile application is the shortest path
algorithm. Dijkstra’s Algorithm will be implemented to
determine the shortest path from the current location of the
user to their desired destination. As shown in the block
diagram, the inputs to the Shortest Path Algorithm block will

5

be the user’s current location, the user’s chosen destination
and a digital map of the environment. The user’s location will
be determined via the localization algorithm, and the
destination will be a user input. The output of the algorithm
will be the distance to destination in feet and the path the user
must take to reach their destination.

Fig. 9. Dijkstra’s map of Marcus First Floor

Fig. 10. Codes for Destination Selection

Here, Figure 9 shows the layout the Marcus first Floor as a
weighted graph to represent the digital map of the
environment. Figure 10 shows the code numbers for each of
the locations available.

Fig. 11. Screenshot of the, Dijkstra’s input commands

Fig. 12. Screenshot of the, Dijkstra’s output commands

Here, Figure 11 and 12 shows the input and the output of
the algorithm, which will be integrated with the visionless user
interface.

To translate the instructions given to the user, the system
will use the Voiceover feature, an assistive technology tool
within the iPhone. The Voiceover feature is a gesture based
screen reader that lets you use an iOS device without seeing
the screen. The Voiceover feature will translate the output of
the algorithm so that the user will get detailed instructions on
how to navigate through the environment. In order to
implement the Voiceover feature into our application, we will
need to learn all the features with Voiceover and how to adjust
it to continuous commands, which is extremely important.

To test the accuracy of the algorithm, there must be an
intense testing procedure to ensure that the instructions given
are as accurate as possible. We will put a test user in our
environment, blindfold them and have them use our
application. We will then go with the user and see if the
application gives accurate instructions such as open door, pull
door, turn right at the right interval of time, etc. We will repeat
this experiment multiple times asking the user to start at
different locations and choosing different destinations. Based
on our results, we will change the instruction commands and
the frequency at which the commands are translated.

6

III. PROJECT MANAGEMENT

Goal Status

Communication established between
beacons and mobile device

Completed

Indoor beacon deployment Completed

Gimbal RSSI characterization Completed with
accuracy to be
improved

Localization Algorithm Completed, not
integrated

Main function of iPhone user
interface

Completed

Outdoor navigation algorithm Completed with
medium accuracy

Indoor navigation algorithm Completed

Table 2: Goals for MDR

Table 2 shows the goals that were set for our MDR. We
decided to split of project into two parts: indoor and outdoor.
 Although these sections will eventually come together, they
are independent of each other, so they can be worked on
separately. All of the goals mentioned in the table were
accomplished for our MDR. Some of the goals, however were
met without a high level of accuracy. Some of the future goals
of our project will focus on making these measurements more
accurate, which will make the navigation instructions more
precise.

With half of the year done, there are still several part of the
project that need to be completed. Although the indoor
portion of the project is almost complete, there are still a few
pieces left. The localization needs to be completed. This
entails finishing the algorithm that will give a coordinate of the
user’s location to the algorithm that determines the navigation
path. The navigation algorithm, which is already complete,
needs to be added to the phone application. Voice instructions
going along with the shortest path need to be generated as
well. For the outdoor portion of the project, deployment and
RSSI characterization needs to be done, as it was for the
indoor environment. Same as indoor, the localization and
voice instructions also need to be completed. Finally, the
phone application needs to be adjusted for accessibility.
Voiceover needs to be compatible with our application. With
all of these things finished, the only thing left will be adjusting
our measurements for better accuracy.

When dividing the work, we each picked our tasks based on
our strengths. Steve and Tom, the electrical engineers, have
the most experience with analyzing signals, so they choose
tasks that would be working directly with the beacons. The

RSSI characterization, beacon deployment, and localization all
required analysis of the signals received from the beacons.
Divya and Krista, the computer systems engineers, have the
most experience with software, so they chose the tasks that
required more knowledge of coding. The indoor navigation
algorithm and outdoor navigation algorithm required inputs
from the localization algorithm but are completely software.
The user interface is also a completely software assignment.
We all completed our tasks promptly and without any major
issues.

So far, the team is working very well together on our
project. Although the goals for MDR were specifically divided
among our four team members, we have still managed to work
together on parts of the project. When we first started working
on our tasks after PDR, we met in Marcus Hall to make
measurements. These measurements helped with the RSSI
characterization, the beacon deployment, and creating the
shortest path algorithm. Besides these measurements, it was
important throughout the process to keep in touch with each
other. Steve and Tom were both in charge of tasks that worked
with the Gimbal beacons, so they met frequently to make sure
they were both on the same page with their separate parts of
the project. The visionless user interface that Krista was in
charge of completing is the piece that ties all of the other parts
together. Because of this, communication is needed among all
of the team members to successfully integrate the other parts
into the application. The team frequently worked on their
separate parts in the same room to facilitate communication.
We are constantly e-mailing and texting each other to make
sure everyone is on track, and providing help when necessary.

The Gantt chart show in Fig. 13 illustrates our plan for
the next few months. For CDR, Divya will be working on
moving her code on the navigation algorithm into the
application, generating voice instructions for indoor
navigation, and ensuring accessibility of the application for the
indoor portion. Krista will be working on generating voice
instructions for outdoor navigation and ensuring accessibility
of the application for the outdoor portion. Steve will be
working on the RSSI characterization of the Estimote
(outdoor) beacons and localization of the outdoor
environment. Tom will be working on completing indoor
localization and improving the accuracy of the RSSI readings.

IV. CONCLUSION

In conclusion, we are at the point in the project where the
most subsystems are complete and ready to be integrated with
one another. We are able to communicate with the BLE
beacons within our application, we have characterized the
RSSI values to real distances, the navigation algorithms that
will guide the user are complete,the indoor beacon deployment
is complete, and a user interface is complete. We got to this
point by working on individual tasks as well as working
together and using each others accomplishments.

Our plan for the future is to combine what we have now to
create the whole system. We have the majority of the separate
parts of the project working on their own, but we need to get
them to work together and be more accurate to meet our

7

system specifications. This will be done with a lot of
calibrating and testing to get better RSSI values for the
localization, to create real coordinates instead of using test
inputs. Another large challenge we will face will be making
our system completely visionless. This will be done by

working with Voiceover. With this, we will discover how often
we will need to give instructions and what instructions will be
most useful in every situation.

Fig. 13. Gantt Chart

REFERENCES

[1] "Prevalence of Vision Impairment." Lighthouse International -. Web. 3
Dec. 2014. <http://www.lighthouse.org/research/statistics-on-vision-
impairment/prevalence-of-vision-impairment/>.

[2] "Media & Press." 5G Mobile Evolution Lab: PERCEPT. Web. 3 Dec.
 2014. <http://percept.ecs.umass.edu/>.

[3] "Indoor Mapping Lets the Blind Navigate Airports." Smithsonian.
N.p., n.d. Web. 14 Dec. 2014.

[4] Gimbal Store [Online] Available:
https://store.gimbal.com/default.aspx?menuoption=homepage
[Accessed Web. 20 Sept. 2014.]

[5] Gimbal Proximity Overview [Online] Available:
http://gimbal.com/doc/proximity_overview.html
[Accessed Web. 20 Sept. 2014]

[6] L. Frenzel. (2012, November 29). What’s the difference between
 Bluetooth Low Energy and ANT? Electronic Design [Online] Available:

http://electronicdesign.com/mobile/what-s-difference-between-
bluetooth-low-energy-and-ant
[Accessed Web. 1 Oct. 2014]

[7] O. Oguejiofor, A. Aniedu, H. Ejiofor, and A. Okolibe, (2013)
“Trilateration Based localization Algorithm for Wireless Sensor
Network” IJISME. ISSN: 2319-6386. Volume-1, Issue-10. Available:

http://www.ijisme.org/attachments/File/v1i10/J04470911013.pdf
[8] J. Kang, D. Kim, and Y. Kim. “RSS Self-calibration Protocol for WSN

Localization” Information and Communications University, Daejeon,
Republic of Korea. Available:

 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4147056
[9] Gimbal Beacon Manager [Online] Available:

https://manager.gimbal.com/transmitters
[Accessed Web. 1 Oct. 2014]

[10] Gimbal SDK’s [Online] Available:
https://manager.gimbal.com/sdk_downloads
[Accessed Web. 15 Oct. 2014]

8

http://percept.ecs.umass.edu/
http://www.ijisme.org/attachments/File/v1i10/J04470911013.pdf

	I. INTRODUCTION
	II. Design
	A. Overview
	B. Communication Between Beacons and Mobile Device:
	C. Indoor Beacon Deployment
	D. RSSI Characterization
	E. Localization
	F. Visionless User Interface
	G. Outdoor Shortest Path Algorithm
	H. Indoor Shortest Path Algorithm

	III. Project Management
	IV. Conclusion

