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 

Abstract—Otto is the personal cameraman that introduces a 

new way to capture your life's most exciting moments. The system 

is an autonomous quadcopter that is designed to follow and 

record a user performing an individual action sport. By 

maintaining a visual lock on the user during his or her 

performance, Otto is able to capture the entire experience 

through an on-board high resolution video camera. Once finished, 

the user can gather video recordings from the drone and share 

them with loved ones. 

 

I. INTRODUCTION 

UMANS are social beings that yearn to share their 

experiences with family and friends. Some of the most 

exciting experiences to share are those that include extreme 

circumstances. Individual action sports, such as skiing, wake-

boarding, mountain biking, and skateboarding, are activities 

that people truly enjoy capturing and sharing. Filming these 

moments is extremely hard since the sports are done at high 

velocities or in relatively dangerous conditions. We have set 

out to eliminate this challenge for amateur extreme sports 

performers. 

Previously, this challenge has been addressed by various 

subpar solutions. Some performers hold a camera [1] while 

doing their action sport in order to capture the moment. This 

solution is dangerous because the performer is putting some of 

their focus on filming and not necessarily on their own actions. 

Another option for the performer to attain a recording of 

himself is to have someone ride or otherwise move alongside 

him and record him [1]. This solution is even more unsafe 

because it requires the cameraperson to move with the 

performer at a presumably high rate of speed and focus almost 

entirely on the recording. There are also several products that 

have the same goal of recording action sports performers. 

These solutions attempt to track the user with some 

combination of GPS localization, additional wearable 

hardware, hardware connected to the user’s phone, and long-

range Bluetooth communication; our solution is different in 

both its implementation and operation. Furthermore, these 

products, such as AirDog and HEXO+, are in the development 

stages and are not yet on the market. Thus, action sports 

performers, of which there are 4.88 million in the United 

States [2], have not yet found the appropriate solution for 
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capturing all of the amazing things they do. 

Otto is the personal cameraman for capturing and recording 

amazing third-person aerial images. This product will make 

the recording process safer for action sports performers and 

enable them to capture a unique aerial view of their 

performances. Additionally, it will deliver functionality that 

has never been feasible for everyday consumers. This 

technology could have applications in many fields, including 

medicine, military, and home security. Along with these 

applications that may be beneficial to society, there are 

opportunities for misuse as well. Criminals could use this 

technology to follow people, enabling them to stalk others in 

an obscure way. We attempt to curtail this by making the 

user’s smartphone both the controller and the tracking device. 

In order to deliver this ambitious prototype, we developed 

requirements and constraints to keep our project within the 

proper scope. In our development of these requirements, we 

wanted to ensure that the user can pay no attention to Otto 

during the recording and focus entirely on his or her 

performance. From this, we concluded that the system must 

initiate and maintain a visual lock on the user throughout the 

entire performance. We also require that the system must have 

safety features to minimize the possibility of injury to the user 

when operating Otto; the system thus has safety locks on both 

the smartphone application and the quadcopter itself to prevent 

undesired liftoff. A full list of our requirements can be found 

in Table IV of Appendix B. Along with these requirements are 

the quantitative system specifications that Otto must abide by; 

these can be found in Table I below.  

II. DESIGN 

A. Overview 

Otto introduces a new way for amateur extreme sports 
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TABLE I 

SYSTEM SPECIFICATIONS 

              Specification    Goal     Actual 

Maximum drone/user separation 

distance 

30 m 30 m 

Minimum drone/user separation 

distance 

5 m 10 m 

Average flight time (fully charged) 10 min 10 min 

Maximum speed of drone 30 mph 20 mph 

Maximum angular velocity of drone 

in yaw 

1.8 rad/s 1.8 rad/s 

Minimum quality of video recording 720p30 720p60 

Total drone mass < 1500 g 1400 g 

Throttle level required to lift the 

drone 

50% throttle 64% throttle 
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performers to film themselves. Otto is a drone, more 

specifically an autonomous quadcopter, that can track and 

record a user. To do this, we needed to start with a robust 

foundation; details about the drone system’s hardware are 

covered in Section B. The tracking software and hardware 

both reside on this drone platform. The drone hovers and flies 

using flight control software developed by the theam; more 

information on that can be found in Section C. The FollowMe 

feature, which is covered in section D, allows the drone to 

follow and track the user. Finally, the mobile communication 

system allows for reliable communication between the user’s 

smartphone and the drone; technical details of this system are 

covered in section E. Within the mobile communication 

system, the mobile application running on the user’s 

smartphone provides the user interface through which the user 

can operate Otto. 

The tracking functionality relies on the user keeping an 

Android smartphone on their person throughout their 

performance. The user can open the Otto application on their 

smartphone and press the on-screen Takeoff button. The 

Android application will disable the Takeoff button if 

conditions are unsatisfactory for flight; see section E for more 

information about this feature. Once the Takeoff button is 

pressed, the drone will commence liftoff and rise to the 

appropriate pre-defined altitude. Then FollowMe will initiate, 

and Otto will immediately proceed to follow the user while 

maintaining a pre-defined drone-user separation distance. Otto 

will also turn to face the user while following her, so that the 

user may be in the video recording. When the user has finished 

her performance, the user may press the Land button within the 

app; at this point, Otto will slowly descend at its current GPS 

location and decelerate its motors upon impact with the 

ground. Once Otto is on the ground for a few seconds, it will 

shut off its motors entirely. 

The FollowMe feature works by leveraging GPS modules 

on both the drone and the user’s smartphone. With knowledge 

of the user’s GPS location relative to the drone, FollowMe is 

able to command the following of the user. An additional 

component of the FollowMe feature, camera tracking, was 

planned and developed but ultimately never integrated into the 

final system prototype; see Appendix A for more information 

about the camera tracking system. As it stands, the FollowMe 

feature calculates actions for the drone to perform and outputs 

flight commands to the flight control software in order to 

achieve those actions. The FollowMe feature is visually 

represented in the Otto Block Diagram; Figure 1. 

 

 
Fig. 1.  A high-level view of Otto’s main components. 

B. System Hardware 

First, we introduce the system’s hardware. The airframe of 

the quadcopter is the DJI Flame Wheel F450, which is made of 

a hardened plastic material to ensure a rigid flight with enough 

strength to endure high impact landings [3]. To provide thrust 

for this frame, we have four SunnySky brushless DC motors 

which have a 980 kv rating; this means that for every volt 

applied, the motor will attempt to produce 980 revolutions per 

minute (RPM) [4]. The motors rotate 10x4.7 inch carbon fiber 

composite propellers. This motor-prop combination ensures 

that there is enough upward force to allow the drone to hover 

at 64% throttle, where the drone’s total mass is measured to be 

approximately 1400 g. This has been thoughtfully designed so 

that at approximately 80% throttle, the motors can quickly 

maneuver the drone. Each motor is operated by a three-phase 

signal; the system generates these signals locally with 

electronic speed controllers, or ESCs. 

We chose four ESCs with the SimonK firmware loaded on 

them, as they seemed to be the most promising consumer ESC 

offering today [5]. The ESCs receive a pulse-width modulated 

(PWM) signal from the flight control board, which tells the 

motors the angular velocity at which they should rotate. In 

turn, the ESCs output a polyphase signal to rotate the 14-pole 

DC motors. The flight control board is the APM 2.6 board 

manufactured by 3D Robotics. It contains all of the necessary 

hardware for flying: a 3-axis gyroscope, an accelerometer, and 

a barometer.  

Both the FollowMe feature and the flight control software 

run on the APM 2.6 board, where the FollowMe feature sends 

pitch, roll, and yaw commands to the flight control software. In 

order for the FollowMe feature to provide these commands, it 

must be aware of the drone’s location. Thus, there is a GPS 

module on the drone, specifically the u-blox LEA-6H GPS 

module with a Taoglas patch antenna [6], that is connected to 

the APM 2.6. See Section D for more information about the 
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FollowMe feature. 

The core hardware component of the mobile communication 

system is the Raspberry Pi Model B+ on-board the drone [7]. 

The Raspberry Pi serves as a means of relaying messages 

between the user’s smartphone and the flight control board. In 

order to establish a Wi-Fi communication link between the 

user’s smartphone and the Raspberry Pi, a 2.4 GHz Wi-Fi 

module is attached via USB to the Raspberry Pi. More about 

the mobile communication system can be found in Section E. 

The drone is powered by a 5200 milliampere-hour (mAh) 

lithium-ion polymer (LiPo) battery [9]. This battery was 

chosen such that the drone can meet the ten minute flight time 

requirement. We previously estimated that this battery would 

provide 11.4 minutes of flight time (see “Mixed Flight Time” 

in Figure 6 of Appendix B for calculated results), and we have 

found in practice that the drone is capable of 10 minutes of 

flight time or more on a fully-charged battery. Power from the 

battery is distributed to the four on-board ESCs. Each ESC 

then converts that power, as well as the input from the flight 

control board, into a three-phase power signal which is output 

to its respective DC motor. Each ESC also has a battery 

eliminator circuit (BEC) which outputs 5V 2A DC, although 

these go unused in our final prototype. An additional fifth 

ESC, also powered by the battery, has its own battery 

eliminator circuit, which serves as a dedicated power supply 

for both the flight control board and the Raspberry Pi. The Wi-

Fi module attached to the Raspberry Pi is then powered by the 

Raspberry Pi itself.  

Finally, there is a high-resolution video camera on-board the 

drone: the GoPro Hero camera. This device has an internal 

battery as an independent power source as well as its own data 

storage. The GoPro camera is mounted in line with the drone’s 

nose and is used to capture the high-resolution video recording 

of the user. 

C. Flight Control Software 

The flight control software resides on the APM 2.6 flight 

control board and maintains constant knowledge of the 

orientation of the drone. Using readings from on-board 

gyroscopes and accelerometers, the system deploys a set of 

algorithms to determine appropriate values to feed the four 

individual ESCs, which then update the motors. The software 

has been built from scratch and utilizes libraries obtained from 

the open-source ArduCopter project; these libraries primarily 

serve as a means of reading from the multitude of sensors on 

our flight control board. 

This crucial subsystem was developed for the 3D Robotics 

APM 2.6 flight control board [11]. This Arduino-based 

microcontroller contains an MPU-6000 sensor chip that 

features three pairs of gyroscopes and accelerometers, one pair 

per axis. An Integrated Development Environment (IDE) 

tailored specifically for the APM board was the site of all 

flight-related software design and testing. 

 

 
Fig. 2.  A block diagram representation of the PID control algorithm [10]. 

 

The algorithm centered at the heart of the flight control 

software is the proportional-integral-derivative, or PID, 

controller algorithm. Figure 2 provides a visual representation 

of the PID controller algorithm; this is used a total of six times 

in the flight control software, where each instance can be 

abstracted as a “PID block”. Figure 7, which can be found in 

Appendix B, provides a visual representation of the flight 

control software handling incoming data and converting it into 

values capable of driving the motors [10]. Each attitude PID 

block takes in a desired value that is compared to the actual 

value of the accelerometer. This first calculation is then input 

into an attitude rate PID block to be compared against the 

values captured by the gyroscopes. The outputs of these 

attitude rate PID blocks are then used to adjust the motors in 

the proper manner to compensate for the measured errors. 

Each of the three axes (pitch, roll, and yaw) possesses its own 

set of PID constants to control the rate at which the errors are 

magnified. These values were finely tuned to keep Otto from 

oscillating and becoming rapidly unstable in the air. 

As Otto has been designed to be totally autonomous from the 

user’s perspective, flight commands are being entirely 

computed by the FollowMe feature running on the flight 

control board. When Otto is airborne, the FollowMe feature 

constantly feeds pitch, roll, and yaw commands to the flight 

control software. The flight control software then feeds these 

through the previously mentioned PID control loops, along 

with sensor readings, in order to calculate the appropriate 

motor adjustments. 

Completion of this subsystem required knowledge obtained 

through numerous Electrical and Computer Engineering 

courses that we have completed over the past three years. ECE 

353 Computer Systems Lab 1 gave an initial exposure to the C 

programming language, which is syntactically and functionally 

very similar to the Arduino microcontroller language used in 

this project. Additionally, ECE 373 Software Intensive 

Engineering provided guidance on how to successfully plan 

the composition of a program. A junior-year ECE design 

project elective on firefighting robots provided foundational 

knowledge in robotics engineering and provided valuable 

experience utilizing sensors and motors with a microcontroller. 

For obvious safety reasons, numerous tests were conducted 

on each new revision of the flight control software before 



 4 

being used with live motors. The first round of flight software 

development involved simple scripts to print sensor readings 

and motor outputs to the console for analysis. Through this 

technique, it could be confirmed that the sensors were reading 

appropriate values and that the software was providing 

reasonable output to the motors. From there, a testing rig was 

built to allow the drone, now with the attached motors and 

propellers, to have free motion over one axis. This allowed for 

visual confirmation that the drone could respond to the manual 

RC control of either pitch or roll and then stabilize itself with 

minimal oscillation. With further use of the testing rig, the PID 

constants mentioned above were tweaked to reduce the 

oscillation effects. Once the PID control was sufficiently 

refined, outdoor tests were conducted at low throttle levels 

before manual takeoff and flight was achieved. While airborne, 

the spinning or oscillation of the drone frame could be 

observed, and the software was adjusted to counteract these 

undesired effects. More recent tests, conducted mostly during 

the winter months, required large open indoor spaces in which 

to test autonomous takeoff, landing, and altitude holding 

functionality. To satisfy this need, the second round of testing 

was conducted in the Boyden and Totman gyms on the UMass 

Amherst campus; these were the ideal spaces to develop those 

autonomous features previously mentioned. The last round of 

flight testing was the most difficult as it involved testing the 

tracking functionality, which required decent weather in order 

to obtain a GPS signal. Fighting the weather, primarily the 

wind, put a heavy burden on the PID control loops to 

compensate for the sudden changes of orientation recorded by 

the accelerometers and gyroscopes. 

D. FollowMe 

FollowMe is Otto’s navigation and guidance system. The 

goal of this system is to act as the pilot of Otto; it shall control 

Otto’s altitude, attitude, and heading such that Otto will follow 

the user from a defined separation distance during his or her 

performance. To accomplish this task, our system leverages 

three main sensors: the barometer, the magnetometer 

(compass), and the GPS receiver. FollowMe uses GPS 

location information about the user and the drone to navigate 

Otto to the appropriate location. We have broken down the 

FollowMe system into four main subsystems: altitude control, 

heading control, attitude control, and autonomous takeoff and 

land. 

D-1. Altitude Control 

The altitude control system relies on the barometer to 

provide accurate altitude information to the system. The 

barometer is a high resolution altimeter sensor which measures 

atmospheric temperature and pressure; from these 

measurements, the barometer calculates the drone’s current 

altitude relative to its takeoff elevation. Our barometer 

provided an altitude resolution of 10 centimeters [12], 

although it was only accurate to the meter as altitude readings 

tended to drift over time. 

To understand this subsystem, it must be clear that the 

altitude of the drone is a function of the throttle, if we assume 

horizontal flight and ideal environmental conditions. The 

throttle is the control signal that dictates the amount of power 

that the motors should consume, which is directly correlated 

with the amount of lift the motors provide. The altitude control 

system is a PID feedback control system with a dynamic 

feedforward component; see Figure 3 below. The input to the 

feedback system is altitude error and the output is a motor 

throttle command. The altitude error is the difference between 

the desired altitude set in software and the current altitude 

measurement from the barometer. Next is the feedforward 

component; we chose to use a feedforward component because 

we were able to determine what the “hover throttle” of our 

system was. The hover throttle is the amount of motor throttle 

that will overcome the force of gravity acting on the drone. 

The hover throttle is a function of the weight of the system and 

the current battery voltage; as the battery voltage decreases, a 

higher throttle command is required in order to make the drone 

hover. Since the weight of the system is known, we were able 

to hard-code that component of the hover throttle. To account 

for the battery’s voltage during flight, we created a function 

that takes as input the known system-weight-compensation 

throttle and appropriately adjusts it based on the current 

battery voltage. The output of this function is an accurate 

estimation of the current hover throttle. In this architecture, the 

feedforward component overcomes the force of gravity on the 

drone and the feedback loop only has to make small changes in 

throttle to keep the drone at the desired altitude. 

 

 
Fig. 3.  Altitude PID feedback control with feedforward component. 

 

D-2. Heading Control 

The heading control system is the system that controls the 

heading of the drone; the heading can be thought of as the nose 

of the drone. This system is designed to keep the heading of 

the drone pointed to the user at all times. We made this design 

choice because the video camera is fixed to and aligned with 

the nose of the drone, so when the drone’s heading is pointed 

directly at the user, the user will be in the center of the frame. 

This system takes as input the GPS locations of the user and 

the drone as well as the heading of the drone as measured by 

the magnetometer. To control the heading of the drone, we use 

a PD feedback control loop. The input to the feedback system 

is heading error and the output is a yaw command for the flight 
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control software to carry out. The heading error is the 

difference between the drone’s current heading, which is read 

directly from the magnetometer, and the drone’s desired 

heading, which is generated from the bearing. The heading is 

the direction that the drone is facing, measured in degrees 

away from North. The bearing is the heading at which the 

drone’s nose would point to the user. The bearing is calculated 

by performing trigonometry on the GPS coordinates. More 

specifically, the tangent of the difference in latitude 

components over the difference in longitude components is 

used to calculate the bearing. The bearing is updated at a rate 

of 2 Hz; it is limited by the frequency of received GPS 

location data for the drone and user. Due to the inaccuracies of 

the GPS modules on the phone and the drone, we found that 

the bearing was fairly accurate only when the drone was 

approximately 10 meters (or more) away from the user. 

D-3. Attitude Control 

We preface this system with an explanation of the two 

coordinate systems at play in the attitude control system. In 

Figure 4, you will see that there are two coordinate systems: 

one colored blue (xb, yb, zb) and another colored red (xe, ye, 

ze). The blue-colored coordinate system is the drone’s body 

axis coordinate system; this system changes as the drone 

rotates in space. The pitch axis is yb with pitch angle theta, the 

roll axis is xb with roll angle phi, and the yaw axis is zb with 

yaw angle psi. The red coordinate system is the inertial axis, or 

earth axis (hence the “_e” convention). It is a fixed coordinate 

system [14]. Another point to note about this system is that the 

x-axis (xe) is approximately aligned with the earth’s longitude 

lines and y-axis (ye) approximately aligned with the earth’s 

latitude lines. We say approximately because they are aligned 

on a small scale (10 to 100 meters) but on a large scale the 

longitudinal and latitudinal lines are not straight. With this 

knowledge, the attitude control system can be described. 

 

 
Fig. 4.  Body axis to earth axis conversion diagram [14]. 

 

The attitude control system controls Otto’s pitch and roll 

angles. Pitching the vehicle will make it move forward or 

backward and rolling will lead to a leftward or rightward 

movement, both relative to the drone’s current position. 

Similar to the other FollowMe subsystems, the attitude control 

system is a PI feedback control system with inputs of desired 

separation distance and GPS error and output of pitch and roll 

commands. The first input, the desired separation distance, is 

the horizontal distance the drone shall be from the user; this is 

input to the attitude control system as an integer. The two 

additional inputs to the system are the GPS coordinates of both 

the drone and the user. These three inputs are used to 

synthesize Otto’s target coordinate, which is the appropriate 

distance away from the user (the separation distance). To 

communicate the method of calculating the target coordinate, 

we can think of the right triangle formed between the two GPS 

points, where each coordinate is at the tip of the acute angles 

of the triangle. Each leg of the right triangle respectively has a 

length equal to either the latitudinal or longitudinal difference 

between the two points in space. These latitude and longitude 

errors are then scaled such that the hypotenuse of the triangle 

is equal to the separation distance, whilst the angles of the 

triangle stay fixed. These two latitude and longitude errors are 

then added to the user’s actual GPS coordinates to determine 

the drone’s target location. This system is updated at a 

frequency of 2 Hz as it is limited by the rate at which the GPS 

coordinates of the drone and user are updated. 

Once the target coordinates have been calculated, the error 

between the drone’s current GPS coordinates and the target 

coordinates can be derived. Before this error is input into the 

attitude control feedback loop, it must be converted into the 

body axis coordinate system (assuming horizontal flight). To 

do this conversion, we multiply the GPS coordinate error by 

the yaw rotation matrix [15], which can be seen in Figure 5. 

The input to the matrix is psi, which is the yaw of the drone 

relative to 0 degrees north; this represents the relationship 

between the body axis and the earth axis. The output of this 

multiplication can now be thought of as the x error, which will 

control the desired roll, and y error, which will control the 

desired pitch; these values, along with the drone’s actual pitch 

and roll attitudes, are input into the PI feedback system. At the 

output, pitch and roll commands are sent to the flight control 

software. 

 

 

 
 

Fig. 5.  Yaw rotation matrix, where psi is the yaw of the drone relative to 

north. 
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D-4. Autonomous Takeoff and Land 

 The final piece of the FollowMe system includes both the 

autonomous takeoff and land functions that enable the user to 

begin and end Otto’s flight from the mobile device. Upon 

pressing their respective buttons on the phone, Otto will 

receive a signal to change flight states and initiate the 

appropriate action. If that action was takeoff, throttle will 

initially be set to zero and then immediately be set to a value 

slightly above the hover throttle, which as previously 

mentioned is determined by both the system-weight-

compensation throttle and the current battery voltage. As the 

barometer reading approaches the desired altitude, the throttle 

is adjusted to be closer to the hover throttle in a linear fashion. 

Meanwhile, pitch, roll, and yaw commands are being 

controlled by the takeoff function such that Otto maintain its 

current location and heading. Upon reaching the desired 

altitude, the throttle output is set exactly to the hover throttle, 

allowing Otto to maintain altitude. From here, the FollowMe 

tracking system takes control and begins to command the 

following of the user. 

 The land function was more difficult to implement as it 

required much more precise maneuvers to successfully and 

safely perform the correct task. To start the initial descent, the 

throttle is set to a value slightly below the hover throttle to 

allow for some downward movement. The z-axis velocity and 

acceleration relative to the ground are monitored via the 

barometer and z-axis accelerometer, respectively. Should Otto 

begin to fall too fast, the throttle is set back to the hover 

throttle until no downward movement is being detected. Just as 

in the takeoff function, pitch, roll, and yaw commands are 

being controlled by the land function during descent to 

maintain the current location and heading. The z-axis 

accelerometer is used to detect an acceleration spike in the 

opposite direction of gravity (a positive value), signifying that 

Otto has hit the ground. The throttle value is then stepped 

down at set intervals if the sensors continue to indicate that 

Otto is no longer moving, implying a successful landing. After 

enough of these steps have occurred, we can be confident that 

Otto is stationary on the ground; the land function will then 

stop the motors entirely, at which point Otto is safe to 

approach. 

 

This concludes the description of Otto’s FollowMe 

navigation and guidance system. All of the feedback control 

loops work together to guide the drone through space, 

continuously pointing to and following the user while 

maintaining a constant altitude. The integrated FollowMe 

system can be seen in Figure 8 of Appendix B. To accomplish 

this task, we used knowledge from many courses across 

Electrical and Computer Systems Engineering. At the core of 

this system is feedback control; although none of the team 

members had studied the subject previously, we certainly 

learned feedback control “on the fly” and applied its theories 

to this system. We also used knowledge from Computer 

Systems Lab I and II (ECE 353 and 354) to develop and debug 

FollowMe’s embedded software. The team also followed the 

general software development and testing practices that were 

taught in ECE 373 Software Intensive Engineering. 

E. Mobile Communication System 

The Mobile Communication System enables the 

communication between the user and Otto. To establish this 

communication link, the Mobile Communication System had 

to be broken down into two sub-components: a phone 

application and a messaging protocol. 

The phone application runs on an Android-powered 

smartphone. It includes two interactive, “swipeable” screens: 

the Controls screen and the Diagnostics screen. The goal for 

this design approach was to make it easy and intuitive for the 

user to control Otto. The Controls screen presents the user 

with three buttons: Takeoff, Land and Power. Takeoff is used 

when the user would like to initiate takeoff of the drone. This 

button gets enabled and disabled as a function of the status of 

the system’s diagnostics. Things such as the GPS signal 

accuracy, battery level, and Wi-Fi connection are checked 

before the button is enabled. The Land button enables the user 

to initiate the landing functionality of the drone. The Power 

button enables the user to initiate a shutdown of the Raspberry 

Pi in order to prepare Otto for a safe system shutdown. 

Another aspect of the app is the Diagnostics screen, which 

presents the user with the diagnostics of the system; these 

include the altitude of the drone, the user-drone separation 

distance, and the drone’s battery voltage, among others. On 

this screen, the user is also capable of manually pinging Otto 

in order to ensure that the Wi-Fi link is still fully operational. 

The phone application by default pings Otto every second by 

sending a packet using the User Datagram Protocol, or UDP. 

For every ping packet that the phone sends, the app expects 

one back. If the app sends a ping packet and does not receive 

one in response within 3 seconds, we assume that there is 

something wrong with the Wi-Fi link. 

The tasks of the Android application have been broken 

down into four threads executed in parallel: the user interface 

(UI) thread, the network send thread, the network receive 

thread, and the ping thread. Any rendering of visual objects 

and UI updates are performed by the UI thread. The UI thread 

is also responsible for spawning all other threads for this 

application; it can therefore be thought of as the main thread 

[13]. The network send thread handles all outgoing network 

data intended for the Raspberry Pi by transmitting messages 

that have been added to the transmit FIFO queue. The network 

receive thread handles all incoming traffic from the Raspberry 

Pi that is being sent to the Android app. Receiving from the 

network is a synchronous, or blocking, task. Finally, the ping 

thread is responsible for executing the pinging mechanism 

between the drone and the Android app. 

The messaging protocol enables the system to have 

bidirectional communication between the phone application 

and the drone. The most important message communicated in 

this link is the GPS coordinates of the user; they are sent to the 

drone at rate of 2 Hz. Because we use UDP, the 
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communication on the Wi-Fi channel is inherently unreliable. 

Communication packets containing GPS coordinates might get 

lost due to collisions, dropped because of a full queue, or other 

factors; as such, the 2 Hz update rate is not guaranteed. 

Attempting retransmission will provide lagging coordinates as 

an input to FollowMe; therefore we ignore any dropped 

messages. The mobile communication system is designed to be 

robust, and so does not halt when packets are dropped. 

However, the system will see a decrease in performance in this 

scenario. The app communicates with the Raspberry Pi on-

board the drone via a Wi-Fi Link operating on the 2.4 GHz 

band. The Raspberry Pi is connected to the APM flight control 

board via a UART communication link operating at a rate of 

115200 baud. The protocol defined here is ASCII character 

based and is structured with a start character, a 3 byte message 

identifier, the message itself, and an end-of-packet character. 

Table II below shows an example of a message string that the 

phone app will interpret as the battery level of the drone. 

Tables V and VI, which can be found in Appendix B, list all 

message types supported by the system along with a short 

explanation for each. 

Threaded programming and objected oriented design 

principles used in the development of this system were 

introduced in ECE 373 Software Engineering. The networking 

topics used here, such as the User Datagram Protocol, were 

presented in ECE 374 Computer Networks and the Internet. 

The Android application was developed using both the Java 

programming language and the Android API, the latter of 

which is provided and documented by Google. The Android 

app was written using an object-oriented design approach. An 

Android extension tool package was also used alongside the 

Eclipse IDE in order to make the development of the app more 

efficient. 

III. PROJECT MANAGEMENT 

Team Otto is comprised of three computer systems 

engineers (CSEs) and one electrical engineer (EE) who have 

diverse backgrounds. Seth Kielbasa has worked with robotics 

in the past as part of the UMass Amherst firefighting robot 

team; as a member of Team Otto, he was responsible for the 

flight control and stabilization algorithms in the first semester 

and for the takeoff and land functions in the second semester. 

Albion Lici has completed multiple internships at Teradyne, 

where he gained much insight into interfaces between 

hardware and software; this knowledge has proven to be very 

useful in his work on Team Otto. During the first semester, 

Albion was responsible for the GPS tracking component of the 

FollowMe feature which was developed and implemented on 

the Android device; during the second semester, Albion was 

responsible for the mobile communication system. Noah 

Portnoy also has robotics experience as he led the UMass 

Amherst firefighting robot team for two years. Noah was 

responsible for the camera tracking component of the 

FollowMe feature during the first semester. During the second 

semester, he was responsible for parts of the FollowMe 

system, namely the altitude control system and components of 

the attitude control system, as well as the system control logic 

for the drone. In addition, Noah managed and maintained the 

project’s code base. Andrew Sousa is the EE of the team and 

he brings robotics experience from his work leading the IEEE 

Micromouse group to successful completion of an autonomous 

robot. Andrew is the team manager and was responsible for all 

of the drone hardware during the first semester; in the second 

semester, Andrew was responsible for the design and 

implementation of the FollowMe system (which includes much 

work from other members of the team). 

This semester, we did not follow a standard Gantt chart as it 

did not seem to work well for many of the team members. 

Instead, we used an online tool hosted by GitHub that allowed 

team members to add issues or desired features/functions to 

the list, assign team members to work on them, and easily set 

deadlines and goals. This worked significantly better for our 

team’s dynamics. 

Over the course of the year, the team worked relatively well 

together. We all had a clear vision of the final product from 

beginning to end, though the smaller “demos” in between were 

less clear and more difficult to come up with. There was 

always an enlightening discussion at our weekly all-hands 

meetings with our advisor, Professor Christopher V. Hollot, 

who continued to ask us thought-provoking questions and help 

steer the team in the right direction. Our advisor was often so 

kind as to meet with us at other times to discuss various 

components of the many feedback control systems that lay 

within our system. The team communicated almost daily 

through either an online messaging service or in person; in 

addition, the team met weekly to discuss each individual’s 

progress from the week. We also shared important information 

such as data sheets, calculations, and experiment results on 

cloud-based storage hosted by Google, while we kept all of our 

code under version control in a GitHub repository. Finally, we 

conducted large-scale or high-level communication via email. 

We were in nearly constant contact due to both our project’s 

difficulty level and our commitment to deliver Otto. 

IV. CONCLUSION 

Following the completion of the Final Product Review, the 

team has a functional prototype of the original product design. 

Otto can successfully track a mobile device while keeping the 

on-board high resolution camera fixed on the user at all times. 

From the user’s standpoint, there is no need for any manual 

control of flight, other than the takeoff and land functions that 

are integrated into the mobile app. While the camera tracking 

system that was presented in our Comprehensive Design 

Review did not make it onto the final product, Otto is 

successfully able to perform the actions that were originally set 

TABLE II 

EXAMPLE OF SENDING DRONE BATTERY LEVEL TO THE PHONE 

Start Byte 3 Byte Message ID Message End Byte 

$ BTS 11.812 ! 
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out to be accomplished. 

Overall, this project has been a tremendous learning 

experience for the entire team as it incorporated numerous 

engineering challenges that had to be solved throughout the 

course of the last two semesters. To start, this project was a 

significant coding challenge, written mostly from scratch with 

the help of many available libraries. A short range Wi-Fi 

network was established with a messaging protocol to send 

information from the mobile device to the phone, a common 

occurrence these days but not one previously accomplished by 

the team. An Android application was designed and built to 

provide user control of Otto, transmit the user’s GPS 

coordinates to the drone, and display key diagnostics that the 

user may wish to monitor while flying Otto. Finally, the team 

learned of the many difficulties created by building a project 

that must cooperate with the weather, as was seen on the final 

SDP demo day when the wind was too severe to perform a live 

demo. The weather experienced during the final weeks of this 

project made it difficult to run the appropriate tests to ensure 

tracking was operational. 

APPENDIX 

A. Camera Tracking 

The camera tracking system was developed with the intent 

of controlling the yaw of the drone such that the drone may 

face the user and thus the user may be in the video recording. 

If it were integrated into the drone system, the camera tracking 

system would be able to process video frames from a low-

resolution camera and locate the user in the frame by looking 

for the specially colored jersey that the user would wear during 

his performance. As described in section D, the FollowMe 

feature uses GPS data to accomplish the yaw control 

functionality that camera tracking would have provided. 

Without camera tracking integrated, the only loss is that 

camera tracking likely would have provided more accurate 

data with which to command yaw when the drone is within a 

certain range of the user. 

We chose not to integrate the camera tracking system into 

the final prototype in order to focus on the more critical 

components of the project. We did not choose to abandon 

camera tracking integration because it might be too difficult; 

rather, we believed that one or more components of the final 

prototype might end up non-functional if we were to assume 

the additional task of integrating camera tracking into the 

system. Following is a description of how the camera tracking 

works in isolation and how it may be integrated into the system 

in the future. 

The camera tracking system can serve as an additional core 

component of Otto’s FollowMe feature, allowing the drone to 

accurately keep the user in the video frame. In order for the 

camera tracking system to uniquely identify and track the user 

in the environment, the user must wear a distinctly colored 

jersey. The camera tracking system can attain a visual lock on 

the user upon drone takeoff by scanning for the color of the 

user’s jersey. Once the visual lock has been acquired and the 

FollowMe feature has been initiated, the camera system can 

continuously track the user. If the user begins to veer out of the 

video frame boundaries, the camera tracking system can send 

yaw control output in vector form to the FollowMe feature. 

This output communicates how the drone should reorient itself 

along the yaw axis to maintain a visual of the user. The 

FollowMe feature can take this data from the camera tracking 

system and synthesize it with GPS data to form unified output 

in the form of flight commands to the flight control software. 

As of the team’s Midway Design Review, camera tracking is a 

functional, closed-loop system operating at 7.5 Hz that can 

track an object of a certain color and keep the object in the 

video frame by commanding a servo motor to rotate the 

camera along the yaw axis. 

The camera tracking software can reside on Otto’s main 

computer, a Raspberry Pi Model B+ [7]. The software is 

written in the Python programming language and harnesses the 

OpenCV (Open Source Computer Vision) library to detect the 

colored object by heavily processing the video frames that are 

captured by a Logitech C310 USB webcam [8]. Specifically, 

the camera tracking software performs the following OpenCV 

transformations [16] on each video frame: cvtColor to convert 

the image from the RGB to the HSV color space, inRange to 

get a mask [17] of the image consisting only of those pixels 

that fall within the desired object’s color range, dilate to dilate 

the shapes present in the mask so as to smooth out the shapes’ 

edges, findContours to detect all shapes present in the image, 

and contourArea to measure the area of the detected shapes 

and to select the most prominent shape in the image. From 

here, the software determines the center of the detected object 

within the video frame, and continuously checks to see if the 

center of the object moves outside a programmed set of 

bounds centered about the middle of the frame. Upon detecting 

that the object has moved outside of these bounds, the software 

currently outputs servo commands for the yaw axis over a 

serial output. The serial output then goes to an Arduino Uno, 

which sends digital output to the servo. [Note that the Arduino 

IDE and programming language were used to develop the 

servo-controlling software that runs on the Arduino Uno.] 

Once the object moves back within the specified bounds, the 

software no longer sends servo commands. This simulates how 

the camera tracking software can send yaw commands to the 

FollowMe feature to keep the user in the video frame. 

Several tests have been conducted to assess the performance 

of the camera tracking system. The environment for these tests 

used fluorescent lighting, thus having a color temperature of 

approximately 3000 K [18], and the camera was positioned to 

face a white background that filled the entire camera frame. 

Any object displayed to the camera was always kept 

approximately two feet away. For these tests, the system was 

configured to track a red object. The variables in the tests are 

as follows: (1) the color of the object, and (2) either moving 

the camera to simulate the effects of drone movement, or 

keeping the camera stationary. For each test, we monitored the 

system’s performance for two minutes in the same 
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environmental conditions. Detection rates and false positive 

rates were calculated using frame counts provided by the 

camera tracking system. The results are summarized in Table 

III below. 

 

 
 

While there are many factors contributing to the 

performance of the camera tracking system in these tests, we 

can conclude that the system is capable of tracking a red object 

under certain conditions with a high degree of accuracy. We 

can attain similar performance in tracking an object of another 

color by simply changing the HSV range within which to look 

for an object. 

The system’s performance outdoors has been qualitatively 

tested with the user wearing a bright red jersey, the camera 

mounted on the drone and connected to the Raspberry Pi, and 

the drone a distance away from the user that meets the system 

specifications. We found the outdoor performance of the 

camera system to be suboptimal, only sometimes detecting the 

user’s red jersey and occasionally detecting other red objects 

instead (such as vehicle taillights). However, that does not 

mean the camera tracking system cannot work outdoors; in 

fact, it may work very well with further adjustments. 

One reason why the camera tracking system performed 

poorly outdoors is that while the color temperature of the 

indoor testing area was about 3000 K, color temperatures 

outdoors range from 5500 K to 6500 K [18]. By measuring 

HSV values for the red jersey both indoors and outdoors, we 

were able to confirm that the color temperature affects the 

camera’s perception of color. To solve this issue, one can 

simply modify the HSV range specified in the program so that 

the range best represents the HSV values of the target; in this 

case, it would be the colored jersey of choice in both sunny 

and cloudy outdoor environments. A potential issue still to be 

addressed is the presence of objects in the environment that are 

similar both in color and size relative to the user’s jersey. 

However, this issue can most likely be mitigated with a careful 

selection of both jersey color and HSV range. 

The development of the camera tracking system relied 

heavily on the material covered in several Electrical and 

Computer Systems Engineering courses. ECE 353 Computer 

Systems Lab 1 and ECE 373 Software Intensive Engineering 

together provided a deep and fundamental understanding of 

software that allowed for the creation of the camera tracking 

system. ECE 354 Computer Systems Lab 2 introduced image 

processing and manipulation techniques that were formative in 

the design of the camera tracking system. 

B. Figures and Tables 

 

Fig. 6.  Estimated performance of the drone based on its motors, propellers, 

battery, and drone weight. Battery performance estimates, including flight 

times, are highlighted with a box. “Mixed Flight Time” is a combination of 

hovering and maneuvering, the latter of which requires more thrust. 

Calculations provided by [19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE IV 

SYSTEM REQUIREMENTS 

         Requirement 

1 Track user through a fusion of two sensors: GPS and camera 

2 Collect GPS location of user through a Wi-Fi connection to user 

device 

3 Collect finer location data of user through camera tracking 

4 Carry out user-defined takeoff and land commands 

5 

6 

7 

8 

9 

 

10 

Maintain a user-defined drone/user separation distance 

Allow user to start and stop video recording 

Video recording is high-definition (720p or better) 

Must maintain visual lock on user for duration of recording 

Drone will take preliminary measures upon reaching critical 

battery level 

Safety lock in hardware and software 

 

 

TABLE VI 

PHONE APPLICATION TO DRONE MESSAGE IDS 

     Message Identifier      Message Explanation 

LAT User Latitude (double) 

LON User Longitude (double) 

BTS Drone Battery Status (double) 

TKF 

STP 

WPG 

PSH 

User Takeoff (short) 

User Land (short) 

Wi-Fi Ping Request 

Raspberry Pi Shutdown (short) 

 

TABLE V 

DRONE TO PHONE APPLICATION MESSAGE IDS 

     Message Identifier      Message Explanation 

LAT Drone Latitude (double) 

LON Drone Longitude (double) 

BTS Drone Battery Status (double) 

ALT 

CRS 

GPS 

GPA 

WPG 

SRD 

BRG 

Drone Altitude (double) 

Drone Climb Rate (double) 

Drone GPS Status (int) 

Drone GPS Accuracy (double) 

Wi-Fi Ping Response 

Separation Distance (double) 

Bearing to User (double) 
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Fig. 7.  A block diagram representation of the Flight Control Software. 

Fig. 8.  The complete FollowMe guidance system. 
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