
 1

�
Abstract—Otto is the personal cameraman that introduces a

new way to capture your life's most exciting moments. The system
is an autonomous quadcopter that is designed to follow and
record a user performing an individual action sport. By
maintaining a visual lock on the user during his or her
performance, Otto is able to capture the entire experience
through an on-board high resolution video camera. Once finished,
the user can gather video recordings from the drone and share
them with loved ones.

I. INTRODUCTION
UMANS are social beings that yearn to share their
experiences with family and friends. Some of the most

exciting experiences to share are those that include extreme
circumstances. Individual action sports, such as skiing, wake-
boarding, mountain biking, and skateboarding are activities
that people truly enjoy capturing and sharing. Filming these
moments is extremely hard since the sports are done at high
velocities or in relatively dangerous conditions. We have set
out to eliminate this challenge from the lives of amateur
extreme sports performers.

Previously, this challenge has been addressed by various
subpar solutions. Some performers hold a camera [1] while
doing their action sport in order to capture the moment. This
solution is dangerous because the performer is putting some of
their focus on filming and not necessarily on their own actions.
Another option for the performer to attain a recording of
himself is to have someone ride or otherwise move alongside
him and record him [1]. This solution is even more unsafe
because it requires the cameraperson to ride alongside the
performer at a presumably high rate of speed and focus almost
entirely on the recording. There are also several products that
have the same goal of recording action sports performers.
These solutions attempt to track their users with GPS
localization; our solution is different in its implementation and,
we expect, its operation. Furthermore, these products, such as
AirDog and HEXO+, are in the development stages and are
not yet on the market. Thus, action sports performers, of which
there are 4.88 million in the United States [2], have not yet
found the appropriate solution for capturing all of the amazing
things they do.

Otto is the personal cameraman for capturing and recording

S. K. Author from Westfield, MA (e-mail: skielbas@umass.edu).
A. L. Author, from Revere, MA (e-mail: alici@umass.edu).
N. P. Author from Newton, MA (e-mail: nportnoy@umass.edu).
A. S. Author from Dartmouth, MA (e-mail: acsousa@umass.edu).

amazing third-person aerial images. This product will make
the recording process safer for action sports performers and
enable them to capture a unique, aerial view of their
performances. Additionally, it will deliver functionality that
has never been feasible for everyday consumers. This
technology could have applications in many fields, including
medicine, military, and home security. Along with these
positive alternatives, there are negatives as well. Criminals
could use this technology to follow people, enabling them to
stalk others in an obscure way. We attempt to eliminate this in
our requirements through the use of the user’s smartphone and
the wearable jersey.

In order to deliver this ambitious prototype, we have
developed requirements and constraints to keep our project
within the proper scope. More importantly, we want to ensure
that during the recording, the user can pay no attention to Otto
and focus entirely on his or her performance. From this, we
concluded that the system must initiate and maintain a visual
lock on the user throughout the entire performance. We also
require that the system must have safety features to minimize
the possibility of injury to the user when operating Otto; the
system must have a safety lock on both the smartphone
application and the quadcopter itself to prevent undesired
liftoff. A full list of our requirements can be found in Table IV
of the Appendix. Along with these requirements are
quantitative system specifications that Otto will need to abide

by; these can be found in Table I.

II. DESIGN

A. Overview
Otto introduces a new way for amateur extreme sports

performers to film themselves. Otto is a drone, more
specifically an autonomous quadcopter, that will track and
record a user. To do this, we needed to start with a robust

Otto: The Personal Cameraman
Seth Kielbasa, CSE, Albion Lici, CSE, Noah Portnoy, CSE, and Andrew Sousa, EE

H

TABLE I
SYSTEM SPECIFICATIONS

 Specification Value

Maximum drone/user separation 30 meters
Minimum drone/user separation 5 meters

Average flight time 10 minutes
Maximum speed of drone 30 mph
Maximum speed of user permitted for
tracking

30 mph

Maximum angular velocity of drone 1.8 rad/sec
Minimum quality of video recording 720p at 30 fps
Total mass < 1.5 kg
Lift at 50% throttle > 1.5 kg

 2

foundation; details about the drone system’s hardware are
covered in Section B. The tracking software and hardware will
physically reside on this drone platform. The drone will hover
and fly using customized flight control software; more on that
in Section C.

The tracking functionality relies on the user wearing a
uniquely colored jersey and carrying a smartphone. The user
will open the app and within the app be able to specify a
drone-user separation distance, turn Otto on, start the
recording, and press the takeoff button. Once the takeoff
button is pressed, the drone will commence liftoff and rise to
the appropriate drone-user separation distance. At the same
time, the FollowMe feature starts up; this will enable the
tracking and following of a user. When FollowMe initiates, it
will attempt to acquire a visual lock on the user. Once this is
achieved, the user will receive a notification through the app
that Otto is ready for action.

The FollowMe feature works by leveraging two major
technologies: GPS and image processing. The first component
of FollowMe is GPS tracking, described in Section D, and it
will follow the user based on the GPS coordinates of the user
relative to those of the drone. The second component is
camera tracking (detailed in Section E), which uses a low-
resolution camera to align the drone with the user. The camera
tracking is able to find the user in the frame because he/she is
wearing a specially colored jersey. The outputs from these two
components are then combined through a sensor fusion
technique. Once fused, the FollowMe feature will calculate
actions for the drone to make based on the fused data and
output the proper controls to the flight control board in order
to achieve those actions. The FollowMe feature is visually
represented in the Otto Block Diagram; Figure 1.

Fig. 1. A high-level view of Otto’s main components.

B. System Hardware
First, we introduce the system’s hardware. The airframe of

the quadcopter is the DJI Flame Wheel F450, which is made of
a hardened plastic material to ensure a rigid flight with enough
strength to endure high impact landings [3]. To provide thrust
for this frame, we have four SunnySky brushless DC motors
which have a 980 kV rating; this means that for every volt
applied, the motor will attempt to produce 980 revolutions per
minute (RPM) [4]. The motors rotate 10x4.7 inch carbon fiber
composite propellers. This motor-prop combination ensures

that there is enough upward force to allow the drone to hover
at approximately 50% throttle, under the assumption that the
drone’s total mass is 1.5 kg. This is done so that at 80%
throttle, the motors can quickly maneuver the drone. These
motors are operated by a three-phase signal; the system
generates this locally with electronic speed controllers, or
ESCs.

We chose four ESCs with the SimonK firmware loaded on
them, as it seems to be the most promising in the industry [5].
The ESCs take in a pulse-width modulated (PWM) signal from
the flight control board and turn it into a polyphase signal to
rotate the 14-pole DC motors. The flight control board is the
APM 2.6 board manufactured by 3D Robotics. It contains all
of the necessary hardware for flying: a 3-axis gyroscope, an
accelerometer, and a barometer.

The flight control board will receive movement commands
from the FollowMe feature in the form of pitch, roll, and yaw
commands. For the GPS tracking component of the FollowMe
feature, there is a local GPS module on the drone: the u-blox
LEA-6H GPS module with a Taoglas patch antenna [6]. This
module collects GPS data and sends it to the FollowMe
feature’s computation platform, a Raspberry Pi Model B+ [7].
The GPS tracking also uses a 2.4 GHz Wi-Fi module which is
attached to the Raspberry Pi through a USB port. More about
the operation of GPS tracking can be found in Sections D and
E. For the camera tracking component of the FollowMe
feature, the Raspberry Pi will also be attached to a Logitech
C310 USB webcam [8].

The drone is powered by a 5200 milliampere-hour (mAh)
lithium-ion polymer (LiPo) battery [9]. This battery will
ensure that the drone can meet the ten minute flight time
requirement, as we have estimated that this battery will
provide 11.4 minutes of flight time (see “Mixed Flight Time”
in Figure 4 of the Appendix for calculated results). The power
is distributed to the four on-board ESCs, each of which then
converting that power, as well as the input from the flight
control board, into three-phase power signals to its respective
DC motor. Each of the ESCs also has a battery eliminator
circuit (BEC) which outputs 5V 2A DC; this supplies power to
the flight control board and the Raspberry Pi. All of the
peripherals attached to the Raspberry Pi are then powered by
the Raspberry Pi itself.

Finally, there is a high-resolution video camera on-board the
drone: the GoPro Hero camera. This device has an internal
battery as an independent power source as well as its own data
storage. The GoPro camera will be used to capture the high-
resolution video recording of the user.

C. Flight Control Software
The flight control software resides on the flight control board

and maintains constant knowledge of the orientation of the
drone. Using readings from on-board gyroscopes and
accelerometers, the system deploys a set of algorithms to
determine appropriate values to feed the four individual ESCs,
which then update the motors. The software currently in use
was based on that provided by [10]. Modifications have been

 3

made to add functionality for our specific goals, introduce
safety features, and increase flight stability. Currently, the
flight control software is functional with test flights being
successfully conducted under manual RC control.

Fig. 2. A block diagram representation of the Flight Control Software. [10]

The algorithm centered at the heart of the flight control

software is PID. Figure 2 provides a visual representation of
the software handling incoming data and converting it to
values capable of driving the motors [10]. Each PID block
takes in a desired value that is compared to the actual values
captured from the sensor chip. The software contains an array
of adjustable PID constants used to weight the determined
error, resulting in a weighted value being fed to the motors
[10].

This crucial subsystem is being developed for the 3D
Robotics APM 2.6 flight control board [11]. This Arduino-
based microcontroller contains an MPU-6000 sensor chip that
features three pairs of gyroscopes and accelerometers, one pair
per axis. An Integrated Development Environment (IDE)
tailored specifically for the APM board has been the site of all
flight-related software design and testing.

Completion of this subsystem required knowledge obtained
through the numerous Electrical and Computer Engineering
courses that we have completed over the past three years. ECE
353 Computer Systems Lab 1 gave an initial exposure to the C
programming language, which is syntactically and functionally
very similar to the Arduino microcontroller language used in
this project. Additionally, ECE 373 Software Intensive
Engineering provided guidance on how to successfully plan
the composition of a program. An elective junior-year ECE
design project on firefighting robots provided foundational
knowledge in robotics engineering and provided valuable
experience utilizing sensors and motors with a microcontroller.

For obvious safety reasons, numerous tests are conducted on
each new revision of the flight control software before being
used with live motors. The first round of testing involved
simple scripts to print sensor readings and motor outputs to the
console for analysis. Through this technique, it could be
confirmed that the sensors were reading appropriate values and
that the software was providing reasonable output to the
motors. From there, a testing rig was built to allow the drone,
now with the attached motors and propellers, to have free
motion over one axis. This allowed for visual confirmation that
the drone could respond to the manual RC control of either
pitch or roll and then stabilize itself with minimal oscillation.
With further use of the testing rig, the PID constants

mentioned above were tweaked to reduce the oscillation
effects. Once the PID control was sufficiently refined, outdoor
tests were conducted at low throttle levels before actual takeoff
and flight was achieved. While airborne, effects of spinning or
oscillation of the drone frame could be observed, and the
software was adjusted to counteract these negative motions.

D. GPS Tracking
As one of two fundamental components of the FollowMe

feature, GPS tracking will allow Otto to track the user
performing his sport. This will be achieved by first acquiring
the GPS coordinates of both Otto and the user, and then
providing those coordinates as input to the overall FollowMe
feature. The GPS tracking application will run on the drone’s
Raspberry Pi, and it will receive coordinates at a rate of 2 Hz
from both the Android application and the GPS module on-
board the drone, the u-blox LEA-6H GPS module [6]. The
GPS tracking application and the Android application will be
communicating with each other over Wi-Fi using the UDP
protocol. In order to achieve this communication between the
two applications, both applications must be multithreaded.
This can give rise to several potential issues, including the lack
of effective communication between threads and unresolved
data dependencies within each application. To resolve such
complications, mutexes (mutual exclusions) are implemented
to ensure that shared resources are used in an orderly manner
by all threads. Threaded programming and mutexes were
introduced in ECE 373 Software Engineering. In addition, Wi-
Fi technology and the Internet protocol stack are used in the
GPS tracking software package to allow the two applications
to exchange data; these networking topics were presented in
ECE 374 Computer Networks and the Internet. The Raspberry
Pi application is written in the C++ programming language and
it utilizes the POSIX Threads (pthreads) library as well as
Linux API system calls. The Android application was
developed using the Java programming language and the
Android API, which is provided and documented by Google.
An Android extension tool package was also used alongside
the Eclipse IDE in order to make the development of the app
more efficient.

The user’s coordinates will come from an Android
smartphone that will be running a custom-developed
application (henceforth referred to as the “app”). The
smartphone must be on the user’s person for GPS tracking to
work properly. The tasks of the app have been broken down
into three threads executed in parallel: the user interface (UI)
thread, the network send thread, and the network receive
thread. Any rendering of visual objects and UI updates are
performed by the UI thread. The UI thread is also responsible
for spawning all other threads for this application; it can
therefore be thought of as the main thread [12]. The network
send thread handles all outgoing network data intended for the
GPS tracking application on the Raspberry Pi by transmitting
messages that have been added to the transmit FIFO queue.
The network receive thread handles all incoming traffic from
the Raspberry Pi to the Android app. Receiving from the

 4

network is a synchronous, or blocking, task.
The drone’s coordinates are calculated by the on-board u-

blox LEAH-6 GPS module. The GPS tracking application,
running on the Raspberry Pi on-board the drone, is tasked with
collecting GPS data from both the drone and the user, and then
performing calculations on that set of data. The output of this
application will then be fed into the higher-level FollowMe
feature. The GPS tracking application is broken down in the
same fashion as the Android app with the addition of an I2C
thread. This means there is a network send, a network receive,
and a main thread, each performing a similar task as that of the
Android app. The main thread is responsible for spawning all
other threads and performing calculations on GPS data. The
network send thread is responsible for transmitting all data in
the FIFO send queue. The network receive thread is
responsible for receiving data from the Android app. Finally,
the I2C thread requests the coordinates from the flight control
board, which is connected to the u-blox GPS module via a
UART connection. All future I2C communications will be
executed on this thread.

The first four ASCII characters of a message packet in the
GPS tracking software package are reserved for the payload
identifiers for latitude and longitude (see Table II). All
subsequent characters in the message are interpreted as the
payload, which consists of two GPS coordinates identifying
the location of either Otto or the user. Payload size is not
specified in the packet. Because we use the UDP protocol, the
communication on the Wi-Fi channel is inherently unreliable.
This means that 2 Hz is not guaranteed at all times because
communication packets containing GPS coordinates might get
lost due to collisions, dropped because of a full queue, or other
factors. Attempting retransmission will provide lagging
coordinates as an input; therefore we ignore any dropped
messages. The GPS tracking system is designed to be robust,
and so does not halt when packets are dropped. However, the
system will see a decrease in performance in this scenario.
Under the current implementation of the messaging interface
for the GPS tracking software package, only two payload
identifiers are supported: $LAT and $LON. See Table II for an
explanation.

E. Camera Tracking
The camera tracking system serves as the second of two

core components of Otto’s FollowMe feature, allowing the
drone to accurately follow the user and keep the user in the
video frame. In order for the camera tracking system to
uniquely identify and track the user in the environment, the
user must wear a distinctly colored jersey. The camera tracking
system will attain a visual lock on the user upon drone takeoff
by scanning for the color of the user’s jersey. Once the visual

lock has been acquired and the FollowMe feature has been
initiated by the user through the use of the Android
application, the camera system will continuously track the
user. If the user begins to veer out of the video frame
boundaries, the camera tracking system will send yaw control
output in vector form to the FollowMe feature. This output
communicates how the drone should reorient itself along the
yaw axis to maintain a visual of the user. The FollowMe
feature will take this data from the camera tracking system and
synthesize it with GPS tracking data to form a unified output
to the flight control board, instructing the flight control
software how to maneuver the drone. As of the team’s Midway
Design Review, camera tracking is a functional, closed-loop
system operating at 7.5 Hz that can track an object of a certain
color and keep the object in the video frame by commanding a
servo motor to rotate the camera along the yaw axis.

The camera tracking software lives on Otto’s main
computer, a Raspberry Pi Model B+ [7]. The software is
written in the Python programming language and harnesses the
OpenCV (Open Source Computer Vision) library to detect the
colored object by heavily processing the video frames that are
captured by a Logitech C310 USB webcam [8]. Specifically,
the camera tracking software performs the following OpenCV
transformations [13] on each video frame: cvtColor to convert
the image from the RGB to the HSV color space, inRange to
get a mask [14] of the image consisting only of those pixels
that fall within the desired object’s color range, dilate to dilate
the shapes present in the mask so as to smooth out the shapes’
edges, findContours to detect all shapes present in the image,
and contourArea to measure the area of the detected shapes
and to select the most prominent shape in the image. From
here, the software determines the center of the detected object
within the video frame, and continuously checks to see if the
center of the object moves outside a programmed set of
bounds centered about the middle of the frame. Upon detecting
that the object has moved outside of these bounds, the software
outputs servo commands for the yaw axis over a serial output.
The serial output then goes to an Arduino Uno, which sends
digital output to the servo. [Note that the Arduino IDE and
programming language were used to develop the servo-
controlling software that runs on the Arduino Uno.] Once the
object moves back within the specified bounds, the software
no longer sends servo commands. This simulates how the
camera tracking software will send yaw commands to the
FollowMe feature to keep the user in the video frame.

Several tests have been conducted to assess the performance
of the camera tracking system. The environment for these tests
used flourescent lighting, thus having a color temperature of
approximately 3000 K [15], and the camera was positioned to
face a white background that filled the entire camera frame.
Any object displayed to the camera was always kept
approximately two feet away. For these tests, the system was
configured to track a red object. The variables in the tests are
as follows: (1) the color of the object, and (2) either moving
the camera to simulate the effects of drone movement, or

TABLE II
PROTOCOL FOR ANDROID/RASPBERRY PI WI-FI COMMUNICATION

 Payload Identifier
 (four bytes) Description

$LAT Latitudinal coordinate of Otto or the user
$LON Longitudinal coordinate of Otto or the user

 5

keeping the camera stationary. For each test, we monitored the
system’s performance for two minutes in the same
environmental conditions. Detection rates and false positive
rates were calculated using frame counts provided by the
camera tracking system. The results are summarized in Table
III.

While there are many factors contributing to the

performance of the camera tracking system in these tests, we
can conclude that the system is capable of tracking a red object
under certain conditions with a high degree of accuracy. We
can attain similar performance in tracking an object of another
color by simply changing the HSV range in which to look for
an object. At this point, it is unknown the system’s
performance outdoors with the user wearing a jersey and the
camera a distance away from the user that meets the system
specifications. Color temperatures outdoors range from 5500
K to 6500 K [15], which would affect the camera’s perception
of color; this can be accounted for by modifying the HSV
range specified in the program. However, a potential area to be
addressed is the presence of objects in the environment that are
similar both in color and size relative to the user’s jersey.

The development of the camera tracking system relied
heavily on the material covered in several Electrical and
Computer Systems Engineering courses. ECE 353 Computer
Systems Lab 1 and ECE 373 Software Intensive Engineering
together provided a deep and fundamental understanding of
software that allowed for the creation of the camera tracking
system. ECE 354 Computer Systems Lab 2 introduced image
processing and manipulation techniques that were formative in
the design of the camera tracking system.

III. PROJECT MANAGEMENT
As of our Midway Design Review, we have completed all of

our proposed deliverables, which are summarized in Table IV.
Through this, we have completed the four main subsystems of
Otto. In the remaining five months comes the most challenging
part of our project: integrating the subsystems to create a
functional prototype. As a team, we must complete two main
tasks: develop autonomous flight capabilities for the drone,
and fuse the data from the GPS and camera tracking systems to
output reliable pitch, yaw, and roll instructions to the flight
control board.

Team Otto is comprised of three computer systems
engineers (CSEs) and one electrical engineer (EE) who have
diverse backgrounds. Seth Kielbasa has worked with robotics
in the past as part of the UMass Amherst firefighting robot
team; as part of Team Otto, he is responsible for the flight
control and stabilization algorithms. Albion Lici has
completed multiple internships at Teradyne, where he gained
much insight into interfaces between hardware and software;
this knowledge has proven to be very useful. Albion is
responsible for the GPS tracking component of the FollowMe
feature. Noah Portnoy also has robotics experience as he led
the UMass Amherst firefighting robot team for two years; he is
responsible for the camera tracking component of the
FollowMe feature. Andrew Sousa is the EE of the team and he
brings robotics experience from his work leading the IEEE
Micromouse group to successful completion of an autonomous
robot. Andrew is the team manager and is responsible for all of
the systems hardware. Please see Figure 3 to learn more about
our project timeline.

The team has been working quite well together; we all have
a clear vision of the final product. There is always an
enlightening discussion at our weekly all-hands meetings with
our advisor, Professor Christopher V. Hollot, who continues to
ask us thought-provoking questions and helps steer the team in
the right direction. The team communicates daily, either
through an online messaging service or in person, and meets
weekly on Thursday evenings to discuss each individual’s
progress from the week. We also share important information
such as data sheets, calculations, and experiment results on
cloud-based storage hosted by Google, while we keep all of
our code under version control in a GitHub repository. Finally,
we conduct large-scale or high-level communication via email.
We are in nearly constant contact due to both our project’s
difficulty level and our commitment to deliver Otto.

IV. CONCLUSION
Following the completion of the Midway Design Review,

the team has all four subsystems successfully working
independently of each other. Integration of the drone system
hardware and flight control software has already begun, with
successful test flights demonstrating stable flight and
responsive control over both pitch and roll. The third axis,
yaw, has proved a challenge to control. However, tests have
been conducted with the on-board compass to combat the
inaccurate yaw sensor on the flight control board. Stable
readings have been observed from the compass; thus, user
control over the yaw axis is now fully reliant on compass
readings. The camera tracking component of the FollowMe

TABLE III
CAMERA TRACKING SYSTEM TESTS

 Test Scenario Detection (True
Positive) Rate

False
Positive
Rate

Moving red object always in frame,
stationary camera

98.7% 0%

Moving red object always in frame,
moving camera

100% 0%

No object in frame, stationary camera N/A 0%
No object in frame, moving camera N/A 0%
Blue object always in frame N/A 0%
Green object always in frame N/A 0%
Yellow object always in frame N/A 0%

TABLE IV
MDR DELIVERABLES

 MDR Goal Completion

Drone Hardware 100%
Flight Stabilization Algorithm 100%

GPS Tracking 100%
Camera Tracking 100%

 6

feature is currently operating on the Raspberry Pi, tracking
colored objects in a simulated environment. The second
FollowMe component, GPS tracking, is running on both the
Raspberry Pi and an Android smartphone, and it is accurately
transmitting coordinates and determining separation distances.

Over the course of the next few months, the team will see
the development of the next crucial component of Otto: the
fusion of the GPS and camera tracking into a single FollowMe
feature. The success of this system is imperative to the
completion of the project, as it responsible for user tracking
and commanding the autonomous flight feature; both of these
functions are essential to making Otto possible. The fused
FollowMe feature will be developed in parallel with significant
testing and simulation of the flight control software to ensure a
smooth transition from the manual RC controller to the
autonomous flight algorithm.

Potential areas of struggle include implementing the fusion
of data from the camera and GPS tracking subsystems into a
single flight command, and fixating a camera on a moving user
while maintaining appropriate operating distances. Presently,
the team is considering an algorithm based on a weighted sum
of values from the two tracking components, where the
weighting is a function of separation distance; GPS being more
heavily weighted when the user is far away from the drone,
and camera tracking being more heavily weighted in close-
distance situations in which the GPS would become too
inaccurate. From here, all flight movement calculations will be
done on the Raspberry Pi before transmitting them to the flight
control board for execution. To reliably record the user, the
current implementation under consideration is a camera with
fixed orientation on the drone. This requires that the FollowMe
feature adjust the drone’s orientation in such a way that the
user will be maintained in the camera’s field of view. The
issue with this implementation resides with the vertical axis. In
order to vertically reorient the camera to keep the user in the
video frame, the drone must make a pitch adjustment, which
would result in either forward or backward movement.

Fig. 3. Project timeline from Fall 2014 to Spring 2015.

The planned deliverable for CDR will be a fully functional
prototype of Otto, incorporating the autonomous flight,
FollowMe feature, and video recording. Figure 3 shows the
expected timeline for the coming months. From this point until
middle to late January, the team will be split into two essential
sub-teams. The first team will be charged with perfecting the

drone flight and developing the autonomous flight software.
The second team will be responsible for the required fusion of
data from the camera and GPS tracking. The time period from
late January to CDR will be spent merging these components
into an integrated prototype. During this time, the video
recording will be developed and tested once the drone has
successfully demonstrated the rest of its functionality.

APPENDIX

Fig. 4. Estimated performance of the drone based on its motors, propellers,
battery, and drone weight. Battery performance estimates, including flight
times, are highlighted with a box. “Mixed Flight Time” is a combination of
hovering and maneuvering, the latter of which requires more thrust.
Calculations provided by [16].

ACKNOWLEDGMENT
Our team would like to thank our advisor Professor

Christopher V. Hollot for his excellent advising methodologies
and Francis M. Caron for helping us with all requests related
to the Senior Design Project lab.

REFERENCES
[1] B. Rose. (Accessed 2013, February 14). How to Get Better Action Cam

Footage [Online]. Available: http://gizmodo.com/5983584/getting-
better-action-camera-footage

[2] “Number of people who are very interested in extreme/ action sports in
the United States (USA) from spring 2008 to spring 2014,” Statista,
New York, NY, Stat. Rep., Spring 2014 [Online]. Available:
http://www.statista.com/statistics/229006/people-who-are-very-
interested-in-action-sports-usa/

TABLE IV
SYSTEM REQUIREMENTS

 Requirement

1 Track user through a fusion of two sensors: GPS and camera
2 Collect GPS location of user through a Wi-Fi connection to user

device
3 Collect finer location data of user through camera tracking
4 Carry out user-defined takeoff and land commands

5
6
7
8
9

10

Maintain a user-defined drone/user separation distance
Allow user to start and stop video recording
Video recording is high-definition (720p or better)
Must maintain visual lock on user for duration of recording
Drone will take preliminary measures upon reaching critical battery
level
Safety lock in hardware and software

 7

[3] DJI Innovations. (Accessed 2014, December 15). Flamewheel ARF Kit
[Online]. Available: http://www.dji.com/product/flame-wheel-
arf/feature

[4] P. Pine. (Accessed 2014, December 15). What does KV mean? [Online].
Available: http://www.flyelectric.com/ans.kv.html

[5] (Accessed 2014, December 15). SimonK ESC User Guide [Online].
Available: http://www.robotshop.com/media/files/pdf/lynxmotion-
simonk-esc-guide.pdf

[6] (Accessed 2014, December 15). 3DR uBlox GPS with Compass Kit
[Online]. Available: http://store.3drobotics.com/products/3dr-gps-ublox-
with-compass

[7] (Accessed 2014, December 15). Model B+ [Online]. Available:
http://www.raspberrypi.org/products/model-b-plus/

[8] (Accessed 2014, December 15). Logitech HD Webcam C310 [Online].
Available: http://www.logitech.com/en-us/product/hd-webcam-c310

[9] (Accessed 2014, December 15). Lumenier 5200mAh 3s 35c Lipo
Battery [Online]. Available: http://www.getfpv.com/lumenier-5200mah-
3s-35c-lipo-battery.html

[10] G. Owen. (Accessed 2014, December 15). How to Build Your Own
Quadcopter Autopilot / Flight Controller [Online]. Available:
https://ghowen.me/build-your-own-quadcopter-autopilot/

[11] (Accessed 2014, December 15). APM 2.6 Set [Online]. Available:
http://store.3drobotics.com/products/apm-2-6-kit-1

[12] (Accessed 2014, December 15). Processes and Threads [Online].
Available: http://developer.android.com/guide/components/processes-
and-threads.html

[13] (2014, April 21). OpenCV 2.4.9 Documentation [Online]. Available:
http://docs.opencv.org/

[14] (2014, March 26). Mask (computing): Image masks [Online]. Available:
http://en.wikipedia.org/wiki/Mask_%28computing%29#Image_masks

[15] (Accessed 2014, December 15). Color Temperature [Online].
Available: http://en.wikipedia.org/wiki/Color_temperature

[16] (Accessed 2014, December 15). xcopterCalc - Multicopter Calculator
[Online]. Available: http://www.ecalc.ch/xcoptercalc.php

