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Abstract—The goal of EquiPack is to provide users of our 

backpack with real time suggestions on how to properly 

position and wear the backpack. Hospitals across the US 

report over 7,000 annual emergency room visits due to 

backpack related injuries. EquiPack aims to reduce the 

number and onset of short- term and long-term backpack-

related injuries.  

 

I. INTRODUCTION 

 Every year there are over 7,000 emergency room visits due 

to injuries related to backpacks. This is up over 330% from 

1996 [1]. These issues are caused by improper adjustment and 

wearing of the backpacks [2]. In the past people have simply 

been recommended to carry less weight or have had to resort 

to other means of carrying the weight such as rolling bags or 

weight bearing service animals.  

 These options are frequently not useful under all conditions. 

For instance rolling bags are not particularly useful over rough 

terrain. Ideally people would be able to properly use their bags 

and therefore carry a full load without chance of injury. 

Additionally, there are no viable solutions for adventurous 

people such as hikers or scout troops. This is where EquiPack 

comes in EquiPack. EquiPack is a simple solution that allows 

users to see how well their bag is adjusted and provides 

feedback on how the bag could be fit better.   

 

II. DESIGN  

A. Overview 

 The key to preventing backpack 

related injury is to provide the user 

with enough information for them to 

correctly position their bag. In 

order  to provide the user with 

this  knowledge we have decided to 

equip  our bag with an array of load 

sensors  along the back and straps 

(Figure  2.1.1). A micro-controller 

collects and  collates the sensor data 

and transmits  it over Bluetooth to an 

Android  application. From there, the 

application can utilize the processing ability of the mobile 

device’s hardware to quickly process the data and present the 

user with visual queues necessary for proper adjustment of the 

bag. In the early stages of our project design, we also looked 
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at a backpack that could adjust the straps automatically while 

the wearer is moving, thus decreasing back stress. After more 

research, this was decided to be unnecessary. Back stress 

could be reduced by simply adjusting the straps properly and 

limiting the weight of the backpack holds [4]. EquiPack was 

divided into four main subsections; Weight Sensors, 

Embedded Programmable Hardware, Weight Analytics 

Algorithm, and Android Application.  

 

 The EquiPack system can be broken into multiple 

subsystems, as can be seen in Figure 2.1.2. Each of these 

subsystems has their own specific requirements and 

specifications.  

 Sensors were specified to be able to handle weights ranging 

from 1lb to 100lbs. This ensures that intense pressure caused 

by improper loading, or general abuse of the Equipack 

solution, would not destroy the sensors. In a similar manner, 

sensors are required to have a robust housing; they must 

withstand wear due to time and the elements. Sensors must 

also be robust when exposed to the elements, for accurate data 

will be necessary in all conditions. Measurements made from 

the sensor network must be accurate enough to sense weights 

in 1lb increments. Finally the sensors must have a small 

footprint and low power consumption, ensuring long (weeks) 

battery life and non-invasive integration into the physical bag.  

 The goal of the weight analytics is to convert the forces 

determined by the sensors into useful information. The 

requirements for the weight analytics block are as follows: 

able to determine the total weight, able to approximate the 

loaded bag’s center of mass, and able to determine the best 

ratio between pressure on the shoulders and the back that 

could be achieved by adjusting the straps. The center of mass 

is required to determine whether objects are aligned correctly 

in the solutions physical bag. Having a center of mass far from 

the back will cause a user to lean forward in order to 

compensate and maintain balance.  

 The total weight of a pack has been shown to be to the 

largest cause of backpack related injury. Doctors recommend 
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Figure 2.1.1: Sensor 

locations 

Figure 2.1.2: Block Diagram of EquiPack 
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having a weight limit of anywhere from 10% to 25% of the 

user’s bodyweight in a backpack [5]. The focal point of the 

EquiPack solution is its ability to optimize the strap positions. 

Strap adjustment suggestions give the user the option of quick 

feedback by providing them with an easy way to prevent them 

from becoming injured.  

 The goal of the microcontroller is to provide EquiPack with 

a brain that will enable external communication and 

interfacing with the weight sensors and power systems. These 

two elements are in turn the heart of EquiPack, the systems 

that allow EquiPack to perform the key functionality setting it 

apart from all other backpacks. To ensure that the 

microcontroller and Bluetooth systems perform in a way that 

enhances the functionality of the pack and eases user 

interaction as much as possible, certain specifications need to 

be met.  

 The microcontroller should not make a disproportionate 

draw on battery power: it operates at 3.3V and should draw no 

more than 10mA of current when on. The same should be true 

of the Bluetooth Module when on: it operates at 3.3V and 

should draw no more than 10mA. In addition, the 

Microcontroller should only exit sleep mode when actively 

controlling power systems and reading sensor data, and the 

Bluetooth module should only leave sleep mode when 

EquiPack is in use. Finally, the relatively large and extensible 

number of sensors, which will be needed in the EquiPack, 

necessitates a scalably large number of native ADCs 

accessible to the microcontroller.  

 This system meets the power requirements, with the chosen 

microcontroller, the LPC824M from NXP Semiconductors, 

having power consumption 35mW [17], and the Bluetooth 

Module, the nRF8001 from Nordic Semi-conductor, having 

power consumption 30mW [18]. The LPC824M has 12 12-bit 

ADCs accessible in parallel. Both the LPC824M and nRF8001 

are designed for low-power environments, and have highly 

efficient sleep modes, which can be entered and exited easily.  

 The goal of the EquiPack mobile application is to provide a 

user interface that displays feedback or suggestions to the bag 

wearer. This application must have an intuitive user interface, 

secure data storage and transfer, the ability to utilize Bluetooth 

Low Energy, the ability to send text alerts, an expandable code 

base, persistent customizable preferences, and reliability.  The 

user interface must be easy to use for anyone who is familiar 

with the general design patterns of Android applications, 

allowing for easy user adoption. In making such a user 

interface, the application should be developed in such a way 

that new features can be easily added to the existing 

application, for an enterprise level application should always 

be expanding post release.  

 In order to communicate securely, effectively, and 

efficiently, the Android application must be written using an 

API that supports Bluetooth Low Energy. Additionally, the 

application must be developed in such a way that a user can 

enter custom preferences, which persist over multiple 

lifecycles of the application. For example, the user’s weight is 

necessary to ensure the bag is not too heavy to safely wear. 

Last, the Android application must be intuitive to navigate, 

while providing visual representations of the analytics’ 

feedback.  

 

B. Weight Sensor Network 

 The purpose of the weight sensors block is to take 

information from the physical world, in this case weight, and 

convert it into an electrical signal that can then be processed 

by the rest of the system. This weight sensor block consists of 

two elements, a sensing element, and sensing circuitry. The 

implemented sensing element is conductive foam. This foam 

has the property that its resistance changes with compression 

[3]. Some preliminary data can be seen in the Figure 2.2.1. 

 
Figure 2.2.1: Resistance of foam vs Distance of compression for three 

different trials of compression. 

 In order to read this change in resistance a voltage divider is 

used to create a reference voltage that is fed into an op amp 

circuit. The foam has a capacitance intrinsic to it's 

construction. This capacitance prevents the voltage across the 

foam from changing instantaneously, for the internal 

capacitance must charge through the foams resistance. Thus, 

the foam's charging and discharging can be modeled as an RC 

network in which a resistor is in series with a shunt capacitor 

on the output. This RC constant currently dictates how quickly 

measurements can be taken from the network. This circuit 

amplifies the DC voltage applied to the input by the ratio of 

the resistors in the feedback network. At DC, the capacitor 

behaves like an open circuit. Therefore, the capacitor has no 

impact on the DC operation. At higher frequencies the 

capacitor behaves similarly to a short circuit. With the 

capacitor acting as a short the circuit behaves like a buffer. 

This reduces the total output noise by not allowing the noise to 

be amplified. More succinctly put, the addition of the 

capacitor improves the signal to noise ratio of the circuit.  The 

schematic for this network is displayed in appendix 1A. 
 The op amp that was chosen was the LM324N. This op amp 

was picked because it allows for a single supply operation and 

low power consumption, parameters that are critical when 

operating in a battery powered system. Courses such 323,324, 

and 575 were all useful in the development of this circuitry. 

They imparted the knowledge to develop the appropriate 

transfer functions, choose a suitable circuit topology, and 

select necessary component values.  
 Additionally Physics 151 has been useful for understanding 

how the force on the foam will translate into its distance of 

compression. In order to test this block a weight rig will need 

to be setup that will allow the application of a known weight 
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to the sensor. Output voltage can then be measured versus 

applied weight in order to characterize the sensor.  
 

C. Weight Analytics 

 The weight analytics block is a series of algorithms that are 

contained in the smartphone app. The first goal that the weight 

analytics subsection needs to achieve is to determine the total 

weight of the backpack. Initially, the plan for this was to 

develop an algorithm taking the sum of all the weights of the 

sensors and summing them in a way to determine the total 

weight of the bag. As research continued, there were too many 

variables that affected the total weight of the bag. Sensors 

were unable to determine the total weight of the bag without 

knowing the angle at which the bag was held.  
 Once it was determined that an additional sensor would be 

needed the next challenge was to determine what additional 

sensor could provide extra information. We decided to attach a 

load cell to the lower strap of the backpack. A load cell is a 

strain gauge attached to a soft piece of metal. when the metal  

is bent it changes the resistance of the strain gauge. This is the 

sensor used in common luggage scales and can be 

implemented using a whetstone bridge and an amplifier. If the 

backpack is sufficiently heavy the effect of friction is 

negligible as most contact is perpendicular to the force of 

gravity. The backpack then acts as a simple pulley, where 

tension along the backpack is equivalent to the force at the end 

of the rope (and in this case the load of the backpack). Since 

there are two straps the actual load is one half the entire 

weight. This theory was tested by disassembling a luggage 

scale containing a load cell and attaching it in between the 

lower strap of the backpack.  
 The next goal of the weight analytics subsystem is to 

determine the center of mass of the backpack. When it is used 

in the Android app, the center of mass will determine if  the 

contents of the bag need to be adjusted closer to the front of 

the bag. Once the center of mass is determined, the distance 

away from the back can be set to a threshold, and if that 

distance passes that threshold, the user will be notified to 

adjust the contents of the bag.  

 
Figure 2.3.1: Free body diagram showing the torque vector of interest. 

 The center of weight is determined by using a single point 

of force along the back and comparing it to the weight of the 

pack when compared to the total force distributed along the 

back. The upper part of the strap acts as a hinge, which directs 

force downward towards the bag in the form of torque along 

the hinge. The final equation determined as:   

 

 

     Rcos(Ø) = 

 
Here, L is the length, p is the pressure from a sensor, r is the 

distance from the top, and A is a constant determined by the 

force that the lower strap pulls the bag. The algorithm uses 

two points and averages them to prevent anomalies from 

occurring. This formula will have to be tested physically as it 

makes a lot of assumptions. It assumes the center of weight is 

all based on one point, it assumes the bag acts as a rigid body 

once settled and that the friction forces are minimal.  
 The strap optimization algorithm follows the fundamental 

rule that your shoulders are not meant to bear weight. The 

algorithm shown below first attempts to acquire symmetry 

between the two shoulders and then adjusts the straps to the 

minimal amount of weight on the shoulders [6].  
 

 
 

Figure 2.3.2: Pseudocode for the strap optimization algorithm. 

 The smart backpack is able to determine the strap location 

based on the ratio between the upper and lower shoulder 

sensors. Pressure on the higher sensor is indicative of a low 

placement and pressure on the lower strap is indicative of a 

higher placement.  
 Verifying these algorithms was the most difficult process of 

the weight analytics subsection. While there are many 

software applications able to do weight distribution analysis 

for simple parts, there are limited options for large soft body 

systems. The cloth properties of a backpack make it much 

more difficult to analyze. As a solution to this, the computer 

animation software ‘Blender’ was used to model the backpack. 

Blender contains the comprehensive open source physics 

engine Bullet Physics, which is able to simulate large scenes 

with a vast amount of objects. It also has the ability to directly 

simulate soft body physics to mimic the cloth found on 

backpack straps.  
 Since blender is not analysis software, it does not have the 

ability to directly view active forces on an object, and 

The algorithm for the weight sensor block: 
while(abs(left - right) > minimum balance 

threshold) 
loosen higher pressure strap until equal; 

//determine strap location by checking pressure on 

shoulders 
if lower strap sensors < upper strap sensors 

set strap location to high 
else  

set strap location to low 

 
while(max(shoulder pressure at t+1)< max(shoulder 

pressure) at t) 

if strap location == low 
  tighten both straps  

else 

loosen both straps 
if any strap is above a safety threshold  

loosen both straps  
break; 
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therefore the pressure acting upon two objects. In order to test 

these objects, a series of the point forces along the backpack  

were calibrated until the backpack stayed in equilibrium  
 To build these blocks skills learned from basic math and 

physics classes such as Physics 151 and Math 131, 132 and 

233 were used for the hand calculations of these algorithms. In 

addition to that, methods derived from Data structures and 

algorithms were used to develop the optimization algorithm 

and employed a feedback mechanism similar to those 

discussed in Electronics II. Moving forward, these algorithms 

need to be implemented in C code for use in the smartphone 

app. An API will need to be developed so that the algorithms 

will be able to be easily edited and debugged in the design 

process.  
 

D. Microcontroller and Bluetooth Low Energy Hardware 

 This block is the brain of every EquiPack. The micro-

controller reads sensor data from peripheral weight sensors 

positioned throughout the pack, and can compress and store 

the data, or send it directly via Bluetooth to a Peer device 

requesting weight data. While this is the main purpose of the 

block, it will also function to conserve battery by cycling 

power to peripheral sensors and inform users of battery level.  
 The implementation uses the LPC824M Low Energy 

Microcontroller from NXP Semiconductors, and the nRF8001 

Bluetooth Low Energy Module from Nordic Semiconductor. 

These elements will be incorporated into the central PCB, 

which will eventually integrate the microcontroller, Bluetooth 

module, power systems, and analog signal processing 

circuitry.  
 Knowledge required to build and debug this block was 

acquired in Computer Systems Labs I & II (ECE353 & 

ECE354). Computer Systems Lab I focused on use of UART, 

which is an integral component of the custom Automatic 

Control Interface (ACI) between the LPC824M and nRF8001. 

Computer Systems Lab I also necessitated use of a logic 

analyzer, which was used for debugging by reading multiple 

UART/Control channels on the ACI bus to verify message 

packets sent by and received from the Bluetooth module, as 

well as control signal timing parameters. Computer Systems 

Lab II involved gaining a greater understanding of Non- 

Volatile Memory, Interrupt Request Priority, and interfacing 

with peripherals via Memory Mapped I/O, all of which are 

important components of the overall design of the micro-

controller code.  
 In addition to what has already been learned, proficiency 

needs to be gained with PCB layout and design, and effective 

low-energy sleep management for the microcontroller and 

Bluetooth Low Energy Module.  
 To verify the functionality of Bluetooth communication, a 

standalone Android Application was created, implementing 

BLE communication. This application was used to connect, 

pair, and send data to and from the microcontroller. The 

process, which could be monitored and debugged on both the 

Android Application (using the IDE Android Studio and the 

Microcontroller, followed the following process:  
1. The microcontroller sends setup information to the 

Bluetooth module 

2. The Bluetooth Module sends a “State Changed To 

Standby” Message 

3. The microcontroller sends a “Start Broadcasting” 

Message, which will begin a Bluetooth Low Energy 

Broadcast event, making the Bluetooth Module 

discoverable 

4. The application, listening for advertisement packets 

from devices, finds the EquiPack Bluetooth Device, 

and begins connecting 

5. The Microcontroller receives a “Connection with 

Peer Device Successful” message 

6. The App also receives a “Connection Successful” 

message, and begins broadcasting data to the 

microcontroller.  

7. During debug, the content of these data messages can 

be verified 

8. The content sent in response by the microcontroller 

can be verified on the App side during a concurrent 

debug session 

 Tests were also developed to verify the functionality of the 

microcontroller’s native Analog to Digital Converter (ADC). 

The 3.3V Analog Reference Voltage provided by the 

microcontroller was divided by a potentiometer and fed back 

into the ADC port. The value at the ADC register was polled 

by the microcontroller, prompted by a message sent from the 

Android application. This was parsed into a reference voltage 

and displayed in the application. Polling occurred as 

frequently as 20 times per second. It was seen that twiddling 

the Potentiometer between 0V and 3.3V triggered a com-

mensurate value change in the Android application display.  

E.  Mobile Application 

 EquiPack’s mobile application block serves as a means to 

receive and store data, perform data analytics, and visually aid 

the EquiPack user in correctly wearing their backpack. This 

block can be thought of as the interface through which a user 

of an EquiPack can setup and use their bag to its full potential.  
 Throughout the development of this application, many 

software design principles (java in ECE121, data structures 

and algorithms in ECE242, large scale software engineering in 

ECE373, “user-first” design methodologies from industry 

experience) must be followed in order to produce an end 

product which is open-sourced (see Appendix 4a), easily 

accessible, expandable, and robust. As a developer of such a 

product, one must first become familiar with the design 

methodologies suggested by Google Inc., the maintainers of 

Android, prior to development to ensure the product does not 

begin down a path which will hinder its growth.  
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Figure 2.5.1: Equipack’s navigation drawer opened while in the BLE Test 

fragment view 

 The top-level navigation scheme chosen for EquiPack’s 

mobile solution is a Navigation Drawer (See Figure 2.5.1). A 

developer should chose this navigation scheme when 

providing the user with multiple views that are not tightly 

related from a user’s perspective, but remain tightly bound 

internally. A Navigation Drawer allows for the distinction 

between different views while still allowing for them 

communicate with one another via a common “main” activity. 

For example, the feedback view and the settings view are not 

closely related in the user’s perspective, but the settings are 

necessary for proper feedback. Additionally, a Navigation 

Drawer allows for expansion to a multi-leveled navigation 

scheme, thus making it possible to vastly expand the 

application’s features and functions with ease [8].  
 When presenting the user with a visual element, there are 

different design approaches that one can take. For EquiPack’s 

application, a Fragment-Activity scheme has been 

implemented. Fragments can be thought of as a modular 

section of an Activity, consisting of one or more user interface 

elements. In a Fragment-Activity scheme, a single activity can 

control the lifecycle of multiple fragments. This allows for all 

of the fragments to co-exist and communicate with each other 

as needed [10]. Furthermore, grouping many user interface 

elements into a single fragment (as opposed to a View- 

Activity scheme) allows for the reuse of user interface 

elements in different portions of the application. For instance, 

the Navigation Drawer fragment can be made visible while 

any other fragment is visible. This allows for the re-use of a 

pre-defined set of user interface elements for navigation, 

rather than reproducing these elements individually each time 

they are needed [9]. Lastly, using a Fragment-Activity scheme 

allows for improved user experience.  

 
Figure 2.5.2: Two fragments can be re-used and displayed in a different 

manner on different classes of devices [9] 

 As can be seen in Figure 2.5.2, an application’s main 

activity is able to display fragments in different fashions based 

on what type of device the application is being run on if the 

application uses a Fragment-Activity scheme. In a View- 

Activity scheme, two separate applications would need to be 

developed in order to produce the same observed behavior. 

Fragments allow EquiPack’s application to better enable 

development across multiple classes of devices with a 

maximum percentage of reusable code [9].  
 The behavior of the application must be consistent with that 

of other popular Android applications as well as with the 

expectations of its user. This ensures a higher level of 

accessibility within our mobile application [9]. In addition to a 

global top-level navigation scheme, the hardware based 

navigation methods must also be implemented. Since a 

Fragment-Activity scheme was used, a back-stack was 

implemented in order to save each fragment transaction (the 

act of changing the visibility of a fragment or switching 

between different fragments). These transactions must be 

pushed onto a stack that is accessible to the Operating System 

so that the previous state of the application can be restored 

when the hardware’s “back” button is pressed [7].  
 Additionally, a scheme for saving and restoring states of 

different views contained within a fragment has been 

implemented. The importance of such a mechanism will be 

touched upon briefly in the description of the Bluetooth Low 

Energy testing scenario. As more fragments are populated 

with changing views, this mechanism will be implemented in 

the new fragments as necessary.  
 This mobile application is intended to serve as a mediator 

between the embedded system of an EquiPack bag, and the 

wearer of an EquiPack bag. Sensor data collected by the 

embedded micro-controller is collated and transmitted via 

Bluetooth Low Energy (BLE) to the mobile device. Given that 

EquiPack is a low power consumption device, it is critical that 

the mobile application is built to run on hardware that can 

support BLE. For this reason, Android version 4.4 (KitKat) 

was chosen as the development API level. API level 18 

provides a BLE API which was used to facilitate 

communication between the mobile device and the embedded 

system’s Generic Attribute Server (GATT) [12].  
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Figure 2.5.3: The BLE Test fragment is the visible collection of views 

  For testing purposes, the mobile application currently 

features a fragment dedicated to the setup, connection, and 

communication associated with the BLE stack (Appendix 4b), 

which can be seen in Figure 2.5.3. When the “connect” button 

is pressed, the application makes a system call to ensure that 

Bluetooth Low Energy is supported on the device. If so, the 

Bluetooth hardware should be turned on. If it has not yet been 

turned on, the user is prompted to do so. When the hardware is 

enabled, the application begins to search for BLE devices. 

Once a device with a name matching the user preferred 

(preferences will be discussed shortly) name, an attempt to 

connect to that device’s GATT server is made. Upon a 

successful connection, the application begins to read the 

GATT server’s services. If the preferred service is found, then 

the characteristics of that service are read. If the preferred 

characteristics are present, the descriptors for those 

characteristics are read. If the descriptors of each characteristic 

match the anticipated descriptor [13] (write characteristic is 

writable, read characteristic is able to send notifications), then 

the “Notify” button in the BLE Test fragment is enabled.  
 When a user presses the “Notify” button, the application 

attempts to write to the read characteristics “notify” descriptor. 

If this descriptor change is successful, then the user will be 

able to click on either the “Write” or the green “Poll” button.  
If the user presses the “Write” button, then the value that was 

set in the application’s preferences will be written to the write 

characteristic. The user will then notice that the peripheral 

device echoed the value written to the write characteristic on 

the GATT server’s read characteristic.  
 If the user were to press the green “Poll” button, the button 

changes its color to red, then the application writes to the 

GATT server’s write characteristic a value containing the 

“Poll” operation code (0x02) as the first byte in the 

transmission. This triggers the embedded system to transmit 

its most recent readings on its ADCs. Once a notification 

containing the ADC data has been received, another identical 

write is performed. This cycle continues until the user presses 

the red “Poll” button, in which case the cycle is broken.  
 Each step that the application makes during the use of this 

BLE Test fragment is visibly printed in a text-based log that is 

visible over the majority of the screen. At any point, if the user 

were to switch to a different fragment or navigate away from 

the EquiPack application, then the fragment will save the 

contents of its TextView (View containing the log) and the 

states of all of the buttons. The contents of the TextView and 

the states of the buttons are then restored the next time that the 

fragment is made visible. If the application is quit, then the 

contents of this fragment are lost and the default for each view 

is loaded the next time the fragment needed.  
 Preferences are a vital part of any modern application. They 

serve as a mechanism for users to enter customizable 

information. The information entered in preferences is 

intended to be that which is unique to each user of the 

application. Thus far, a user is able to enter the name of their 

EquiPack’s advertised GATT server, the UUIDs for the read 

and write characteristics or their bag, a 40 character long hex 

string to be written, and their weight. If these settings are set 

to something valid, then the application begins to use the new 

values immediately. These preferences are stored locally and 

are reloaded each time the application starts up.  
 One test procedure that has been performed to ensure the 

functionality of the most implemented features at once (during 

MDR) is as follows (Appendix 4b):  
1. Disable Bluetooth 

2. Start up the application and set the user preferences 

to something valid and unique to your EquiPack bag. 

3. Quit the application. 

4. Start up the application and notice that all of the 

preferences are still populated with the values you 

previously entered. 

5. Navigate to the BLE Test fragment via the 

Navigation Drawer. 

6. Press the “Connect” button. 

7. Enable the Bluetooth hardware when prompted. 

8. Wait for a successful connection to the GATT server. 

9. Wait for the successful verification of the read and 

write characteristics. 

10. Take note of the Log contents and test button states. 

11. Navigate away from the BLE Test fragment. 

12. Navigate back to the BLE Test fragment and notice 

that the log contents and test button states are 

restored to the same state that they were previously 

in. 

13. Press the “Notify” button and see that notifications 

have been successfully enabled. 

14. Press the “Write” button. Notice that the value 

echoed back from the GATT server matches the 

value entered in the preferences. 

15. Navigate to the preferences and change the write 

value. 

16. Press the “Back” (hard) button to navigate back to the 

BLE Test fragment and press the “Write” button 

again. 
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17. Notice that the new write value is echoed back by the 

GATT server. 

18. Press the “Poll” button and notice that live ADC data 

is being displayed in the log. These values change as 

the ADC reading change (Demoed with 

potentiometers connected to the ADCs). 

19. Press the “Poll” button again to stop polling. 

   

 If all of the application behaviors are as described in the 

above user scenario, then the core features of this application 

have been tested and verified  

III. PROJECT MANAGEMENT 

 EquiPack’s design and development team consists of two 

Electrical Engineering majors and two Computer Systems 

Engineering majors who have known one another since the 

fall of 2011. Internally, our project can be divided into a 

software-based component and a hardware based component. 

Alexander Nichols and Brenton Chasse have excelled in prior 

software based group projects such as those associated with 

ECE354 and CS377. Colin Morrisseau and Zachariah Boynton 

have excelled in prior hardware based group projects such as 

those associated with ECE213 and ECE324. Our team’s 

history of working together is echoed in how our team assists 

one another internally.  
 The team meets at the beginning of each week with our 

advisor, Professor Chris Salthouse, to discuss the progress we 

made over the previous week. Furthermore, we discuss our 

planned progress for the upcoming week. In addition, the team 

meets twice a week. Monday evening meetings are scheduled 

as needed in order to align the team’s progress for the week. 

Wednesday evening meetings are scheduled every week in 

order to discuss each individual’s progress as well as any 

challenges or roadblocks that any member may be facing. The 

team’s frequent group meetings ensure that each individual’s 

ideas for EquiPack’s future are aligned, both within the group 

and between the team and its advisor.  
 Zachariah is an Electrical Engineering major with an 

interest in circuit design. His past work has been focused on 

analog and radio frequency design. He has experience in both 

industry and research environments. As a result of these prior 

experiences, Zachariah is responsible for the weight sensors 

block. This block is dependent on analog circuitry to interface 

with the weight sensing material. Zachariah has worked with 

Colin to determine the specifications for the sensors in order 

to ensure the success of the weight analytics. Zachariah has 

also worked with Alexander on the hardware interface 

between the microcontroller and the Bluetooth unit  
 Colin is an EE with a relatively strong background in 

software engineering and an interest in applying his 

knowledge of physics to an engineering challenge, such as this 

one being solved by this team.  
 Colin’s math minor helped him acquire the skills necessary 

to develop algorithms for the weight analytics. Colin’s broader 

interest in the fields of electrical and computer system is 

crucial for this subsystem because it overlaps with every 

single other subsystem. As an intern at Verizon this summer, 

Colin developed algorithms for sorting large amounts of 

statistical data into useful and reliable information.  

 Alexander is a CSE with a passion for embedded systems 

development. As team leader for both his Computer Systems 

Lab I and II groups, Alex took a front seat role in the design, 

development and debugging of large projects written in C and 

Verilog, interfacing with a number of diverse microcontroller 

systems and technologies.  
 Brenton is a CSE with a Computer Science minor who is 

most at home when engineering software. Although his 

experience with software engineering has been focused on 

C++ and JavaScript applications, he has a strong passion for 

producing high quality software and is open to the challenge 

of developing in an unfamiliar environment. With prior 

experience in industry level user experience based user 

interface development (Design thinking development 

methodology), industry level object oriented software 

engineering, and embedded software design, it is natural for 

Brenton to take on the role of designing and implementing an 

Android based application consisting of a user interface and 

Bluetooth communication, for retrieving feedback from and 

interacting with an EquiPack bag. Additionally, Brenton has 

proven industry experience leading a team of peers, thus it was 

natural for him to take the team’s management role.  
 Since Brenton took the role of Android developer prior to 

having ever developed for an Android environment, Alex, 

who has extensive experience with Android development and 

has previously implemented the Android BLE stack (although 

not for the same API level as is used within the EquiPack 

application) and is Brenton’s housemate, was available to 

answer Brenton’s questions about the design principles of 

Android when such questions arose.  

 
Figure 5.1: Timeline of EquiPack Integration 

 

IV. CONCLUSION 

 Thus far, the BLE communication protocol, which will be 

used to transmit raw sensor data from the EquiPack’s sensor 

network to the user’s mobile device, is fully integrated. The 

functionality of this communication represents the completion 

of critical integration between the embedded system and the 

mobile application. Without a means to transmit data to and 

from these two subsets, the project would have much 

difficulty coming to completion in a timely manner.  
Furthermore, the core fragments and navigation needed to 

develop a user friendly Android application have been put in 
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place, leaving the application in an excellent state to expand 

it’s visual and functional aspects.  
 The microcontroller and Bluetooth Module are able to 

establish a robust connection with an Android Peer Device, 

capable of weathering multiple disconnection events. It is also 

able to read multiple ADC channels in parallel and stream 

these data over Bluetooth to an Android Peer Device at 20 

baud.  
The sensor network has been able to accurately take weight 

data for lighter weights (under 5lbs). Going forward the 

sensors will need to be outfitted with housing to ensure 

robustness of the system. Sensors will also need to be 

modified to accommodate a wider range of weights. Finally 

sensors will need to be interfaced with the microcontroller so 

that data can be read quickly and accurately. Foreseeable 

issues will be ensuring quick readings from the sensors due to 

the nature of charge dissipation in the foam. Once the sensor 

design is finalized, the process of integration will begin.  
 Within the Weight analytics subsystem, all algorithms have 

been developed. They will needed to be tested in real world 

settings, to make sure that the assumptions made while 

calculating the models are correct. This testing will be 

performed once the weight sensors have been implemented 

into the actual backpack and creating a prototype we can test 

with. In addition to that, an algorithm for predicting and 

removing the RC decay caused by the sensors will need to be 

developed in order to speed up the poling time of the software.  
 As team EquiPack moves forward, the team will be 

collecting the sensor network data and transmitting it over the 

implemented BLE stack to the Android application. It is here 

that the analytics can be performed. Visual representations of 

the analyst's suggestions and feedback will be presented to the 

user. Additionally, any extreme usages of the backpack will 

trigger the sending of a text message from the User’s Android 

phone to an application subscriber's cellular device.  
 There are still non-trivial amounts of work to be performed 

in order to: collect reliable and consistent sensor data from the 

sensor network embedded within the backpack itself; analyze 

and provide feedback to the user via the mobile application 

based off of the sensor data received over BLE from the 

embedded system (Appendix 6a); provide a battery powered, 

weather resistant, backpack embedded sensor/computational 

network.  
 After integrating the sensor network with the embedded 

micro-controller, the sensor data can be used within the weight 

analytics to relate the sensor data to the EquiPack’s position 

on the user’s back. Once this relationship has been made, the 

Android application can display useful information to the user 

in order for the user to optimize the position of their backpack 

in order to minimize potential health risks.  
 During this integration, iterative steps need to be made in 

order to minimize our embedded footprint (PCB design, 

fabrication, and verification), make our embedded system 

weather resistant (hydrophobic coatings), and embed our 

sensor and computational network within a physical backpack.  
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APPENDIX 

1A.) The schematic diagram for the weight sensor block.  

 
4a.) EquiPack Mobile Companion GitHub URL. 

https://github.com/bpchasse/EquiPack 

“MDRFeatureAdditions” branch was the source code used for 

the MDR demo. 

4b.) Flow chart depicting the actions taken within the 

EquiPack app in order to use BLE 

 
6a.) Preliminary design for presenting strap position feedback 

to the EquiPack mobile user. 
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