Equipack

Brenton Chasse CSE
Alex Nichols CSE
Zach Boynton EE
Colin Morriseau EE

Advisor: Prof. Salthouse
The Problem

- Backpacks are frequently misused
- Most people don’t know how to use the current features
- Many people overload their bags to an unhealthy weight
- How familiar does this look?

Significance

- Over/Improper loading of packs is shown to lead to:
 - 7,277 emergency room visits (annually), up 330% since 1996
 - ⅓ of 6th graders carry >30% of body weight

Causing: Knee hyperextension, lower back overcompensation, back strain, shoulders stress

- 2011: backpack industry retail sales over $1.75 billion
 - Over 100 million units

Advisor: Prof. Salthouse
Existing Solutions

- Carry less weight
 - Wasted potential!
- Empty roller bags can weigh +80%
 - Tendency to add more item
 - 50 lbs or more!
 - Not viable for all terrains
- More straps?
 - Not always clear how to use
 - Can cause more harm than good

Source: Overstock.com. High Sierra Wheeled Backpack
Our Solution

- A Smart Backpack that:
 - Senses content weight
 - Senses load/stress distribution on wearer

- A Mobile App that:
 - Records data trends
 - Visually assists user with proper wear
Positive Change for Users

- Backpack will give the user new insight on backpack pressure allowing them to correctly fit the pack
- Backpack will notify user of excessive weight, helping them prevent harm
- Groups of people would be able to distribute weight fairly

Source: Advantage Physical Therapy. Improper vs. Proper wear

Advisor: Prof. Salthouse
Specifications for Our Solutions

- Solution would need to be:
 - Low cost (< $25 mass production)
 - Passive or low power (< 20mW)
 - Light-weight (under 12oz additional weight)
 - Applicable to both frameless and framed packs with our solution
 - Provide user with feedback
Inputs and Outputs

- **Inputs**
 - Content weight sensor data
 - Shoulder strap sensor data
 - Lower back sensor data

- **Outputs**
 - Feedback on shoulder strap position
 - Feedback on content weight
 - Suggestions for improved strap configuration
 - Text alerts to subscribers when pack is overweight

Advisor: Prof. Salthouse
Solution Breakdown

Mobile Device

UI

Bluetooth Communication

Weight Analytics

Blue Tooth

Micro Controller

Power Control

Bluetooth Communication

Weight Sensors

Weight Analytics

Brenton Chasse
Colin Morriseau
Zach Boynton
Alex Nichols

Advisor: Prof. Salthouse
System Block: Weight Sensor

- System Requirements
 - Weight range of 0-100lbs
 - precise, within 1lb
 - insensitive to temperature
 - repeatable measurements
 - low power consumption
 - low cost
 - compact

Source: http://www.karlssonrobotics.com/cart/prodimages/10245-01.jpg
System Block: Weight Sensor

- System Implementation
 - Force sensors will be selected from broad sampling of devices
 - Circuitry will need to be placed around the sensor to amplify and filter the signal
 - Circuitry will communicate with the microcontroller

Source:
http://www.ndsu.edu/pubweb/~braaten/research.html
System Block: Weight Analytics

- System Requirements
 - Maximize weight on back and minimize shoulder weight
 - Recognise left/right load symmetry
 - Approximately determine center of mass for the load
System Block: Weight Analytics

- **System Implementation**
 - Place sensors on lower, upper back and shoulders
 - Propose additional sensor locations if necessary, such as a spring sensor on the lower strap
 - Tests will be a combination of real world tests and physics modeling software.

Colin Morrisseau

Advisor: Prof. Salthouse
System Block: \(\mu\)Controller and Broadcast

- \(\mu\)Controller Requirements
 - Low Power (10mA draw)
 - More than 8 ADC’s
 - Interfaces with external broadcast tech

- External Broadcast Options
 - Need some way to communicate with phone/computer, which can provide GUI
 - Options: Bluetooth Classic, WiFi, Bluetooth Low Energy
System Block: μController and Broadcast

- μController Implementation
 - LPC824M from NXP Semiconductors (μController)
 - 12 discrete ADC ports
 - 8.1mW power consumption
 - USART for BLE interface
 - Digital I/O for Power Management
 - NRF8001 from Nordic Semiconductor (BLE Module)
 - Simple Serial Interface with μController
 - 30mW power consumption when on
 - Supports Peripheral Mode

Advisor: Prof. Salthouse

Alex Nichols
System Block: Mobile Application

- **Mobile Requirements**
 - Wellness apps and data collection practices
 - Secure data storage
 - Secure data transfer
 - Intuitive user interface
 - Children and Adults
 - Bluetooth Low Energy (BLE)

Design not final

Source: Brenton Chasse’s design on FluidUI.com
System Block: Mobile Application

- Market Availability
- System Implementation
 - Android 4.4 (API level 19)
 - Text alerts
 - Application takes BLE central role

<table>
<thead>
<tr>
<th>Version</th>
<th>Codename</th>
<th>API</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Froyo</td>
<td>8</td>
<td>0.7%</td>
</tr>
<tr>
<td>2.3.3 -</td>
<td>Gingerbread</td>
<td>10</td>
<td>11.4%</td>
</tr>
<tr>
<td>2.3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0.3 -</td>
<td>Ice Cream Sandwich</td>
<td>15</td>
<td>9.6%</td>
</tr>
<tr>
<td>4.0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.x</td>
<td>Jelly Bean</td>
<td>16</td>
<td>25.1%</td>
</tr>
<tr>
<td>4.2.x</td>
<td></td>
<td>17</td>
<td>20.7%</td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td>18</td>
<td>8.0%</td>
</tr>
<tr>
<td>4.4</td>
<td>KitKat</td>
<td>19</td>
<td>24.5%</td>
</tr>
</tbody>
</table>

Source: Android Developer Dashboard. User API distribution

Source: Brenton Chasse's Powerpoint
MDR Deliverables

- Weight sensor network converting physical force to a measurable signal
- Functional software Weight Distribution Model
- App UI interface w/ BLE sending and retrieving “data”
- First pass PCB design
- μController interfaced with:
 - Bluetooth transceiver module
 - Power systems
Sources

Comparison of Broadcast Systems

- **Bluetooth Classic**
 - Supported by almost all phones
 - But...power inefficient

- **Bluetooth Low Energy**
 - Power efficient (depending on the use case)
 - But...not supported by all phones
 - BUT...is the trending embedded communication protocol

- **WiFi**
 - Ubiquitous in homes, and will always be on
 - But...not necessarily portable
 - And...won't have a simple receiver API
Pricing:

Top selling Jansport: $20.00 - 25.00
Top selling The North Face: $90.00

Margin: \((90*0.8) - 25 = \$47.00\)

Prior to production, we can use $47.00 for embedding hardware in the backpack while still making a 20% profit.

Predict that we can do this in under $25.00, using some of the more expensive sensors (post manufacturing)
Power System

Diagram of power system with components such as Microcontroller, Weight Sensors, and Bluetooth.
Why weight

- Total weight of items in pack
- Weight per shoulder strap (proper wear)
- Expandability:
 - Items have specific weight (tracking)
Applications

- Military
 - Pack weight relation to mobility
 - Inventory tracking is already an issue
 - (Universal inventories)
 - Distribution of weights between multiple bags
- College
- Children
 - Safety
Weight Sensor design alternatives

Capacitive sensors
Cons
- very small changes in capacitance
- capacitance is harder to read/ more prone to parasitics
Pros
- Very cheap/easy to make

Strain Gauges
Cons
- temperature dependent, limited operating range
Pros
- Cheap, very compact, accurate

Piezoelectric sensors
Cons
- More costly, produce high voltage swings
Pros
- accurate, compact
Possible topologies for weight circuits