
UMass ECE Senior Design Project, Fall 2015 – Team 2

1

Abstract—The goal of EquiPack is to provide users of our

backpack with real time suggestions on how to properly

position and wear the backpack. Hospitals across the US

report over 7,000 annual emergency room visits due to

backpack related injuries. EquiPack aims to reduce the

number and onset of short- term and long-term backpack-

related injuries.

I. INTRODUCTION

 Every year there are over 7,000 emergency room visits due

to injuries related to backpacks. This is up over 330% from

1996 [1]. These issues are caused by improper adjustment and

wearing of the backpacks [2]. In the past people have simply

been recommended to carry less weight or have had to resort

to other means of carrying the weight such as rolling bags or

weight bearing service animals.

 These options are frequently not useful under all conditions.

For instance rolling bags are not particularly useful over rough

terrain. Ideally people would be able to properly use their bags

and therefore carry a full load without chance of injury.

Additionally, there are no viable solutions for adventurous

people such as hikers or scout troops. This is where EquiPack

comes in EquiPack. EquiPack is a simple solution that allows

users to see how well their bag is adjusted and provides

feedback on how the bag could be fit better.

II. DESIGN

A. Overview

 The key to preventing backpack

related injury is to provide the user

with enough information for them to

correctly position their bag. In

order  to provide the user with

this  knowledge we have decided to

equip  our bag with an array of load

sensors  along the back and straps

(Figure  2.1.1). A micro-controller

collects and  collates the sensor data

and transmits  it over Bluetooth to an

Android  application. From there, the

application can utilize the processing ability of the mobile

device’s hardware to quickly process the data and present the

user with visual queues necessary for proper adjustment of the

bag. In the early stages of our project design, we also looked

B. C. Author from Plainville, Ct (e-mail: bpchasse@gmail.com).

A. N. Author from Quincy, Ma (e-mail: alex.nichols1066@gmail.com).

C M. Author from Syracuse, Ny (e-mail: cmorrisseau@twcny.rr.com).

Z. B. Author from Cambridge, Ma (e-mail: zboynton@verizon.net).

at a backpack that could adjust the straps automatically while

the wearer is moving, thus decreasing back stress. After more

research, this was decided to be unnecessary. Back stress

could be reduced by simply adjusting the straps properly and

limiting the weight of the backpack holds [4]. EquiPack was

divided into four main subsections; Weight Sensors,

Embedded Programmable Hardware, Weight Analytics

Algorithm, and Android Application.

 The EquiPack system can be broken into multiple

subsystems, as can be seen in Figure 2.1.2. Each of these

subsystems has their own specific requirements and

specifications.

 Sensors were specified to be able to handle weights ranging

from 1lb to 100lbs. This ensures that intense pressure caused

by improper loading, or general abuse of the Equipack

solution, would not destroy the sensors. In a similar manner,

sensors are required to have a robust housing; they must

withstand wear due to time and the elements. Sensors must

also be robust when exposed to the elements, for accurate data

will be necessary in all conditions. Measurements made from

the sensor network must be accurate enough to sense weights

in 1lb increments. Finally the sensors must have a small

footprint and low power consumption, ensuring long (weeks)

battery life and non-invasive integration into the physical bag.

 The goal of the weight analytics is to convert the forces

determined by the sensors into useful information. The

requirements for the weight analytics block are as follows:

able to determine the total weight, able to approximate the

loaded bag’s center of mass, and able to determine the best

ratio between pressure on the shoulders and the back that

could be achieved by adjusting the straps. The center of mass

is required to determine whether objects are aligned correctly

in the solutions physical bag. Having a center of mass far from

the back will cause a user to lean forward in order to

compensate and maintain balance.

 The total weight of a pack has been shown to be to the

largest cause of backpack related injury. Doctors recommend

EquiPack: An Injury Reducing Smart Backpack

Brenton P. Chasse, CSE, Alexander S. Nichols, CSE, Colin C. Morrisseau, EE, and Zachariah G. Boynton, EE

Figure 2.1.1: Sensor

locations

Figure 2.1.2: Block Diagram of EquiPack

UMass ECE Senior Design Project, Fall 2015 – Team 2

2

having a weight limit of anywhere from 10% to 25% of the

user’s bodyweight in a backpack [5]. The focal point of the

EquiPack solution is its ability to optimize the strap positions.

Strap adjustment suggestions give the user the option of quick

feedback by providing them with an easy way to prevent them

from becoming injured.

 The goal of the microcontroller is to provide EquiPack with

a brain that will enable external communication and

interfacing with the weight sensors and power systems. These

two elements are in turn the heart of EquiPack, the systems

that allow EquiPack to perform the key functionality setting it

apart from all other backpacks. To ensure that the

microcontroller and Bluetooth systems perform in a way that

enhances the functionality of the pack and eases user

interaction as much as possible, certain specifications need to

be met.

 The microcontroller should not make a disproportionate

draw on battery power: it operates at 3.3V and should draw no

more than 10mA of current when on. The same should be true

of the Bluetooth Module when on: it operates at 3.3V and

should draw no more than 10mA. In addition, the

Microcontroller should only exit sleep mode when actively

controlling power systems and reading sensor data, and the

Bluetooth module should only leave sleep mode when

EquiPack is in use. Finally, the relatively large and extensible

number of sensors, which will be needed in the EquiPack,

necessitates a scalably large number of native ADCs

accessible to the microcontroller.

 This system meets the power requirements, with the chosen

microcontroller, the LPC824M from NXP Semiconductors,

having power consumption 35mW [17], and the Bluetooth

Module, the nRF8001 from Nordic Semi-conductor, having

power consumption 30mW [18]. The LPC824M has 12 12-bit

ADCs accessible in parallel. Both the LPC824M and nRF8001

are designed for low-power environments, and have highly

efficient sleep modes, which can be entered and exited easily.

 The goal of the EquiPack mobile application is to provide a

user interface that displays feedback or suggestions to the bag

wearer. This application must have an intuitive user interface,

secure data storage and transfer, the ability to utilize Bluetooth

Low Energy, the ability to send text alerts, an expandable code

base, persistent customizable preferences, and reliability.  The

user interface must be easy to use for anyone who is familiar

with the general design patterns of Android applications,

allowing for easy user adoption. In making such a user

interface, the application should be developed in such a way

that new features can be easily added to the existing

application, for an enterprise level application should always

be expanding post release.

 In order to communicate securely, effectively, and

efficiently, the Android application must be written using an

API that supports Bluetooth Low Energy. Additionally, the

application must be developed in such a way that a user can

enter custom preferences, which persist over multiple

lifecycles of the application. For example, the user’s weight is

necessary to ensure the bag is not too heavy to safely wear.

Last, the Android application must be intuitive to navigate,

while providing visual representations of the analytics’

feedback.

B. Weight Sensor Network

 The purpose of the weight sensors block is to take

information from the physical world, in this case weight, and

convert it into an electrical signal that can then be processed

by the rest of the system. This weight sensor block consists of

two elements, a sensing element, and sensing circuitry. The

implemented sensing element is conductive foam. This foam

has the property that its resistance changes with compression

[3]. Some preliminary data can be seen in the Figure 2.2.1.

Figure 2.2.1: Resistance of foam vs Distance of compression for three

different trials of compression.

 In order to read this change in resistance a voltage divider is

used to create a reference voltage that is fed into an op amp

circuit. The foam has a capacitance intrinsic to it's

construction. This capacitance prevents the voltage across the

foam from changing instantaneously, for the internal

capacitance must charge through the foams resistance. Thus,

the foam's charging and discharging can be modeled as an RC

network in which a resistor is in series with a shunt capacitor

on the output. This RC constant currently dictates how quickly

measurements can be taken from the network. This circuit

amplifies the DC voltage applied to the input by the ratio of

the resistors in the feedback network. At DC, the capacitor

behaves like an open circuit. Therefore, the capacitor has no

impact on the DC operation. At higher frequencies the

capacitor behaves similarly to a short circuit. With the

capacitor acting as a short the circuit behaves like a buffer.

This reduces the total output noise by not allowing the noise to

be amplified. More succinctly put, the addition of the

capacitor improves the signal to noise ratio of the circuit. The

schematic for this network is displayed in appendix 1A.
 The op amp that was chosen was the LM324N. This op amp

was picked because it allows for a single supply operation and

low power consumption, parameters that are critical when

operating in a battery powered system. Courses such 323,324,

and 575 were all useful in the development of this circuitry.

They imparted the knowledge to develop the appropriate

transfer functions, choose a suitable circuit topology, and

select necessary component values.
 Additionally Physics 151 has been useful for understanding

how the force on the foam will translate into its distance of

compression. In order to test this block a weight rig will need

to be setup that will allow the application of a known weight

UMass ECE Senior Design Project, Fall 2015 – Team 2

3

to the sensor. Output voltage can then be measured versus

applied weight in order to characterize the sensor.

C. Weight Analytics

 The weight analytics block is a series of algorithms that are

contained in the smartphone app. The first goal that the weight

analytics subsection needs to achieve is to determine the total

weight of the backpack. Initially, the plan for this was to

develop an algorithm taking the sum of all the weights of the

sensors and summing them in a way to determine the total

weight of the bag. As research continued, there were too many

variables that affected the total weight of the bag. Sensors

were unable to determine the total weight of the bag without

knowing the angle at which the bag was held.
 Once it was determined that an additional sensor would be

needed the next challenge was to determine what additional

sensor could provide extra information. We decided to attach a

load cell to the lower strap of the backpack. A load cell is a

strain gauge attached to a soft piece of metal. when the metal

is bent it changes the resistance of the strain gauge. This is the

sensor used in common luggage scales and can be

implemented using a whetstone bridge and an amplifier. If the

backpack is sufficiently heavy the effect of friction is

negligible as most contact is perpendicular to the force of

gravity. The backpack then acts as a simple pulley, where

tension along the backpack is equivalent to the force at the end

of the rope (and in this case the load of the backpack). Since

there are two straps the actual load is one half the entire

weight. This theory was tested by disassembling a luggage

scale containing a load cell and attaching it in between the

lower strap of the backpack.
 The next goal of the weight analytics subsystem is to

determine the center of mass of the backpack. When it is used

in the Android app, the center of mass will determine if the

contents of the bag need to be adjusted closer to the front of

the bag. Once the center of mass is determined, the distance

away from the back can be set to a threshold, and if that

distance passes that threshold, the user will be notified to

adjust the contents of the bag.

Figure 2.3.1: Free body diagram showing the torque vector of interest.

 The center of weight is determined by using a single point

of force along the back and comparing it to the weight of the

pack when compared to the total force distributed along the

back. The upper part of the strap acts as a hinge, which directs

force downward towards the bag in the form of torque along

the hinge. The final equation determined as:

 Rcos(Ø) =

Here, L is the length, p is the pressure from a sensor, r is the

distance from the top, and A is a constant determined by the

force that the lower strap pulls the bag. The algorithm uses

two points and averages them to prevent anomalies from

occurring. This formula will have to be tested physically as it

makes a lot of assumptions. It assumes the center of weight is

all based on one point, it assumes the bag acts as a rigid body

once settled and that the friction forces are minimal.
 The strap optimization algorithm follows the fundamental

rule that your shoulders are not meant to bear weight. The

algorithm shown below first attempts to acquire symmetry

between the two shoulders and then adjusts the straps to the

minimal amount of weight on the shoulders [6].

Figure 2.3.2: Pseudocode for the strap optimization algorithm.

 The smart backpack is able to determine the strap location

based on the ratio between the upper and lower shoulder

sensors. Pressure on the higher sensor is indicative of a low

placement and pressure on the lower strap is indicative of a

higher placement.
 Verifying these algorithms was the most difficult process of

the weight analytics subsection. While there are many

software applications able to do weight distribution analysis

for simple parts, there are limited options for large soft body

systems. The cloth properties of a backpack make it much

more difficult to analyze. As a solution to this, the computer

animation software ‘Blender’ was used to model the backpack.

Blender contains the comprehensive open source physics

engine Bullet Physics, which is able to simulate large scenes

with a vast amount of objects. It also has the ability to directly

simulate soft body physics to mimic the cloth found on

backpack straps.
 Since blender is not analysis software, it does not have the

ability to directly view active forces on an object, and

The algorithm for the weight sensor block:
while(abs(left - right) > minimum balance

threshold)
loosen higher pressure strap until equal;

//determine strap location by checking pressure on

shoulders
if lower strap sensors < upper strap sensors

set strap location to high
else

set strap location to low

while(max(shoulder pressure at t+1)< max(shoulder

pressure) at t)

if strap location == low
 tighten both straps

else

loosen both straps
if any strap is above a safety threshold

loosen both straps
break;

UMass ECE Senior Design Project, Fall 2015 – Team 2

4

therefore the pressure acting upon two objects. In order to test

these objects, a series of the point forces along the backpack

were calibrated until the backpack stayed in equilibrium
 To build these blocks skills learned from basic math and

physics classes such as Physics 151 and Math 131, 132 and

233 were used for the hand calculations of these algorithms. In

addition to that, methods derived from Data structures and

algorithms were used to develop the optimization algorithm

and employed a feedback mechanism similar to those

discussed in Electronics II. Moving forward, these algorithms

need to be implemented in C code for use in the smartphone

app. An API will need to be developed so that the algorithms

will be able to be easily edited and debugged in the design

process.

D. Microcontroller and Bluetooth Low Energy Hardware

 This block is the brain of every EquiPack. The micro-

controller reads sensor data from peripheral weight sensors

positioned throughout the pack, and can compress and store

the data, or send it directly via Bluetooth to a Peer device

requesting weight data. While this is the main purpose of the

block, it will also function to conserve battery by cycling

power to peripheral sensors and inform users of battery level.
 The implementation uses the LPC824M Low Energy

Microcontroller from NXP Semiconductors, and the nRF8001

Bluetooth Low Energy Module from Nordic Semiconductor.

These elements will be incorporated into the central PCB,

which will eventually integrate the microcontroller, Bluetooth

module, power systems, and analog signal processing

circuitry.
 Knowledge required to build and debug this block was

acquired in Computer Systems Labs I & II (ECE353 &

ECE354). Computer Systems Lab I focused on use of UART,

which is an integral component of the custom Automatic

Control Interface (ACI) between the LPC824M and nRF8001.

Computer Systems Lab I also necessitated use of a logic

analyzer, which was used for debugging by reading multiple

UART/Control channels on the ACI bus to verify message

packets sent by and received from the Bluetooth module, as

well as control signal timing parameters. Computer Systems

Lab II involved gaining a greater understanding of Non-

Volatile Memory, Interrupt Request Priority, and interfacing

with peripherals via Memory Mapped I/O, all of which are

important components of the overall design of the micro-

controller code.
 In addition to what has already been learned, proficiency

needs to be gained with PCB layout and design, and effective

low-energy sleep management for the microcontroller and

Bluetooth Low Energy Module.
 To verify the functionality of Bluetooth communication, a

standalone Android Application was created, implementing

BLE communication. This application was used to connect,

pair, and send data to and from the microcontroller. The

process, which could be monitored and debugged on both the

Android Application (using the IDE Android Studio and the

Microcontroller, followed the following process:
1. The microcontroller sends setup information to the

Bluetooth module

2. The Bluetooth Module sends a “State Changed To

Standby” Message

3. The microcontroller sends a “Start Broadcasting”

Message, which will begin a Bluetooth Low Energy

Broadcast event, making the Bluetooth Module

discoverable

4. The application, listening for advertisement packets

from devices, finds the EquiPack Bluetooth Device,

and begins connecting

5. The Microcontroller receives a “Connection with

Peer Device Successful” message

6. The App also receives a “Connection Successful”

message, and begins broadcasting data to the

microcontroller.

7. During debug, the content of these data messages can

be verified

8. The content sent in response by the microcontroller

can be verified on the App side during a concurrent

debug session

 Tests were also developed to verify the functionality of the

microcontroller’s native Analog to Digital Converter (ADC).

The 3.3V Analog Reference Voltage provided by the

microcontroller was divided by a potentiometer and fed back

into the ADC port. The value at the ADC register was polled

by the microcontroller, prompted by a message sent from the

Android application. This was parsed into a reference voltage

and displayed in the application. Polling occurred as

frequently as 20 times per second. It was seen that twiddling

the Potentiometer between 0V and 3.3V triggered a com-

mensurate value change in the Android application display.

E. Mobile Application

 EquiPack’s mobile application block serves as a means to

receive and store data, perform data analytics, and visually aid

the EquiPack user in correctly wearing their backpack. This

block can be thought of as the interface through which a user

of an EquiPack can setup and use their bag to its full potential.
 Throughout the development of this application, many

software design principles (java in ECE121, data structures

and algorithms in ECE242, large scale software engineering in

ECE373, “user-first” design methodologies from industry

experience) must be followed in order to produce an end

product which is open-sourced (see Appendix 4a), easily

accessible, expandable, and robust. As a developer of such a

product, one must first become familiar with the design

methodologies suggested by Google Inc., the maintainers of

Android, prior to development to ensure the product does not

begin down a path which will hinder its growth.

UMass ECE Senior Design Project, Fall 2015 – Team 2

5

Figure 2.5.1: Equipack’s navigation drawer opened while in the BLE Test

fragment view

 The top-level navigation scheme chosen for EquiPack’s

mobile solution is a Navigation Drawer (See Figure 2.5.1). A

developer should chose this navigation scheme when

providing the user with multiple views that are not tightly

related from a user’s perspective, but remain tightly bound

internally. A Navigation Drawer allows for the distinction

between different views while still allowing for them

communicate with one another via a common “main” activity.

For example, the feedback view and the settings view are not

closely related in the user’s perspective, but the settings are

necessary for proper feedback. Additionally, a Navigation

Drawer allows for expansion to a multi-leveled navigation

scheme, thus making it possible to vastly expand the

application’s features and functions with ease [8].
 When presenting the user with a visual element, there are

different design approaches that one can take. For EquiPack’s

application, a Fragment-Activity scheme has been

implemented. Fragments can be thought of as a modular

section of an Activity, consisting of one or more user interface

elements. In a Fragment-Activity scheme, a single activity can

control the lifecycle of multiple fragments. This allows for all

of the fragments to co-exist and communicate with each other

as needed [10]. Furthermore, grouping many user interface

elements into a single fragment (as opposed to a View-

Activity scheme) allows for the reuse of user interface

elements in different portions of the application. For instance,

the Navigation Drawer fragment can be made visible while

any other fragment is visible. This allows for the re-use of a

pre-defined set of user interface elements for navigation,

rather than reproducing these elements individually each time

they are needed [9]. Lastly, using a Fragment-Activity scheme

allows for improved user experience.

Figure 2.5.2: Two fragments can be re-used and displayed in a different

manner on different classes of devices [9]

 As can be seen in Figure 2.5.2, an application’s main

activity is able to display fragments in different fashions based

on what type of device the application is being run on if the

application uses a Fragment-Activity scheme. In a View-

Activity scheme, two separate applications would need to be

developed in order to produce the same observed behavior.

Fragments allow EquiPack’s application to better enable

development across multiple classes of devices with a

maximum percentage of reusable code [9].
 The behavior of the application must be consistent with that

of other popular Android applications as well as with the

expectations of its user. This ensures a higher level of

accessibility within our mobile application [9]. In addition to a

global top-level navigation scheme, the hardware based

navigation methods must also be implemented. Since a

Fragment-Activity scheme was used, a back-stack was

implemented in order to save each fragment transaction (the

act of changing the visibility of a fragment or switching

between different fragments). These transactions must be

pushed onto a stack that is accessible to the Operating System

so that the previous state of the application can be restored

when the hardware’s “back” button is pressed [7].
 Additionally, a scheme for saving and restoring states of

different views contained within a fragment has been

implemented. The importance of such a mechanism will be

touched upon briefly in the description of the Bluetooth Low

Energy testing scenario. As more fragments are populated

with changing views, this mechanism will be implemented in

the new fragments as necessary.
 This mobile application is intended to serve as a mediator

between the embedded system of an EquiPack bag, and the

wearer of an EquiPack bag. Sensor data collected by the

embedded micro-controller is collated and transmitted via

Bluetooth Low Energy (BLE) to the mobile device. Given that

EquiPack is a low power consumption device, it is critical that

the mobile application is built to run on hardware that can

support BLE. For this reason, Android version 4.4 (KitKat)

was chosen as the development API level. API level 18

provides a BLE API which was used to facilitate

communication between the mobile device and the embedded

system’s Generic Attribute Server (GATT) [12].

UMass ECE Senior Design Project, Fall 2015 – Team 2

6

Figure 2.5.3: The BLE Test fragment is the visible collection of views

 For testing purposes, the mobile application currently

features a fragment dedicated to the setup, connection, and

communication associated with the BLE stack (Appendix 4b),

which can be seen in Figure 2.5.3. When the “connect” button

is pressed, the application makes a system call to ensure that

Bluetooth Low Energy is supported on the device. If so, the

Bluetooth hardware should be turned on. If it has not yet been

turned on, the user is prompted to do so. When the hardware is

enabled, the application begins to search for BLE devices.

Once a device with a name matching the user preferred

(preferences will be discussed shortly) name, an attempt to

connect to that device’s GATT server is made. Upon a

successful connection, the application begins to read the

GATT server’s services. If the preferred service is found, then

the characteristics of that service are read. If the preferred

characteristics are present, the descriptors for those

characteristics are read. If the descriptors of each characteristic

match the anticipated descriptor [13] (write characteristic is

writable, read characteristic is able to send notifications), then

the “Notify” button in the BLE Test fragment is enabled.
 When a user presses the “Notify” button, the application

attempts to write to the read characteristics “notify” descriptor.

If this descriptor change is successful, then the user will be

able to click on either the “Write” or the green “Poll” button.
If the user presses the “Write” button, then the value that was

set in the application’s preferences will be written to the write

characteristic. The user will then notice that the peripheral

device echoed the value written to the write characteristic on

the GATT server’s read characteristic.
 If the user were to press the green “Poll” button, the button

changes its color to red, then the application writes to the

GATT server’s write characteristic a value containing the

“Poll” operation code (0x02) as the first byte in the

transmission. This triggers the embedded system to transmit

its most recent readings on its ADCs. Once a notification

containing the ADC data has been received, another identical

write is performed. This cycle continues until the user presses

the red “Poll” button, in which case the cycle is broken.
 Each step that the application makes during the use of this

BLE Test fragment is visibly printed in a text-based log that is

visible over the majority of the screen. At any point, if the user

were to switch to a different fragment or navigate away from

the EquiPack application, then the fragment will save the

contents of its TextView (View containing the log) and the

states of all of the buttons. The contents of the TextView and

the states of the buttons are then restored the next time that the

fragment is made visible. If the application is quit, then the

contents of this fragment are lost and the default for each view

is loaded the next time the fragment needed.
 Preferences are a vital part of any modern application. They

serve as a mechanism for users to enter customizable

information. The information entered in preferences is

intended to be that which is unique to each user of the

application. Thus far, a user is able to enter the name of their

EquiPack’s advertised GATT server, the UUIDs for the read

and write characteristics or their bag, a 40 character long hex

string to be written, and their weight. If these settings are set

to something valid, then the application begins to use the new

values immediately. These preferences are stored locally and

are reloaded each time the application starts up.
 One test procedure that has been performed to ensure the

functionality of the most implemented features at once (during

MDR) is as follows (Appendix 4b):
1. Disable Bluetooth

2. Start up the application and set the user preferences

to something valid and unique to your EquiPack bag.

3. Quit the application.

4. Start up the application and notice that all of the

preferences are still populated with the values you

previously entered.

5. Navigate to the BLE Test fragment via the

Navigation Drawer.

6. Press the “Connect” button.

7. Enable the Bluetooth hardware when prompted.

8. Wait for a successful connection to the GATT server.

9. Wait for the successful verification of the read and

write characteristics.

10. Take note of the Log contents and test button states.

11. Navigate away from the BLE Test fragment.

12. Navigate back to the BLE Test fragment and notice

that the log contents and test button states are

restored to the same state that they were previously

in.

13. Press the “Notify” button and see that notifications

have been successfully enabled.

14. Press the “Write” button. Notice that the value

echoed back from the GATT server matches the

value entered in the preferences.

15. Navigate to the preferences and change the write

value.

16. Press the “Back” (hard) button to navigate back to the

BLE Test fragment and press the “Write” button

again.

UMass ECE Senior Design Project, Fall 2015 – Team 2

7

17. Notice that the new write value is echoed back by the

GATT server.

18. Press the “Poll” button and notice that live ADC data

is being displayed in the log. These values change as

the ADC reading change (Demoed with

potentiometers connected to the ADCs).

19. Press the “Poll” button again to stop polling.

 If all of the application behaviors are as described in the

above user scenario, then the core features of this application

have been tested and verified

III. PROJECT MANAGEMENT

 EquiPack’s design and development team consists of two

Electrical Engineering majors and two Computer Systems

Engineering majors who have known one another since the

fall of 2011. Internally, our project can be divided into a

software-based component and a hardware based component.

Alexander Nichols and Brenton Chasse have excelled in prior

software based group projects such as those associated with

ECE354 and CS377. Colin Morrisseau and Zachariah Boynton

have excelled in prior hardware based group projects such as

those associated with ECE213 and ECE324. Our team’s

history of working together is echoed in how our team assists

one another internally.
 The team meets at the beginning of each week with our

advisor, Professor Chris Salthouse, to discuss the progress we

made over the previous week. Furthermore, we discuss our

planned progress for the upcoming week. In addition, the team

meets twice a week. Monday evening meetings are scheduled

as needed in order to align the team’s progress for the week.

Wednesday evening meetings are scheduled every week in

order to discuss each individual’s progress as well as any

challenges or roadblocks that any member may be facing. The

team’s frequent group meetings ensure that each individual’s

ideas for EquiPack’s future are aligned, both within the group

and between the team and its advisor.
 Zachariah is an Electrical Engineering major with an

interest in circuit design. His past work has been focused on

analog and radio frequency design. He has experience in both

industry and research environments. As a result of these prior

experiences, Zachariah is responsible for the weight sensors

block. This block is dependent on analog circuitry to interface

with the weight sensing material. Zachariah has worked with

Colin to determine the specifications for the sensors in order

to ensure the success of the weight analytics. Zachariah has

also worked with Alexander on the hardware interface

between the microcontroller and the Bluetooth unit
 Colin is an EE with a relatively strong background in

software engineering and an interest in applying his

knowledge of physics to an engineering challenge, such as this

one being solved by this team.
 Colin’s math minor helped him acquire the skills necessary

to develop algorithms for the weight analytics. Colin’s broader

interest in the fields of electrical and computer system is

crucial for this subsystem because it overlaps with every

single other subsystem. As an intern at Verizon this summer,

Colin developed algorithms for sorting large amounts of

statistical data into useful and reliable information.

 Alexander is a CSE with a passion for embedded systems

development. As team leader for both his Computer Systems

Lab I and II groups, Alex took a front seat role in the design,

development and debugging of large projects written in C and

Verilog, interfacing with a number of diverse microcontroller

systems and technologies.
 Brenton is a CSE with a Computer Science minor who is

most at home when engineering software. Although his

experience with software engineering has been focused on

C++ and JavaScript applications, he has a strong passion for

producing high quality software and is open to the challenge

of developing in an unfamiliar environment. With prior

experience in industry level user experience based user

interface development (Design thinking development

methodology), industry level object oriented software

engineering, and embedded software design, it is natural for

Brenton to take on the role of designing and implementing an

Android based application consisting of a user interface and

Bluetooth communication, for retrieving feedback from and

interacting with an EquiPack bag. Additionally, Brenton has

proven industry experience leading a team of peers, thus it was

natural for him to take the team’s management role.
 Since Brenton took the role of Android developer prior to

having ever developed for an Android environment, Alex,

who has extensive experience with Android development and

has previously implemented the Android BLE stack (although

not for the same API level as is used within the EquiPack

application) and is Brenton’s housemate, was available to

answer Brenton’s questions about the design principles of

Android when such questions arose.

Figure 5.1: Timeline of EquiPack Integration

IV. CONCLUSION

 Thus far, the BLE communication protocol, which will be

used to transmit raw sensor data from the EquiPack’s sensor

network to the user’s mobile device, is fully integrated. The

functionality of this communication represents the completion

of critical integration between the embedded system and the

mobile application. Without a means to transmit data to and

from these two subsets, the project would have much

difficulty coming to completion in a timely manner.
Furthermore, the core fragments and navigation needed to

develop a user friendly Android application have been put in

UMass ECE Senior Design Project, Fall 2015 – Team 2

8

place, leaving the application in an excellent state to expand

it’s visual and functional aspects.
 The microcontroller and Bluetooth Module are able to

establish a robust connection with an Android Peer Device,

capable of weathering multiple disconnection events. It is also

able to read multiple ADC channels in parallel and stream

these data over Bluetooth to an Android Peer Device at 20

baud.
The sensor network has been able to accurately take weight

data for lighter weights (under 5lbs). Going forward the

sensors will need to be outfitted with housing to ensure

robustness of the system. Sensors will also need to be

modified to accommodate a wider range of weights. Finally

sensors will need to be interfaced with the microcontroller so

that data can be read quickly and accurately. Foreseeable

issues will be ensuring quick readings from the sensors due to

the nature of charge dissipation in the foam. Once the sensor

design is finalized, the process of integration will begin.
 Within the Weight analytics subsystem, all algorithms have

been developed. They will needed to be tested in real world

settings, to make sure that the assumptions made while

calculating the models are correct. This testing will be

performed once the weight sensors have been implemented

into the actual backpack and creating a prototype we can test

with. In addition to that, an algorithm for predicting and

removing the RC decay caused by the sensors will need to be

developed in order to speed up the poling time of the software.
 As team EquiPack moves forward, the team will be

collecting the sensor network data and transmitting it over the

implemented BLE stack to the Android application. It is here

that the analytics can be performed. Visual representations of

the analyst's suggestions and feedback will be presented to the

user. Additionally, any extreme usages of the backpack will

trigger the sending of a text message from the User’s Android

phone to an application subscriber's cellular device.
 There are still non-trivial amounts of work to be performed

in order to: collect reliable and consistent sensor data from the

sensor network embedded within the backpack itself; analyze

and provide feedback to the user via the mobile application

based off of the sensor data received over BLE from the

embedded system (Appendix 6a); provide a battery powered,

weather resistant, backpack embedded sensor/computational

network.
 After integrating the sensor network with the embedded

micro-controller, the sensor data can be used within the weight

analytics to relate the sensor data to the EquiPack’s position

on the user’s back. Once this relationship has been made, the

Android application can display useful information to the user

in order for the user to optimize the position of their backpack

in order to minimize potential health risks.
 During this integration, iterative steps need to be made in

order to minimize our embedded footprint (PCB design,

fabrication, and verification), make our embedded system

weather resistant (hydrophobic coatings), and embed our

sensor and computational network within a physical backpack.

UMass ECE Senior Design Project, Fall 2015 – Team 2

9

APPENDIX

1A.) The schematic diagram for the weight sensor block.

4a.) EquiPack Mobile Companion GitHub URL.

https://github.com/bpchasse/EquiPack

“MDRFeatureAdditions” branch was the source code used for

the MDR demo.

4b.) Flow chart depicting the actions taken within the

EquiPack app in order to use BLE

6a.) Preliminary design for presenting strap position feedback

to the EquiPack mobile user.

ACKNOWLEDGMENT

Advisor: Chris Salthouse (Professor – UMass Amherst)

Evaluator: Israel Koren (Professor – UMass Amherst)

Evaluator: Qiangfei Xia (Professor – UMass Amherst)

https://github.com/bpchasse/EquiPack

UMass ECE Senior Design Project, Fall 2015 – Team 2

10

REFERENCES

[1] M. Arnsdorff. Mounting Research on Backpack Use [I.C.P.A.

Newsletter, May-June 2002]

http://www.arisewellness.com/pdfs/BackpackUse.pdf

[2] Hasbro Children’s Hospital Backpack Safety [Online]. Available:

http://www.hasbrochildrenshospital.org/backpack- safety.html

[3] Inventables. Conductive Foam Product Page [Online].

Available:https://www.inventables.com/technologies/conducti ve-

foam

 [4] C Devroey, I Jonkers, A Becker, G Lenaerts, A Spaepen(2007)

Evaluation of the effect of backpack load and position during

standing and walking using biomechanical, physiological and

subjective measures Ergonomics  Vol. 50, Iss. 5

[5] K McCarthy, Back to School Safety Tips [Online]. available

http://www.arspecialty.com/dr-mccarthy-offers- back-to-school-

backpack-safety-tips/

[6] Negrini, S., & Negrini, A. (2007). Postural effects of symmetrical

and asymmetrical loads on the spines of schoolchildren. Scoliosis, 2,

8. doi:10.1186/1748-7161-2-8

[7] Google Inc. App Structure [Online]. Available:

http://developer.android.com/design/patterns/app- structure.html

[8] Google Inc. Navigation Drawer [Online]. Available:

https://developer.android.com/design/patterns/navigation-

drawer.html

[9]Google Inc. Building a Flexible UI [Online]. Available:

http://developer.android.com/training/basics/fragments/fragme nt-

ui.html

[10] Google Inc. Fragments [Online]. Available:

http://developer.android.com/guide/components/fragments.ht ml

[11] Google Inc. Views [Online]. Available: http://developer

.android.com/reference/android/view/View.html

[12] Google Inc. Bluetooth Low Energy [Online]. Available:

https://developer.android.com/guide/topics/connectivity/blueto oth-

le.html

[13] Bluetooth SIG, Inc. (2014). Descriptors [Online]. Available:

https://developer.bluetooth.org/gatt/descriptors/

Pages/DescriptorsHomePage.aspx

[14] Texas Instruments. LM342N Data Sheet. [Online]. Available:

http://www.ti.com/lit/ds/symlink/lm124-n.pdf

[15] Costa, J.C., M. Oliveria, A. V. Machado Machado, S. Lanceros-

Mendez, and G. Botelho. Effect of Antistatic Additives on Mechanical

and Electrical Properties of Polyethylene Foams. 2009. Print.

[16] T. C. Carusone, D. A. Johns and K. Martin, Analog Integrated

Circuit Design J. Wiley, 2nd edition. Print

[17] NXP Semiconductors Technical Staff, LPC82x Product Data

Sheet, NXP Semiconductors, 2014

[18] “nRF8001 Bluetooth® low energy Connectivity IC”, nRF8001.

[Online]. Available: http://www.nordicsemi.com/eng/Products/

Bluetooth-R-low-energy/nRF8001. [Accessed: Oct. 15, 2014]

