

Project Overview - Problem

- People don't know how to properly wear/load their backpacks
 - +7,000 E.R. visits annually
 - ½ of 6th graders carry +30% of weight (+10% above recommended limit)
- Health risks include:
 - Vertebral subluxation including herniation
 - Shoulder/neck stress
- Risks can be significantly reduced by:
 - Reduce stress and strain on human body parts not meant to bear load
 - Keeping pressure evenly distributed between both shoulder straps
 - Tighten the pack's straps, raising the pack's center of mass up and clos to the wearer's lumbar, relieving pressure from the shoulders

myphysiosa.com.au/education/backpack-tipschildren/ Advisor: Prof. Salthouse

Project Overview - Summary

- Problem: The misuse of backpacks poses health risks
- Solution:
 - Part 1.) Create a "smart" backpack (Equipack) featuring:
 - 4 pressure sensors on the shoulder straps
 - 4 pressure sensors on the back of the backpack
 - One load cell securing one lower strap to the backpack
 - Embedded electronic system featuring BLE communication for colating and transmitting sensor data to the wearer's Android device
 - Part 2.) Teach users how to properly wear their Equipack backpack by:
 - Using the wearer's phone to host a dialog between the user and their Equipack
 - Modeling Equipack's contents as a point mass determine how Equipack should be adjusted (Force measurements received from sensors over BLE)
 - Providing Android app to graphically aid the user in learning how to properly adjust their Equipack

Block Diagram

UMassAmherst Proposed CDR Deliverables

- Demonstrate complete system functionality by:
 - 1.) Showing integration between all subsystems
 - 2.) Show implementation of a battery powered system
 - 3.) Having a mobile application with UI elements to display feedback
 - 4.) Show backpack can provide all core functions

UMassAmherst CDR Deliverables - Demo Overview

Addressing:

- 1.) Showing integration between all subsystems
 - (Zach, Colin) Strain gauge on backpack strap
 - (Alex, Zach) Embedded system amplifies, samples, colates, and transmits load sensor readings via BLE
 - (Brenton) Application running on Android device requests and receives strain gauge readings via BLE
 - (Colin) Analytics library produces weight (in lbs) given strain gauge readings
 - (Brenton) Application provides user with a simple intuitive interface for controlling the process as well as for visualizing the results.

UMassAmherst CDR Deliverables - Demo Overview

Addressing:

- 2.) Show implementation of a battery powered system
 - (Alex) Embedded processing system powered off of 4 x 1.5v AA batteries
 - (Colin) Strap strain gauge and capacitive sensors are powered off of amplification network powered off of 5 volt regulator

UMassAmherst CDR Deliverables - Demo Overview

Addressing:

3.) Having a mobile application with UI elements to display feedback

- (Brenton) GraphView capable of displaying graph receiving stream of data
- (Brenton) TextView capable of displaying a formatted weight
- (Brenton) Settings to customize feedback (i.e.: lbs or kg)
- 4.) Show backpack can provide all core functions
 - (Team) Refer to "Addressing: 1."

Timeline/Schedule: Integration

Weight Sensors

- Last time sensors using conductive foam were demonstrated
 - Sensor delay was a serious issue
- A few methods were considered to fix this issue
 - RC fitting, other filtering based approaches

Weight Sensors

 Initially a time domain approach was considered for finding the RC value of the foam

Zach Boynton

Weight Sensors

 Similarly an approach was taken to detect the pole frequency of the foam

Zach Boynton

Weight Sensors

- Foam was not feasible for taking reasonable measurements
- New ideas were needed
- Capacitance, initially ruled out was reconsidered

Zach Boynton

Weight Sensors

 By measuring the frequency of a tank circuit we can determine a change in load via a change in frequency

Zach Boynton

Weight Sensors

- Schematic diagram
- R1=R3=100K R2=390
- L1=10mH Vdd=5V

Zach Boynton

Weight Sensors

Zach Boynton

Weight Analytics:Load Cell

- Load Cell provides differential voltage on the scale of microvolts with common mode voltage around 2 volts.
- an Instrumental amplifier is used because input resistance is not a factor in calculating gain
- Amplifier provides a gain of 1665 with extremely high CMRR

UMassAmherst Weight Analytics:Load Cell Schematic

Colin Morrisseau

Weight Analytics: Algorithms

- Weight analytics is run by test arrays to simulate static and dynamic conditions
- Weight analytics are run inside the android app as methods in java

Colin Morrisseau

µController and Broadcast

- Implemented 3-bit MUXs to select sensor for ADC input, and to select sensor to excite with pulse
- 4-bit Serial-Parallel IC allows select to occur with one GP Output
- 1 ADC used for Load Cell, 1 for remaining 8 sensors

Alex Nichols

UMassAmherst

µController and Broadcast

Data Collation Methods

I MassAmherst

- ADC samples at ~400kHz
- Load Cell can be read by taking a number of data points and finding mean and variance
- Foam Load Sensors slightly more complicated: need to read frequency of oscillations. Method: take mean and variance of freq. data; if single-point transition spans reasonable fraction of variance, note as edge. Then take

<u>UMassAmherst</u>

µController and Broadcast

Alex Nichols

µController and Broadcast

Alex Nichols

PCB Layout

Advisor: Prof. Salthouse

Alex Nichols

µController and Broadcast

- Next Steps
 - Increase ADC sample rate
 - Fabricate and Test PCB

Mobile Application

Addressing Timeline:

January: Implement top-level encrypted communication with µController

Is Bluetooth encryption really necessary?

- BLE data is not truly sensitive (no personal data)
- Already Sent using a one-off boot, command, and response scheme that could deter vandals from spying on transmitted data.

Timeline/Schedule: Zach

- **-December**: Sensor housing built to handle weight requirement. Start to integrate with microcontroller.
- **-January**: Finish weight sensor module. Continue with microcontroller integration.
- -February: Begin power systems work. Begin 2nd pass PCB if required.
- -March: Begin integration power systems and sensors into bag.
- April: Final debugging and integration

I MassAmherst

Timeline/Schedule: Colin

- -December: verify models with physical sensors
- -January: design curve fitting algorithm to speed up the response time of the sensors
- -February: continue previous as necessary
- -March: develop API for digital implementation in the smartphone app
- April: final debugging and integration

I MassAmherst

UMassAmherst Timeline/Schedule: Alexander

- -December: Integrate µController PCB Design with Weight Sensor PCB design
- **-January**: Keep track of Various Phones, integrate with NVM. Implement top-level encrypted communication with Android Phone
- **-February**: Work On 2nd Pass PCB Design. Start Using Power-saving functionality on µController and BLE module to ensure optimal sleep schedule
- -March: Begin integration into Bag; begin using battery for power
- April: Debugging and stability enhancements

Timeline/Schedule: Brenton

- -December: More error handling, Start adding basic UI features
- -January: Continue adding basic UI features, Sent text message to remote device upon a given condition. Implement top-level encrypted communication with µController
- **-February**: Enhance appearance of UI features, Finish sending text message ensure solid stability of current features. Begin API as required features become defined.

March: API for interfacing with the UI elements to

lisplay equipack calculations

I MassAmherst

April: Defect/stability fixes. finish any tasks that have rolled over Brenton Chasse

Demo

Conclusion

Questions?