
 1



Abstract—Otto is the personal cameraman that introduces a

new way to capture your life's most exciting moments. The system

is an autonomous quadcopter that is designed to follow and

record a user performing an individual action sport. By

maintaining a visual lock on the user during his or her

performance, Otto is able to capture the entire experience

through an on-board high resolution video camera. Once finished,

the user can gather video recordings from the drone and share

them with loved ones.

I. INTRODUCTION

UMANS are social beings that yearn to share their

experiences with family and friends. Some of the most

exciting experiences to share are those that include extreme

circumstances. Individual action sports, such as skiing, wake-

boarding, mountain biking, and skateboarding, are activities

that people truly enjoy capturing and sharing. Filming these

moments is extremely hard since the sports are done at high

velocities or in relatively dangerous conditions. We have set

out to eliminate this challenge for amateur extreme sports

performers.

Previously, this challenge has been addressed by various

subpar solutions. Some performers hold a camera [1] while

doing their action sport in order to capture the moment. This

solution is dangerous because the performer is putting some of

their focus on filming and not necessarily on their own actions.

Another option for the performer to attain a recording of

himself is to have someone ride or otherwise move alongside

him and record him [1]. This solution is even more unsafe

because it requires the cameraperson to move with the

performer at a presumably high rate of speed and focus almost

entirely on the recording. There are also several products that

have the same goal of recording action sports performers.

These solutions attempt to track the user with some

combination of GPS localization, additional wearable

hardware, hardware connected to the user’s phone, and long-

range Bluetooth communication; our solution is different in

both its implementation and operation. Furthermore, these

products, such as AirDog and HEXO+, are in the development

stages and are not yet on the market. Thus, action sports

performers, of which there are 4.88 million in the United

States [2], have not yet found the appropriate solution for

S. K. Author from Westfield, MA (e-mail: skielbas@umass.edu).

A. L. Author, from Revere, MA (e-mail: alici@umass.edu).

N. P. Author from Newton, MA (e-mail: nportnoy@umass.edu).

A. S. Author from Dartmouth, MA (e-mail: acsousa@umass.edu).

capturing all of the amazing things they do.

Otto is the personal cameraman for capturing and recording

amazing third-person aerial images. This product will make

the recording process safer for action sports performers and

enable them to capture a unique aerial view of their

performances. Additionally, it will deliver functionality that

has never been feasible for everyday consumers. This

technology could have applications in many fields, including

medicine, military, and home security. Along with these

applications that may be beneficial to society, there are

opportunities for misuse as well. Criminals could use this

technology to follow people, enabling them to stalk others in

an obscure way. We attempt to curtail this by making the

user’s smartphone both the controller and the tracking device.

In order to deliver this ambitious prototype, we developed

requirements and constraints to keep our project within the

proper scope. In our development of these requirements, we

wanted to ensure that the user can pay no attention to Otto

during the recording and focus entirely on his or her

performance. From this, we concluded that the system must

initiate and maintain a visual lock on the user throughout the

entire performance. We also require that the system must have

safety features to minimize the possibility of injury to the user

when operating Otto; the system thus has safety locks on both

the smartphone application and the quadcopter itself to prevent

undesired liftoff. A full list of our requirements can be found

in Table IV of Appendix B. Along with these requirements are

the quantitative system specifications that Otto must abide by;

these can be found in Table I below.

II. DESIGN

A. Overview

Otto introduces a new way for amateur extreme sports

Otto: The Personal Cameraman

Seth Kielbasa, CSE, Albion Lici, CSE, Noah Portnoy, CSE, and Andrew Sousa, EE

H

TABLE I

SYSTEM SPECIFICATIONS

 Specification Goal Actual

Maximum drone/user separation

distance

30 m 30 m

Minimum drone/user separation

distance

5 m 10 m

Average flight time (fully charged) 10 min 10 min

Maximum speed of drone 30 mph 20 mph

Maximum angular velocity of drone

in yaw

1.8 rad/s 1.8 rad/s

Minimum quality of video recording 720p30 720p60

Total drone mass < 1500 g 1400 g

Throttle level required to lift the

drone

50% throttle 64% throttle

 2

performers to film themselves. Otto is a drone, more

specifically an autonomous quadcopter, that can track and

record a user. To do this, we needed to start with a robust

foundation; details about the drone system’s hardware are

covered in Section B. The tracking software and hardware

both reside on this drone platform. The drone hovers and flies

using flight control software developed by the theam; more

information on that can be found in Section C. The FollowMe

feature, which is covered in section D, allows the drone to

follow and track the user. Finally, the mobile communication

system allows for reliable communication between the user’s

smartphone and the drone; technical details of this system are

covered in section E. Within the mobile communication

system, the mobile application running on the user’s

smartphone provides the user interface through which the user

can operate Otto.

The tracking functionality relies on the user keeping an

Android smartphone on their person throughout their

performance. The user can open the Otto application on their

smartphone and press the on-screen Takeoff button. The

Android application will disable the Takeoff button if

conditions are unsatisfactory for flight; see section E for more

information about this feature. Once the Takeoff button is

pressed, the drone will commence liftoff and rise to the

appropriate pre-defined altitude. Then FollowMe will initiate,

and Otto will immediately proceed to follow the user while

maintaining a pre-defined drone-user separation distance. Otto

will also turn to face the user while following her, so that the

user may be in the video recording. When the user has finished

her performance, the user may press the Land button within the

app; at this point, Otto will slowly descend at its current GPS

location and decelerate its motors upon impact with the

ground. Once Otto is on the ground for a few seconds, it will

shut off its motors entirely.

The FollowMe feature works by leveraging GPS modules

on both the drone and the user’s smartphone. With knowledge

of the user’s GPS location relative to the drone, FollowMe is

able to command the following of the user. An additional

component of the FollowMe feature, camera tracking, was

planned and developed but ultimately never integrated into the

final system prototype; see Appendix A for more information

about the camera tracking system. As it stands, the FollowMe

feature calculates actions for the drone to perform and outputs

flight commands to the flight control software in order to

achieve those actions. The FollowMe feature is visually

represented in the Otto Block Diagram; Figure 1.

Fig. 1. A high-level view of Otto’s main components.

B. System Hardware

First, we introduce the system’s hardware. The airframe of

the quadcopter is the DJI Flame Wheel F450, which is made of

a hardened plastic material to ensure a rigid flight with enough

strength to endure high impact landings [3]. To provide thrust

for this frame, we have four SunnySky brushless DC motors

which have a 980 kv rating; this means that for every volt

applied, the motor will attempt to produce 980 revolutions per

minute (RPM) [4]. The motors rotate 10x4.7 inch carbon fiber

composite propellers. This motor-prop combination ensures

that there is enough upward force to allow the drone to hover

at 64% throttle, where the drone’s total mass is measured to be

approximately 1400 g. This has been thoughtfully designed so

that at approximately 80% throttle, the motors can quickly

maneuver the drone. Each motor is operated by a three-phase

signal; the system generates these signals locally with

electronic speed controllers, or ESCs.

We chose four ESCs with the SimonK firmware loaded on

them, as they seemed to be the most promising consumer ESC

offering today [5]. The ESCs receive a pulse-width modulated

(PWM) signal from the flight control board, which tells the

motors the angular velocity at which they should rotate. In

turn, the ESCs output a polyphase signal to rotate the 14-pole

DC motors. The flight control board is the APM 2.6 board

manufactured by 3D Robotics. It contains all of the necessary

hardware for flying: a 3-axis gyroscope, an accelerometer, and

a barometer.

Both the FollowMe feature and the flight control software

run on the APM 2.6 board, where the FollowMe feature sends

pitch, roll, and yaw commands to the flight control software. In

order for the FollowMe feature to provide these commands, it

must be aware of the drone’s location. Thus, there is a GPS

module on the drone, specifically the u-blox LEA-6H GPS

module with a Taoglas patch antenna [6], that is connected to

the APM 2.6. See Section D for more information about the

 3

FollowMe feature.

The core hardware component of the mobile communication

system is the Raspberry Pi Model B+ on-board the drone [7].

The Raspberry Pi serves as a means of relaying messages

between the user’s smartphone and the flight control board. In

order to establish a Wi-Fi communication link between the

user’s smartphone and the Raspberry Pi, a 2.4 GHz Wi-Fi

module is attached via USB to the Raspberry Pi. More about

the mobile communication system can be found in Section E.

The drone is powered by a 5200 milliampere-hour (mAh)

lithium-ion polymer (LiPo) battery [9]. This battery was

chosen such that the drone can meet the ten minute flight time

requirement. We previously estimated that this battery would

provide 11.4 minutes of flight time (see “Mixed Flight Time”

in Figure 6 of Appendix B for calculated results), and we have

found in practice that the drone is capable of 10 minutes of

flight time or more on a fully-charged battery. Power from the

battery is distributed to the four on-board ESCs. Each ESC

then converts that power, as well as the input from the flight

control board, into a three-phase power signal which is output

to its respective DC motor. Each ESC also has a battery

eliminator circuit (BEC) which outputs 5V 2A DC, although

these go unused in our final prototype. An additional fifth

ESC, also powered by the battery, has its own battery

eliminator circuit, which serves as a dedicated power supply

for both the flight control board and the Raspberry Pi. The Wi-

Fi module attached to the Raspberry Pi is then powered by the

Raspberry Pi itself.

Finally, there is a high-resolution video camera on-board the

drone: the GoPro Hero camera. This device has an internal

battery as an independent power source as well as its own data

storage. The GoPro camera is mounted in line with the drone’s

nose and is used to capture the high-resolution video recording

of the user.

C. Flight Control Software

The flight control software resides on the APM 2.6 flight

control board and maintains constant knowledge of the

orientation of the drone. Using readings from on-board

gyroscopes and accelerometers, the system deploys a set of

algorithms to determine appropriate values to feed the four

individual ESCs, which then update the motors. The software

has been built from scratch and utilizes libraries obtained from

the open-source ArduCopter project; these libraries primarily

serve as a means of reading from the multitude of sensors on

our flight control board.

This crucial subsystem was developed for the 3D Robotics

APM 2.6 flight control board [11]. This Arduino-based

microcontroller contains an MPU-6000 sensor chip that

features three pairs of gyroscopes and accelerometers, one pair

per axis. An Integrated Development Environment (IDE)

tailored specifically for the APM board was the site of all

flight-related software design and testing.

Fig. 2. A block diagram representation of the PID control algorithm [10].

The algorithm centered at the heart of the flight control

software is the proportional-integral-derivative, or PID,

controller algorithm. Figure 2 provides a visual representation

of the PID controller algorithm; this is used a total of six times

in the flight control software, where each instance can be

abstracted as a “PID block”. Figure 7, which can be found in

Appendix B, provides a visual representation of the flight

control software handling incoming data and converting it into

values capable of driving the motors [10]. Each attitude PID

block takes in a desired value that is compared to the actual

value of the accelerometer. This first calculation is then input

into an attitude rate PID block to be compared against the

values captured by the gyroscopes. The outputs of these

attitude rate PID blocks are then used to adjust the motors in

the proper manner to compensate for the measured errors.

Each of the three axes (pitch, roll, and yaw) possesses its own

set of PID constants to control the rate at which the errors are

magnified. These values were finely tuned to keep Otto from

oscillating and becoming rapidly unstable in the air.

As Otto has been designed to be totally autonomous from the

user’s perspective, flight commands are being entirely

computed by the FollowMe feature running on the flight

control board. When Otto is airborne, the FollowMe feature

constantly feeds pitch, roll, and yaw commands to the flight

control software. The flight control software then feeds these

through the previously mentioned PID control loops, along

with sensor readings, in order to calculate the appropriate

motor adjustments.

Completion of this subsystem required knowledge obtained

through numerous Electrical and Computer Engineering

courses that we have completed over the past three years. ECE

353 Computer Systems Lab 1 gave an initial exposure to the C

programming language, which is syntactically and functionally

very similar to the Arduino microcontroller language used in

this project. Additionally, ECE 373 Software Intensive

Engineering provided guidance on how to successfully plan

the composition of a program. A junior-year ECE design

project elective on firefighting robots provided foundational

knowledge in robotics engineering and provided valuable

experience utilizing sensors and motors with a microcontroller.

For obvious safety reasons, numerous tests were conducted

on each new revision of the flight control software before

 4

being used with live motors. The first round of flight software

development involved simple scripts to print sensor readings

and motor outputs to the console for analysis. Through this

technique, it could be confirmed that the sensors were reading

appropriate values and that the software was providing

reasonable output to the motors. From there, a testing rig was

built to allow the drone, now with the attached motors and

propellers, to have free motion over one axis. This allowed for

visual confirmation that the drone could respond to the manual

RC control of either pitch or roll and then stabilize itself with

minimal oscillation. With further use of the testing rig, the PID

constants mentioned above were tweaked to reduce the

oscillation effects. Once the PID control was sufficiently

refined, outdoor tests were conducted at low throttle levels

before manual takeoff and flight was achieved. While airborne,

the spinning or oscillation of the drone frame could be

observed, and the software was adjusted to counteract these

undesired effects. More recent tests, conducted mostly during

the winter months, required large open indoor spaces in which

to test autonomous takeoff, landing, and altitude holding

functionality. To satisfy this need, the second round of testing

was conducted in the Boyden and Totman gyms on the UMass

Amherst campus; these were the ideal spaces to develop those

autonomous features previously mentioned. The last round of

flight testing was the most difficult as it involved testing the

tracking functionality, which required decent weather in order

to obtain a GPS signal. Fighting the weather, primarily the

wind, put a heavy burden on the PID control loops to

compensate for the sudden changes of orientation recorded by

the accelerometers and gyroscopes.

D. FollowMe

FollowMe is Otto’s navigation and guidance system. The

goal of this system is to act as the pilot of Otto; it shall control

Otto’s altitude, attitude, and heading such that Otto will follow

the user from a defined separation distance during his or her

performance. To accomplish this task, our system leverages

three main sensors: the barometer, the magnetometer

(compass), and the GPS receiver. FollowMe uses GPS

location information about the user and the drone to navigate

Otto to the appropriate location. We have broken down the

FollowMe system into four main subsystems: altitude control,

heading control, attitude control, and autonomous takeoff and

land.

D-1. Altitude Control

The altitude control system relies on the barometer to

provide accurate altitude information to the system. The

barometer is a high resolution altimeter sensor which measures

atmospheric temperature and pressure; from these

measurements, the barometer calculates the drone’s current

altitude relative to its takeoff elevation. Our barometer

provided an altitude resolution of 10 centimeters [12],

although it was only accurate to the meter as altitude readings

tended to drift over time.

To understand this subsystem, it must be clear that the

altitude of the drone is a function of the throttle, if we assume

horizontal flight and ideal environmental conditions. The

throttle is the control signal that dictates the amount of power

that the motors should consume, which is directly correlated

with the amount of lift the motors provide. The altitude control

system is a PID feedback control system with a dynamic

feedforward component; see Figure 3 below. The input to the

feedback system is altitude error and the output is a motor

throttle command. The altitude error is the difference between

the desired altitude set in software and the current altitude

measurement from the barometer. Next is the feedforward

component; we chose to use a feedforward component because

we were able to determine what the “hover throttle” of our

system was. The hover throttle is the amount of motor throttle

that will overcome the force of gravity acting on the drone.

The hover throttle is a function of the weight of the system and

the current battery voltage; as the battery voltage decreases, a

higher throttle command is required in order to make the drone

hover. Since the weight of the system is known, we were able

to hard-code that component of the hover throttle. To account

for the battery’s voltage during flight, we created a function

that takes as input the known system-weight-compensation

throttle and appropriately adjusts it based on the current

battery voltage. The output of this function is an accurate

estimation of the current hover throttle. In this architecture, the

feedforward component overcomes the force of gravity on the

drone and the feedback loop only has to make small changes in

throttle to keep the drone at the desired altitude.

Fig. 3. Altitude PID feedback control with feedforward component.

D-2. Heading Control

The heading control system is the system that controls the

heading of the drone; the heading can be thought of as the nose

of the drone. This system is designed to keep the heading of

the drone pointed to the user at all times. We made this design

choice because the video camera is fixed to and aligned with

the nose of the drone, so when the drone’s heading is pointed

directly at the user, the user will be in the center of the frame.

This system takes as input the GPS locations of the user and

the drone as well as the heading of the drone as measured by

the magnetometer. To control the heading of the drone, we use

a PD feedback control loop. The input to the feedback system

is heading error and the output is a yaw command for the flight

 5

control software to carry out. The heading error is the

difference between the drone’s current heading, which is read

directly from the magnetometer, and the drone’s desired

heading, which is generated from the bearing. The heading is

the direction that the drone is facing, measured in degrees

away from North. The bearing is the heading at which the

drone’s nose would point to the user. The bearing is calculated

by performing trigonometry on the GPS coordinates. More

specifically, the tangent of the difference in latitude

components over the difference in longitude components is

used to calculate the bearing. The bearing is updated at a rate

of 2 Hz; it is limited by the frequency of received GPS

location data for the drone and user. Due to the inaccuracies of

the GPS modules on the phone and the drone, we found that

the bearing was fairly accurate only when the drone was

approximately 10 meters (or more) away from the user.

D-3. Attitude Control

We preface this system with an explanation of the two

coordinate systems at play in the attitude control system. In

Figure 4, you will see that there are two coordinate systems:

one colored blue (xb, yb, zb) and another colored red (xe, ye,

ze). The blue-colored coordinate system is the drone’s body

axis coordinate system; this system changes as the drone

rotates in space. The pitch axis is yb with pitch angle theta, the

roll axis is xb with roll angle phi, and the yaw axis is zb with

yaw angle psi. The red coordinate system is the inertial axis, or

earth axis (hence the “_e” convention). It is a fixed coordinate

system [14]. Another point to note about this system is that the

x-axis (xe) is approximately aligned with the earth’s longitude

lines and y-axis (ye) approximately aligned with the earth’s

latitude lines. We say approximately because they are aligned

on a small scale (10 to 100 meters) but on a large scale the

longitudinal and latitudinal lines are not straight. With this

knowledge, the attitude control system can be described.

Fig. 4. Body axis to earth axis conversion diagram [14].

The attitude control system controls Otto’s pitch and roll

angles. Pitching the vehicle will make it move forward or

backward and rolling will lead to a leftward or rightward

movement, both relative to the drone’s current position.

Similar to the other FollowMe subsystems, the attitude control

system is a PI feedback control system with inputs of desired

separation distance and GPS error and output of pitch and roll

commands. The first input, the desired separation distance, is

the horizontal distance the drone shall be from the user; this is

input to the attitude control system as an integer. The two

additional inputs to the system are the GPS coordinates of both

the drone and the user. These three inputs are used to

synthesize Otto’s target coordinate, which is the appropriate

distance away from the user (the separation distance). To

communicate the method of calculating the target coordinate,

we can think of the right triangle formed between the two GPS

points, where each coordinate is at the tip of the acute angles

of the triangle. Each leg of the right triangle respectively has a

length equal to either the latitudinal or longitudinal difference

between the two points in space. These latitude and longitude

errors are then scaled such that the hypotenuse of the triangle

is equal to the separation distance, whilst the angles of the

triangle stay fixed. These two latitude and longitude errors are

then added to the user’s actual GPS coordinates to determine

the drone’s target location. This system is updated at a

frequency of 2 Hz as it is limited by the rate at which the GPS

coordinates of the drone and user are updated.

Once the target coordinates have been calculated, the error

between the drone’s current GPS coordinates and the target

coordinates can be derived. Before this error is input into the

attitude control feedback loop, it must be converted into the

body axis coordinate system (assuming horizontal flight). To

do this conversion, we multiply the GPS coordinate error by

the yaw rotation matrix [15], which can be seen in Figure 5.

The input to the matrix is psi, which is the yaw of the drone

relative to 0 degrees north; this represents the relationship

between the body axis and the earth axis. The output of this

multiplication can now be thought of as the x error, which will

control the desired roll, and y error, which will control the

desired pitch; these values, along with the drone’s actual pitch

and roll attitudes, are input into the PI feedback system. At the

output, pitch and roll commands are sent to the flight control

software.

Fig. 5. Yaw rotation matrix, where psi is the yaw of the drone relative to

north.

 6

D-4. Autonomous Takeoff and Land

 The final piece of the FollowMe system includes both the

autonomous takeoff and land functions that enable the user to

begin and end Otto’s flight from the mobile device. Upon

pressing their respective buttons on the phone, Otto will

receive a signal to change flight states and initiate the

appropriate action. If that action was takeoff, throttle will

initially be set to zero and then immediately be set to a value

slightly above the hover throttle, which as previously

mentioned is determined by both the system-weight-

compensation throttle and the current battery voltage. As the

barometer reading approaches the desired altitude, the throttle

is adjusted to be closer to the hover throttle in a linear fashion.

Meanwhile, pitch, roll, and yaw commands are being

controlled by the takeoff function such that Otto maintain its

current location and heading. Upon reaching the desired

altitude, the throttle output is set exactly to the hover throttle,

allowing Otto to maintain altitude. From here, the FollowMe

tracking system takes control and begins to command the

following of the user.

 The land function was more difficult to implement as it

required much more precise maneuvers to successfully and

safely perform the correct task. To start the initial descent, the

throttle is set to a value slightly below the hover throttle to

allow for some downward movement. The z-axis velocity and

acceleration relative to the ground are monitored via the

barometer and z-axis accelerometer, respectively. Should Otto

begin to fall too fast, the throttle is set back to the hover

throttle until no downward movement is being detected. Just as

in the takeoff function, pitch, roll, and yaw commands are

being controlled by the land function during descent to

maintain the current location and heading. The z-axis

accelerometer is used to detect an acceleration spike in the

opposite direction of gravity (a positive value), signifying that

Otto has hit the ground. The throttle value is then stepped

down at set intervals if the sensors continue to indicate that

Otto is no longer moving, implying a successful landing. After

enough of these steps have occurred, we can be confident that

Otto is stationary on the ground; the land function will then

stop the motors entirely, at which point Otto is safe to

approach.

This concludes the description of Otto’s FollowMe

navigation and guidance system. All of the feedback control

loops work together to guide the drone through space,

continuously pointing to and following the user while

maintaining a constant altitude. The integrated FollowMe

system can be seen in Figure 8 of Appendix B. To accomplish

this task, we used knowledge from many courses across

Electrical and Computer Systems Engineering. At the core of

this system is feedback control; although none of the team

members had studied the subject previously, we certainly

learned feedback control “on the fly” and applied its theories

to this system. We also used knowledge from Computer

Systems Lab I and II (ECE 353 and 354) to develop and debug

FollowMe’s embedded software. The team also followed the

general software development and testing practices that were

taught in ECE 373 Software Intensive Engineering.

E. Mobile Communication System

The Mobile Communication System enables the

communication between the user and Otto. To establish this

communication link, the Mobile Communication System had

to be broken down into two sub-components: a phone

application and a messaging protocol.

The phone application runs on an Android-powered

smartphone. It includes two interactive, “swipeable” screens:

the Controls screen and the Diagnostics screen. The goal for

this design approach was to make it easy and intuitive for the

user to control Otto. The Controls screen presents the user

with three buttons: Takeoff, Land and Power. Takeoff is used

when the user would like to initiate takeoff of the drone. This

button gets enabled and disabled as a function of the status of

the system’s diagnostics. Things such as the GPS signal

accuracy, battery level, and Wi-Fi connection are checked

before the button is enabled. The Land button enables the user

to initiate the landing functionality of the drone. The Power

button enables the user to initiate a shutdown of the Raspberry

Pi in order to prepare Otto for a safe system shutdown.

Another aspect of the app is the Diagnostics screen, which

presents the user with the diagnostics of the system; these

include the altitude of the drone, the user-drone separation

distance, and the drone’s battery voltage, among others. On

this screen, the user is also capable of manually pinging Otto

in order to ensure that the Wi-Fi link is still fully operational.

The phone application by default pings Otto every second by

sending a packet using the User Datagram Protocol, or UDP.

For every ping packet that the phone sends, the app expects

one back. If the app sends a ping packet and does not receive

one in response within 3 seconds, we assume that there is

something wrong with the Wi-Fi link.

The tasks of the Android application have been broken

down into four threads executed in parallel: the user interface

(UI) thread, the network send thread, the network receive

thread, and the ping thread. Any rendering of visual objects

and UI updates are performed by the UI thread. The UI thread

is also responsible for spawning all other threads for this

application; it can therefore be thought of as the main thread

[13]. The network send thread handles all outgoing network

data intended for the Raspberry Pi by transmitting messages

that have been added to the transmit FIFO queue. The network

receive thread handles all incoming traffic from the Raspberry

Pi that is being sent to the Android app. Receiving from the

network is a synchronous, or blocking, task. Finally, the ping

thread is responsible for executing the pinging mechanism

between the drone and the Android app.

The messaging protocol enables the system to have

bidirectional communication between the phone application

and the drone. The most important message communicated in

this link is the GPS coordinates of the user; they are sent to the

drone at rate of 2 Hz. Because we use UDP, the

 7

communication on the Wi-Fi channel is inherently unreliable.

Communication packets containing GPS coordinates might get

lost due to collisions, dropped because of a full queue, or other

factors; as such, the 2 Hz update rate is not guaranteed.

Attempting retransmission will provide lagging coordinates as

an input to FollowMe; therefore we ignore any dropped

messages. The mobile communication system is designed to be

robust, and so does not halt when packets are dropped.

However, the system will see a decrease in performance in this

scenario. The app communicates with the Raspberry Pi on-

board the drone via a Wi-Fi Link operating on the 2.4 GHz

band. The Raspberry Pi is connected to the APM flight control

board via a UART communication link operating at a rate of

115200 baud. The protocol defined here is ASCII character

based and is structured with a start character, a 3 byte message

identifier, the message itself, and an end-of-packet character.

Table II below shows an example of a message string that the

phone app will interpret as the battery level of the drone.

Tables V and VI, which can be found in Appendix B, list all

message types supported by the system along with a short

explanation for each.

Threaded programming and objected oriented design

principles used in the development of this system were

introduced in ECE 373 Software Engineering. The networking

topics used here, such as the User Datagram Protocol, were

presented in ECE 374 Computer Networks and the Internet.

The Android application was developed using both the Java

programming language and the Android API, the latter of

which is provided and documented by Google. The Android

app was written using an object-oriented design approach. An

Android extension tool package was also used alongside the

Eclipse IDE in order to make the development of the app more

efficient.

III. PROJECT MANAGEMENT

Team Otto is comprised of three computer systems

engineers (CSEs) and one electrical engineer (EE) who have

diverse backgrounds. Seth Kielbasa has worked with robotics

in the past as part of the UMass Amherst firefighting robot

team; as a member of Team Otto, he was responsible for the

flight control and stabilization algorithms in the first semester

and for the takeoff and land functions in the second semester.

Albion Lici has completed multiple internships at Teradyne,

where he gained much insight into interfaces between

hardware and software; this knowledge has proven to be very

useful in his work on Team Otto. During the first semester,

Albion was responsible for the GPS tracking component of the

FollowMe feature which was developed and implemented on

the Android device; during the second semester, Albion was

responsible for the mobile communication system. Noah

Portnoy also has robotics experience as he led the UMass

Amherst firefighting robot team for two years. Noah was

responsible for the camera tracking component of the

FollowMe feature during the first semester. During the second

semester, he was responsible for parts of the FollowMe

system, namely the altitude control system and components of

the attitude control system, as well as the system control logic

for the drone. In addition, Noah managed and maintained the

project’s code base. Andrew Sousa is the EE of the team and

he brings robotics experience from his work leading the IEEE

Micromouse group to successful completion of an autonomous

robot. Andrew is the team manager and was responsible for all

of the drone hardware during the first semester; in the second

semester, Andrew was responsible for the design and

implementation of the FollowMe system (which includes much

work from other members of the team).

This semester, we did not follow a standard Gantt chart as it

did not seem to work well for many of the team members.

Instead, we used an online tool hosted by GitHub that allowed

team members to add issues or desired features/functions to

the list, assign team members to work on them, and easily set

deadlines and goals. This worked significantly better for our

team’s dynamics.

Over the course of the year, the team worked relatively well

together. We all had a clear vision of the final product from

beginning to end, though the smaller “demos” in between were

less clear and more difficult to come up with. There was

always an enlightening discussion at our weekly all-hands

meetings with our advisor, Professor Christopher V. Hollot,

who continued to ask us thought-provoking questions and help

steer the team in the right direction. Our advisor was often so

kind as to meet with us at other times to discuss various

components of the many feedback control systems that lay

within our system. The team communicated almost daily

through either an online messaging service or in person; in

addition, the team met weekly to discuss each individual’s

progress from the week. We also shared important information

such as data sheets, calculations, and experiment results on

cloud-based storage hosted by Google, while we kept all of our

code under version control in a GitHub repository. Finally, we

conducted large-scale or high-level communication via email.

We were in nearly constant contact due to both our project’s

difficulty level and our commitment to deliver Otto.

IV. CONCLUSION

Following the completion of the Final Product Review, the

team has a functional prototype of the original product design.

Otto can successfully track a mobile device while keeping the

on-board high resolution camera fixed on the user at all times.

From the user’s standpoint, there is no need for any manual

control of flight, other than the takeoff and land functions that

are integrated into the mobile app. While the camera tracking

system that was presented in our Comprehensive Design

Review did not make it onto the final product, Otto is

successfully able to perform the actions that were originally set

TABLE II

EXAMPLE OF SENDING DRONE BATTERY LEVEL TO THE PHONE

Start Byte 3 Byte Message ID Message End Byte

$ BTS 11.812 !

 8

out to be accomplished.

Overall, this project has been a tremendous learning

experience for the entire team as it incorporated numerous

engineering challenges that had to be solved throughout the

course of the last two semesters. To start, this project was a

significant coding challenge, written mostly from scratch with

the help of many available libraries. A short range Wi-Fi

network was established with a messaging protocol to send

information from the mobile device to the phone, a common

occurrence these days but not one previously accomplished by

the team. An Android application was designed and built to

provide user control of Otto, transmit the user’s GPS

coordinates to the drone, and display key diagnostics that the

user may wish to monitor while flying Otto. Finally, the team

learned of the many difficulties created by building a project

that must cooperate with the weather, as was seen on the final

SDP demo day when the wind was too severe to perform a live

demo. The weather experienced during the final weeks of this

project made it difficult to run the appropriate tests to ensure

tracking was operational.

APPENDIX

A. Camera Tracking

The camera tracking system was developed with the intent

of controlling the yaw of the drone such that the drone may

face the user and thus the user may be in the video recording.

If it were integrated into the drone system, the camera tracking

system would be able to process video frames from a low-

resolution camera and locate the user in the frame by looking

for the specially colored jersey that the user would wear during

his performance. As described in section D, the FollowMe

feature uses GPS data to accomplish the yaw control

functionality that camera tracking would have provided.

Without camera tracking integrated, the only loss is that

camera tracking likely would have provided more accurate

data with which to command yaw when the drone is within a

certain range of the user.

We chose not to integrate the camera tracking system into

the final prototype in order to focus on the more critical

components of the project. We did not choose to abandon

camera tracking integration because it might be too difficult;

rather, we believed that one or more components of the final

prototype might end up non-functional if we were to assume

the additional task of integrating camera tracking into the

system. Following is a description of how the camera tracking

works in isolation and how it may be integrated into the system

in the future.

The camera tracking system can serve as an additional core

component of Otto’s FollowMe feature, allowing the drone to

accurately keep the user in the video frame. In order for the

camera tracking system to uniquely identify and track the user

in the environment, the user must wear a distinctly colored

jersey. The camera tracking system can attain a visual lock on

the user upon drone takeoff by scanning for the color of the

user’s jersey. Once the visual lock has been acquired and the

FollowMe feature has been initiated, the camera system can

continuously track the user. If the user begins to veer out of the

video frame boundaries, the camera tracking system can send

yaw control output in vector form to the FollowMe feature.

This output communicates how the drone should reorient itself

along the yaw axis to maintain a visual of the user. The

FollowMe feature can take this data from the camera tracking

system and synthesize it with GPS data to form unified output

in the form of flight commands to the flight control software.

As of the team’s Midway Design Review, camera tracking is a

functional, closed-loop system operating at 7.5 Hz that can

track an object of a certain color and keep the object in the

video frame by commanding a servo motor to rotate the

camera along the yaw axis.

The camera tracking software can reside on Otto’s main

computer, a Raspberry Pi Model B+ [7]. The software is

written in the Python programming language and harnesses the

OpenCV (Open Source Computer Vision) library to detect the

colored object by heavily processing the video frames that are

captured by a Logitech C310 USB webcam [8]. Specifically,

the camera tracking software performs the following OpenCV

transformations [16] on each video frame: cvtColor to convert

the image from the RGB to the HSV color space, inRange to

get a mask [17] of the image consisting only of those pixels

that fall within the desired object’s color range, dilate to dilate

the shapes present in the mask so as to smooth out the shapes’

edges, findContours to detect all shapes present in the image,

and contourArea to measure the area of the detected shapes

and to select the most prominent shape in the image. From

here, the software determines the center of the detected object

within the video frame, and continuously checks to see if the

center of the object moves outside a programmed set of

bounds centered about the middle of the frame. Upon detecting

that the object has moved outside of these bounds, the software

currently outputs servo commands for the yaw axis over a

serial output. The serial output then goes to an Arduino Uno,

which sends digital output to the servo. [Note that the Arduino

IDE and programming language were used to develop the

servo-controlling software that runs on the Arduino Uno.]

Once the object moves back within the specified bounds, the

software no longer sends servo commands. This simulates how

the camera tracking software can send yaw commands to the

FollowMe feature to keep the user in the video frame.

Several tests have been conducted to assess the performance

of the camera tracking system. The environment for these tests

used fluorescent lighting, thus having a color temperature of

approximately 3000 K [18], and the camera was positioned to

face a white background that filled the entire camera frame.

Any object displayed to the camera was always kept

approximately two feet away. For these tests, the system was

configured to track a red object. The variables in the tests are

as follows: (1) the color of the object, and (2) either moving

the camera to simulate the effects of drone movement, or

keeping the camera stationary. For each test, we monitored the

system’s performance for two minutes in the same

 9

environmental conditions. Detection rates and false positive

rates were calculated using frame counts provided by the

camera tracking system. The results are summarized in Table

III below.

While there are many factors contributing to the

performance of the camera tracking system in these tests, we

can conclude that the system is capable of tracking a red object

under certain conditions with a high degree of accuracy. We

can attain similar performance in tracking an object of another

color by simply changing the HSV range within which to look

for an object.

The system’s performance outdoors has been qualitatively

tested with the user wearing a bright red jersey, the camera

mounted on the drone and connected to the Raspberry Pi, and

the drone a distance away from the user that meets the system

specifications. We found the outdoor performance of the

camera system to be suboptimal, only sometimes detecting the

user’s red jersey and occasionally detecting other red objects

instead (such as vehicle taillights). However, that does not

mean the camera tracking system cannot work outdoors; in

fact, it may work very well with further adjustments.

One reason why the camera tracking system performed

poorly outdoors is that while the color temperature of the

indoor testing area was about 3000 K, color temperatures

outdoors range from 5500 K to 6500 K [18]. By measuring

HSV values for the red jersey both indoors and outdoors, we

were able to confirm that the color temperature affects the

camera’s perception of color. To solve this issue, one can

simply modify the HSV range specified in the program so that

the range best represents the HSV values of the target; in this

case, it would be the colored jersey of choice in both sunny

and cloudy outdoor environments. A potential issue still to be

addressed is the presence of objects in the environment that are

similar both in color and size relative to the user’s jersey.

However, this issue can most likely be mitigated with a careful

selection of both jersey color and HSV range.

The development of the camera tracking system relied

heavily on the material covered in several Electrical and

Computer Systems Engineering courses. ECE 353 Computer

Systems Lab 1 and ECE 373 Software Intensive Engineering

together provided a deep and fundamental understanding of

software that allowed for the creation of the camera tracking

system. ECE 354 Computer Systems Lab 2 introduced image

processing and manipulation techniques that were formative in

the design of the camera tracking system.

B. Figures and Tables

Fig. 6. Estimated performance of the drone based on its motors, propellers,

battery, and drone weight. Battery performance estimates, including flight

times, are highlighted with a box. “Mixed Flight Time” is a combination of

hovering and maneuvering, the latter of which requires more thrust.

Calculations provided by [19].

TABLE IV

SYSTEM REQUIREMENTS

 Requirement

1 Track user through a fusion of two sensors: GPS and camera

2 Collect GPS location of user through a Wi-Fi connection to user

device

3 Collect finer location data of user through camera tracking

4 Carry out user-defined takeoff and land commands

5

6

7

8

9

10

Maintain a user-defined drone/user separation distance

Allow user to start and stop video recording

Video recording is high-definition (720p or better)

Must maintain visual lock on user for duration of recording

Drone will take preliminary measures upon reaching critical

battery level

Safety lock in hardware and software

TABLE VI

PHONE APPLICATION TO DRONE MESSAGE IDS

 Message Identifier Message Explanation

LAT User Latitude (double)

LON User Longitude (double)

BTS Drone Battery Status (double)

TKF

STP

WPG

PSH

User Takeoff (short)

User Land (short)

Wi-Fi Ping Request

Raspberry Pi Shutdown (short)

TABLE V

DRONE TO PHONE APPLICATION MESSAGE IDS

 Message Identifier Message Explanation

LAT Drone Latitude (double)

LON Drone Longitude (double)

BTS Drone Battery Status (double)

ALT

CRS

GPS

GPA

WPG

SRD

BRG

Drone Altitude (double)

Drone Climb Rate (double)

Drone GPS Status (int)

Drone GPS Accuracy (double)

Wi-Fi Ping Response

Separation Distance (double)

Bearing to User (double)

 10

Fig. 7. A block diagram representation of the Flight Control Software.

Fig. 8. The complete FollowMe guidance system.

 11

ACKNOWLEDGMENTS

Our team would like to thank our advisor, Professor

Christopher V. Hollot, for his excellent advising

methodologies and desire to help us succeed. We would also

like to thank Francis M. Caron for helping us with all requests

related to the Senior Design Project lab and Paul Pounds for

providing us with some MATLAB simulations that together

served as a basis for our FollowMe guidance system.

REFERENCES

[1] B. Rose. (Accessed 2013, February 14). How to Get Better Action Cam

Footage [Online]. Available: http://gizmodo.com/5983584/getting-

better-action-camera-footage

[2] “Number of people who are very interested in extreme/ action sports in

the United States (USA) from spring 2008 to spring 2014,” Statista,

New York, NY, Stat. Rep., Spring 2014 [Online]. Available:

http://www.statista.com/statistics/229006/people-who-are-very-

interested-in-action-sports-usa/

[3] DJI Innovations. (Accessed 2014, December 15). Flamewheel ARF Kit

[Online]. Available: http://www.dji.com/product/flame-wheel-

arf/feature

[4] P. Pine. (Accessed 2014, December 15). What does KV mean? [Online].

Available: http://www.flyelectric.com/ans.kv.html

[5] (Accessed 2014, December 15). SimonK ESC User Guide [Online].

Available: http://www.robotshop.com/media/files/pdf/lynxmotion-

simonk-esc-guide.pdf

[6] (Accessed 2014, December 15). 3DR uBlox GPS with Compass Kit

[Online]. Available: http://store.3drobotics.com/products/3dr-gps-ublox-

with-compass

[7] (Accessed 2014, December 15). Model B+ [Online]. Available:

http://www.raspberrypi.org/products/model-b-plus/

[8] (Accessed 2014, December 15). Logitech HD Webcam C310 [Online].

Available: http://www.logitech.com/en-us/product/hd-webcam-c310

[9] (Accessed 2014, December 15). Lumenier 5200mAh 3s 35c Lipo

Battery [Online]. Available: http://www.getfpv.com/lumenier-5200mah-

3s-35c-lipo-battery.html

[10] G. Owen. (Accessed 2014, December 15). How to Build Your Own

Quadcopter Autopilot / Flight Controller [Online]. Available:

https://ghowen.me/build-your-own-quadcopter-autopilot/

[11] (Accessed 2014, December 15). APM 2.6 Set [Online]. Available:

http://store.3drobotics.com/products/apm-2-6-kit-1

[12] (Accessed 2015, May 6). MS5611-01BA03 Barometric Pressure Sensor

[Online]. Available: http://www.meas-spec.com/downloads/MS5611-

01BA03.pdf

[13] (Accessed 2014, December 15). Processes and Threads [Online].

Available: http://developer.android.com/guide/components/processes-

and-threads.html

[14] William Premerlani et al. Direction Cosine Matrix IMU: Theory

[Online]. Available:

https://gentlenav.googlecode.com/files/DCMDraft2.pdf

[15] Duane T. McRuer, et al. Aircraft Dynamics and Automatic Control.

Princeton, NJ: Princeton University Press, 1973.

[16] (2014, April 21). OpenCV 2.4.9 Documentation [Online]. Available:

http://docs.opencv.org/

[17] (2014, March 26). Mask (computing): Image masks [Online]. Available:

http://en.wikipedia.org/wiki/Mask_%28computing%29#Image_masks

[18] (Accessed 2014, December 15). Color Temperature [Online].

Available: http://en.wikipedia.org/wiki/Color_temperature

[19] (Accessed 2014, December 15). xcopterCalc - Multicopter Calculator

[Online]. Available: http://www.ecalc.ch/xcoptercalc.php

