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Abstract—Otto is the personal cameraman that introduces a 

new way to capture your life's most exciting moments. The system 
is an autonomous quadcopter that is designed to follow and 
record a user performing an individual action sport. By 
maintaining a visual lock on the user during his or her 
performance, Otto is able to capture the entire experience 
through an on-board high resolution video camera. Once finished, 
the user can gather video recordings from the drone and share 
them with loved ones. 
 

I. INTRODUCTION 
UMANS are social beings that yearn to share their 
experiences with family and friends. Some of the most 

exciting experiences to share are those that include extreme 
circumstances. Individual action sports, such as skiing, wake-
boarding, mountain biking, and skateboarding are activities 
that people truly enjoy capturing and sharing. Filming these 
moments is extremely hard since the sports are done at high 
velocities or in relatively dangerous conditions. We have set 
out to eliminate this challenge from the lives of amateur 
extreme sports performers. 

Previously, this challenge has been addressed by various 
subpar solutions. Some performers hold a camera [1] while 
doing their action sport in order to capture the moment. This 
solution is dangerous because the performer is putting some of 
their focus on filming and not necessarily on their own actions. 
Another option for the performer to attain a recording of 
himself is to have someone ride or otherwise move alongside 
him and record him [1]. This solution is even more unsafe 
because it requires the cameraperson to ride alongside the 
performer at a presumably high rate of speed and focus almost 
entirely on the recording. There are also several products that 
have the same goal of recording action sports performers. 
These solutions attempt to track their users with GPS 
localization; our solution is different in its implementation and, 
we expect, its operation. Furthermore, these products, such as 
AirDog and HEXO+, are in the development stages and are 
not yet on the market. Thus, action sports performers, of which 
there are 4.88 million in the United States [2], have not yet 
found the appropriate solution for capturing all of the amazing 
things they do. 

Otto is the personal cameraman for capturing and recording 
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amazing third-person aerial images. This product will make 
the recording process safer for action sports performers and 
enable them to capture a unique, aerial view of their 
performances. Additionally, it will deliver functionality that 
has never been feasible for everyday consumers. This 
technology could have applications in many fields, including 
medicine, military, and home security. Along with these 
positive alternatives, there are negatives as well. Criminals 
could use this technology to follow people, enabling them to 
stalk others in an obscure way. We attempt to eliminate this in 
our requirements through the use of the user’s smartphone and 
the wearable jersey. 

In order to deliver this ambitious prototype, we have 
developed requirements and constraints to keep our project 
within the proper scope. More importantly, we want to ensure 
that during the recording, the user can pay no attention to Otto 
and focus entirely on his or her performance. From this, we 
concluded that the system must initiate and maintain a visual 
lock on the user throughout the entire performance. We also 
require that the system must have safety features to minimize 
the possibility of injury to the user when operating Otto; the 
system must have a safety lock on both the smartphone 
application and the quadcopter itself to prevent undesired 
liftoff. A full list of our requirements can be found in Table IV 
of the Appendix. Along with these requirements are 
quantitative system specifications that Otto will need to abide 

by; these can be found in Table I. 

II. DESIGN 

A. Overview 
Otto introduces a new way for amateur extreme sports 

performers to film themselves. Otto is a drone, more 
specifically an autonomous quadcopter, that will track and 
record a user. To do this, we needed to start with a robust 

Otto: The Personal Cameraman 
Seth Kielbasa, CSE, Albion Lici, CSE, Noah Portnoy, CSE, and Andrew Sousa, EE 

H 

TABLE I 
SYSTEM SPECIFICATIONS 

              Specification           Value 

Maximum drone/user separation 30 meters 
Minimum drone/user separation 5 meters 

Average flight time 10 minutes 
Maximum speed of drone 30 mph 
Maximum speed of user permitted for 
tracking 

30 mph 

Maximum angular velocity of drone 1.8 rad/sec 
Minimum quality of video recording 720p at 30 fps 
Total mass < 1.5 kg 
Lift at 50% throttle > 1.5 kg 
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foundation; details about the drone system’s hardware are 
covered in Section B. The tracking software and hardware will 
physically reside on this drone platform. The drone will hover 
and fly using customized flight control software; more on that 
in Section C. 

The tracking functionality relies on the user wearing a 
uniquely colored jersey and carrying a smartphone. The user 
will open the app and within the app be able to specify a 
drone-user separation distance, turn Otto on, start the 
recording, and press the takeoff button. Once the takeoff 
button is pressed, the drone will commence liftoff and rise to 
the appropriate drone-user separation distance. At the same 
time, the FollowMe feature starts up; this will enable the 
tracking and following of a user. When FollowMe initiates, it 
will attempt to acquire a visual lock on the user. Once this is 
achieved, the user will receive a notification through the app 
that Otto is ready for action. 

The FollowMe feature works by leveraging two major 
technologies: GPS and image processing. The first component 
of FollowMe is GPS tracking, described in Section D, and it 
will follow the user based on the GPS coordinates of the user 
relative to those of the drone. The second component is 
camera tracking (detailed in Section E), which uses a low-
resolution camera to align the drone with the user. The camera 
tracking is able to find the user in the frame because he/she is 
wearing a specially colored jersey. The outputs from these two 
components are then combined through a sensor fusion 
technique. Once fused, the FollowMe feature will calculate 
actions for the drone to make based on the fused data and 
output the proper controls to the flight control board in order 
to achieve those actions. The FollowMe feature is visually 
represented in the Otto Block Diagram; Figure 1. 

 

 
Fig. 1.  A high-level view of Otto’s main components. 

B. System Hardware 
First, we introduce the system’s hardware. The airframe of 

the quadcopter is the DJI Flame Wheel F450, which is made of 
a hardened plastic material to ensure a rigid flight with enough 
strength to endure high impact landings [3]. To provide thrust 
for this frame, we have four SunnySky brushless DC motors 
which have a 980 kV rating; this means that for every volt 
applied, the motor will attempt to produce 980 revolutions per 
minute (RPM) [4]. The motors rotate 10x4.7 inch carbon fiber 
composite propellers. This motor-prop combination ensures 

that there is enough upward force to allow the drone to hover 
at approximately 50% throttle, under the assumption that the 
drone’s total mass is 1.5 kg. This is done so that at 80% 
throttle, the motors can quickly maneuver the drone. These 
motors are operated by a three-phase signal; the system 
generates this locally with electronic speed controllers, or 
ESCs. 

We chose four ESCs with the SimonK firmware loaded on 
them, as it seems to be the most promising in the industry [5]. 
The ESCs take in a pulse-width modulated (PWM) signal from 
the flight control board and turn it into a polyphase signal to 
rotate the 14-pole DC motors. The flight control board is the 
APM 2.6 board manufactured by 3D Robotics. It contains all 
of the necessary hardware for flying: a 3-axis gyroscope, an 
accelerometer, and a barometer.  

The flight control board will receive movement commands 
from the FollowMe feature in the form of pitch, roll, and yaw 
commands. For the GPS tracking component of the FollowMe 
feature, there is a local GPS module on the drone: the u-blox 
LEA-6H GPS module with a Taoglas patch antenna [6]. This 
module collects GPS data and sends it to the FollowMe 
feature’s computation platform, a Raspberry Pi Model B+ [7]. 
The GPS tracking also uses a 2.4 GHz Wi-Fi module which is 
attached to the Raspberry Pi through a USB port. More about 
the operation of GPS tracking can be found in Sections D and 
E. For the camera tracking component of the FollowMe 
feature, the Raspberry Pi will also be attached to a Logitech 
C310 USB webcam [8]. 

The drone is powered by a 5200 milliampere-hour (mAh) 
lithium-ion polymer (LiPo) battery [9]. This battery will 
ensure that the drone can meet the ten minute flight time 
requirement, as we have estimated that this battery will 
provide 11.4 minutes of flight time (see “Mixed Flight Time” 
in Figure 4 of the Appendix for calculated results). The power 
is distributed to the four on-board ESCs, each of which then 
converting that power, as well as the input from the flight 
control board, into three-phase power signals to its respective 
DC motor. Each of the ESCs also has a battery eliminator 
circuit (BEC) which outputs 5V 2A DC; this supplies power to 
the flight control board and the Raspberry Pi. All of the 
peripherals attached to the Raspberry Pi are then powered by 
the Raspberry Pi itself.  

Finally, there is a high-resolution video camera on-board the 
drone: the GoPro Hero camera. This device has an internal 
battery as an independent power source as well as its own data 
storage. The GoPro camera will be used to capture the high-
resolution video recording of the user. 

C. Flight Control Software 
The flight control software resides on the flight control board 

and maintains constant knowledge of the orientation of the 
drone. Using readings from on-board gyroscopes and 
accelerometers, the system deploys a set of algorithms to 
determine appropriate values to feed the four individual ESCs, 
which then update the motors. The software currently in use 
was based on that provided by [10]. Modifications have been 
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made to add functionality for our specific goals, introduce 
safety features, and increase flight stability. Currently, the 
flight control software is functional with test flights being 
successfully conducted under manual RC control. 

 
Fig. 2.  A block diagram representation of the Flight Control Software. [10] 

 
The algorithm centered at the heart of the flight control 

software is PID. Figure 2 provides a visual representation of 
the software handling incoming data and converting it to 
values capable of driving the motors [10]. Each PID block 
takes in a desired value that is compared to the actual values 
captured from the sensor chip. The software contains an array 
of adjustable PID constants used to weight the determined 
error, resulting in a weighted value being fed to the motors 
[10]. 

This crucial subsystem is being developed for the 3D 
Robotics APM 2.6 flight control board [11]. This Arduino-
based microcontroller contains an MPU-6000 sensor chip that 
features three pairs of gyroscopes and accelerometers, one pair 
per axis. An Integrated Development Environment (IDE) 
tailored specifically for the APM board has been the site of all 
flight-related software design and testing. 

Completion of this subsystem required knowledge obtained 
through the numerous Electrical and Computer Engineering 
courses that we have completed over the past three years. ECE 
353 Computer Systems Lab 1 gave an initial exposure to the C 
programming language, which is syntactically and functionally 
very similar to the Arduino microcontroller language used in 
this project. Additionally, ECE 373 Software Intensive 
Engineering provided guidance on how to successfully plan 
the composition of a program. An elective junior-year ECE 
design project on firefighting robots provided foundational 
knowledge in robotics engineering and provided valuable 
experience utilizing sensors and motors with a microcontroller. 

For obvious safety reasons, numerous tests are conducted on 
each new revision of the flight control software before being 
used with live motors. The first round of testing involved 
simple scripts to print sensor readings and motor outputs to the 
console for analysis. Through this technique, it could be 
confirmed that the sensors were reading appropriate values and 
that the software was providing reasonable output to the 
motors. From there, a testing rig was built to allow the drone, 
now with the attached motors and propellers, to have free 
motion over one axis. This allowed for visual confirmation that 
the drone could respond to the manual RC control of either 
pitch or roll and then stabilize itself with minimal oscillation. 
With further use of the testing rig, the PID constants 

mentioned above were tweaked to reduce the oscillation 
effects. Once the PID control was sufficiently refined, outdoor 
tests were conducted at low throttle levels before actual takeoff 
and flight was achieved. While airborne, effects of spinning or 
oscillation of the drone frame could be observed, and the 
software was adjusted to counteract these negative motions. 

D. GPS Tracking 
As one of two fundamental components of the FollowMe 

feature, GPS tracking will allow Otto to track the user 
performing his sport. This will be achieved by first acquiring 
the GPS coordinates of both Otto and the user, and then 
providing those coordinates as input to the overall FollowMe 
feature. The GPS tracking application will run on the drone’s 
Raspberry Pi, and it will receive coordinates at a rate of 2 Hz 
from both the Android application and the GPS module on-
board the drone, the u-blox LEA-6H GPS module [6]. The 
GPS tracking application and the Android application will be 
communicating with each other over Wi-Fi using the UDP 
protocol. In order to achieve this communication between the 
two applications, both applications must be multithreaded. 
This can give rise to several potential issues, including the lack 
of effective communication between threads and unresolved 
data dependencies within each application. To resolve such 
complications, mutexes (mutual exclusions) are implemented 
to ensure that shared resources are used in an orderly manner 
by all threads. Threaded programming and mutexes were 
introduced in ECE 373 Software Engineering. In addition, Wi-
Fi technology and the Internet protocol stack are used in the 
GPS tracking software package to allow the two applications 
to exchange data; these networking topics were presented in 
ECE 374 Computer Networks and the Internet. The Raspberry 
Pi application is written in the C++ programming language and 
it utilizes the POSIX Threads (pthreads) library as well as 
Linux API system calls. The Android application was 
developed using the Java programming language and the 
Android API, which is provided and documented by Google. 
An Android extension tool package was also used alongside 
the Eclipse IDE in order to make the development of the app 
more efficient. 

The user’s coordinates will come from an Android 
smartphone that will be running a custom-developed 
application (henceforth referred to as the “app”). The 
smartphone must be on the user’s person for GPS tracking to 
work properly. The tasks of the app have been broken down 
into three threads executed in parallel: the user interface (UI) 
thread, the network send thread, and the network receive 
thread. Any rendering of visual objects and UI updates are 
performed by the UI thread. The UI thread is also responsible 
for spawning all other threads for this application; it can 
therefore be thought of as the main thread [12]. The network 
send thread handles all outgoing network data intended for the 
GPS tracking application on the Raspberry Pi by transmitting 
messages that have been added to the transmit FIFO queue. 
The network receive thread handles all incoming traffic from 
the Raspberry Pi to the Android app. Receiving from the 
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network is a synchronous, or blocking, task.  
The drone’s coordinates are calculated by the on-board u-

blox LEAH-6 GPS module. The GPS tracking application, 
running on the Raspberry Pi on-board the drone, is tasked with 
collecting GPS data from both the drone and the user, and then 
performing calculations on that set of data. The output of this 
application will then be fed into the higher-level FollowMe 
feature. The GPS tracking application is broken down in the 
same fashion as the Android app with the addition of an I2C 
thread. This means there is a network send, a network receive, 
and a main thread, each performing a similar task as that of the 
Android app. The main thread is responsible for spawning all 
other threads and performing calculations on GPS data. The 
network send thread is responsible for transmitting all data in 
the FIFO send queue. The network receive thread is 
responsible for receiving data from the Android app. Finally, 
the I2C thread requests the coordinates from the flight control 
board, which is connected to the u-blox GPS module via a 
UART connection. All future I2C communications will be 
executed on this thread.  

The first four ASCII characters of a message packet in the 
GPS tracking software package are reserved for the payload 
identifiers for latitude and longitude (see Table II). All 
subsequent characters in the message are interpreted as the 
payload, which consists of two GPS coordinates identifying 
the location of either Otto or the user. Payload size is not 
specified in the packet. Because we use the UDP protocol, the 
communication on the Wi-Fi channel is inherently unreliable. 
This means that 2 Hz is not guaranteed at all times because 
communication packets containing GPS coordinates might get 
lost due to collisions, dropped because of a full queue, or other 
factors. Attempting retransmission will provide lagging 
coordinates as an input; therefore we ignore any dropped 
messages. The GPS tracking system is designed to be robust, 
and so does not halt when packets are dropped. However, the 
system will see a decrease in performance in this scenario. 
Under the current implementation of the messaging interface 
for the GPS tracking software package, only two payload 
identifiers are supported: $LAT and $LON. See Table II for an 
explanation. 

E. Camera Tracking 
The camera tracking system serves as the second of two 

core components of Otto’s FollowMe feature, allowing the 
drone to accurately follow the user and keep the user in the 
video frame. In order for the camera tracking system to 
uniquely identify and track the user in the environment, the 
user must wear a distinctly colored jersey. The camera tracking 
system will attain a visual lock on the user upon drone takeoff 
by scanning for the color of the user’s jersey. Once the visual 

lock has been acquired and the FollowMe feature has been 
initiated by the user through the use of the Android 
application, the camera system will continuously track the 
user. If the user begins to veer out of the video frame 
boundaries, the camera tracking system will send yaw control 
output in vector form to the FollowMe feature. This output 
communicates how the drone should reorient itself along the 
yaw axis to maintain a visual of the user. The FollowMe 
feature will take this data from the camera tracking system and 
synthesize it with GPS tracking data to form a unified output 
to the flight control board, instructing the flight control 
software how to maneuver the drone. As of the team’s Midway 
Design Review, camera tracking is a functional, closed-loop 
system operating at 7.5 Hz that can track an object of a certain 
color and keep the object in the video frame by commanding a 
servo motor to rotate the camera along the yaw axis. 

The camera tracking software lives on Otto’s main 
computer, a Raspberry Pi Model B+ [7]. The software is 
written in the Python programming language and harnesses the 
OpenCV (Open Source Computer Vision) library to detect the 
colored object by heavily processing the video frames that are 
captured by a Logitech C310 USB webcam [8]. Specifically, 
the camera tracking software performs the following OpenCV 
transformations [13] on each video frame: cvtColor to convert 
the image from the RGB to the HSV color space, inRange to 
get a mask [14] of the image consisting only of those pixels 
that fall within the desired object’s color range, dilate to dilate 
the shapes present in the mask so as to smooth out the shapes’ 
edges, findContours to detect all shapes present in the image, 
and contourArea to measure the area of the detected shapes 
and to select the most prominent shape in the image. From 
here, the software determines the center of the detected object 
within the video frame, and continuously checks to see if the 
center of the object moves outside a programmed set of 
bounds centered about the middle of the frame. Upon detecting 
that the object has moved outside of these bounds, the software 
outputs servo commands for the yaw axis over a serial output. 
The serial output then goes to an Arduino Uno, which sends 
digital output to the servo. [Note that the Arduino IDE and 
programming language were used to develop the servo-
controlling software that runs on the Arduino Uno.] Once the 
object moves back within the specified bounds, the software 
no longer sends servo commands. This simulates how the 
camera tracking software will send yaw commands to the 
FollowMe feature to keep the user in the video frame. 

Several tests have been conducted to assess the performance 
of the camera tracking system. The environment for these tests 
used flourescent lighting, thus having a color temperature of 
approximately 3000 K [15], and the camera was positioned to 
face a white background that filled the entire camera frame. 
Any object displayed to the camera was always kept 
approximately two feet away. For these tests, the system was 
configured to track a red object. The variables in the tests are 
as follows: (1) the color of the object, and (2) either moving 
the camera to simulate the effects of drone movement, or 

TABLE II 
PROTOCOL FOR ANDROID/RASPBERRY PI WI-FI COMMUNICATION 

     Payload Identifier   
     (four bytes)     Description 

$LAT Latitudinal coordinate of Otto or the user 
$LON Longitudinal coordinate of Otto or the user 
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keeping the camera stationary. For each test, we monitored the 
system’s performance for two minutes in the same 
environmental conditions. Detection rates and false positive 
rates were calculated using frame counts provided by the 
camera tracking system. The results are summarized in Table 
III. 

 
While there are many factors contributing to the 

performance of the camera tracking system in these tests, we 
can conclude that the system is capable of tracking a red object 
under certain conditions with a high degree of accuracy. We 
can attain similar performance in tracking an object of another 
color by simply changing the HSV range in which to look for 
an object. At this point, it is unknown the system’s 
performance outdoors with the user wearing a jersey and the 
camera a distance away from the user that meets the system 
specifications. Color temperatures outdoors range from 5500 
K to 6500 K [15], which would affect the camera’s perception 
of color; this can be accounted for by modifying the HSV 
range specified in the program. However, a potential area to be 
addressed is the presence of objects in the environment that are 
similar both in color and size relative to the user’s jersey. 

The development of the camera tracking system relied 
heavily on the material covered in several Electrical and 
Computer Systems Engineering courses. ECE 353 Computer 
Systems Lab 1 and ECE 373 Software Intensive Engineering 
together provided a deep and fundamental understanding of 
software that allowed for the creation of the camera tracking 
system. ECE 354 Computer Systems Lab 2 introduced image 
processing and manipulation techniques that were formative in 
the design of the camera tracking system. 

III. PROJECT MANAGEMENT 
As of our Midway Design Review, we have completed all of 

our proposed deliverables, which are summarized in Table IV. 
Through this, we have completed the four main subsystems of 
Otto. In the remaining five months comes the most challenging 
part of our project: integrating the subsystems to create a 
functional prototype. As a team, we must complete two main 
tasks: develop autonomous flight capabilities for the drone, 
and fuse the data from the GPS and camera tracking systems to 
output reliable pitch, yaw, and roll instructions to the flight 
control board. 

 

 

Team Otto is comprised of three computer systems 
engineers (CSEs) and one electrical engineer (EE) who have 
diverse backgrounds. Seth Kielbasa has worked with robotics 
in the past as part of the UMass Amherst firefighting robot 
team; as part of Team Otto, he is responsible for the flight 
control and stabilization algorithms. Albion Lici has 
completed multiple internships at Teradyne, where he gained 
much insight into interfaces between hardware and software; 
this knowledge has proven to be very useful. Albion is 
responsible for the GPS tracking component of the FollowMe 
feature. Noah Portnoy also has robotics experience as he led 
the UMass Amherst firefighting robot team for two years; he is 
responsible for the camera tracking component of the 
FollowMe feature. Andrew Sousa is the EE of the team and he 
brings robotics experience from his work leading the IEEE 
Micromouse group to successful completion of an autonomous 
robot. Andrew is the team manager and is responsible for all of 
the systems hardware. Please see Figure 3 to learn more about 
our project timeline. 

The team has been working quite well together; we all have 
a clear vision of the final product. There is always an 
enlightening discussion at our weekly all-hands meetings with 
our advisor, Professor Christopher V. Hollot, who continues to 
ask us thought-provoking questions and helps steer the team in 
the right direction. The team communicates daily, either 
through an online messaging service or in person, and meets 
weekly on Thursday evenings to discuss each individual’s 
progress from the week. We also share important information 
such as data sheets, calculations, and experiment results on 
cloud-based storage hosted by Google, while we keep all of 
our code under version control in a GitHub repository. Finally, 
we conduct large-scale or high-level communication via email. 
We are in nearly constant contact due to both our project’s 
difficulty level and our commitment to deliver Otto. 

IV. CONCLUSION 
Following the completion of the Midway Design Review, 

the team has all four subsystems successfully working 
independently of each other. Integration of the drone system 
hardware and flight control software has already begun, with 
successful test flights demonstrating stable flight and 
responsive control over both pitch and roll. The third axis, 
yaw, has proved a challenge to control. However, tests have 
been conducted with the on-board compass to combat the 
inaccurate yaw sensor on the flight control board. Stable 
readings have been observed from the compass; thus, user 
control over the yaw axis is now fully reliant on compass 
readings. The camera tracking component of the FollowMe 

TABLE III 
CAMERA TRACKING SYSTEM TESTS 

        Test Scenario Detection (True 
Positive) Rate 

False 
Positive 
Rate 

Moving red object always in frame, 
stationary camera 

98.7% 0% 

Moving red object always in frame, 
moving camera 

100% 0% 

No object in frame, stationary camera N/A 0% 
No object in frame, moving camera N/A 0% 
Blue object always in frame N/A 0% 
Green object always in frame N/A 0% 
Yellow object always in frame N/A 0% 

 

TABLE IV 
MDR DELIVERABLES 

              MDR Goal           Completion 

Drone Hardware 100% 
Flight Stabilization Algorithm 100% 

GPS Tracking 100% 
Camera Tracking 100% 
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feature is currently operating on the Raspberry Pi, tracking 
colored objects in a simulated environment. The second 
FollowMe component, GPS tracking, is running on both the 
Raspberry Pi and an Android smartphone, and it is accurately 
transmitting coordinates and determining separation distances. 

Over the course of the next few months, the team will see 
the development of the next crucial component of Otto: the 
fusion of the GPS and camera tracking into a single FollowMe 
feature. The success of this system is imperative to the 
completion of the project, as it responsible for user tracking 
and commanding the autonomous flight feature; both of these 
functions are essential to making Otto possible. The fused 
FollowMe feature will be developed in parallel with significant 
testing and simulation of the flight control software to ensure a 
smooth transition from the manual RC controller to the 
autonomous flight algorithm. 

Potential areas of struggle include implementing the fusion 
of data from the camera and GPS tracking subsystems into a 
single flight command, and fixating a camera on a moving user 
while maintaining appropriate operating distances. Presently, 
the team is considering an algorithm based on a weighted sum 
of values from the two tracking components, where the 
weighting is a function of separation distance; GPS being more 
heavily weighted when the user is far away from the drone, 
and camera tracking being more heavily weighted in close-
distance situations in which the GPS would become too 
inaccurate. From here, all flight movement calculations will be 
done on the Raspberry Pi before transmitting them to the flight 
control board for execution. To reliably record the user, the 
current implementation under consideration is a camera with 
fixed orientation on the drone. This requires that the FollowMe 
feature adjust the drone’s orientation in such a way that the 
user will be maintained in the camera’s field of view. The 
issue with this implementation resides with the vertical axis. In 
order to vertically reorient the camera to keep the user in the 
video frame, the drone must make a pitch adjustment, which 
would result in either forward or backward movement. 

 

 
Fig. 3.  Project timeline from Fall 2014 to Spring 2015. 
 

The planned deliverable for CDR will be a fully functional 
prototype of Otto, incorporating the autonomous flight, 
FollowMe feature, and video recording. Figure 3 shows the 
expected timeline for the coming months. From this point until 
middle to late January, the team will be split into two essential 
sub-teams. The first team will be charged with perfecting the 

drone flight and developing the autonomous flight software. 
The second team will be responsible for the required fusion of 
data from the camera and GPS tracking. The time period from 
late January to CDR will be spent merging these components 
into an integrated prototype. During this time, the video 
recording will be developed and tested once the drone has 
successfully demonstrated the rest of its functionality. 
 

APPENDIX 

 
Fig. 4.  Estimated performance of the drone based on its motors, propellers, 
battery, and drone weight. Battery performance estimates, including flight 
times, are highlighted with a box. “Mixed Flight Time” is a combination of 
hovering and maneuvering, the latter of which requires more thrust. 
Calculations provided by [16]. 
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