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Abstract 
Solutions are presented for various optimizations of transient waveforms and signals used in 
ultra-wideband radio systems. These include the transmit antenna generator waveform required 
to maximize receive antenna voltage amplitude (with bounded input energy), the transmit 
antenna generator waveform that provides the “sharpest” received antenna voltage waveform, 
and the transmit antenna generator waveform that maximizes received energy with an inequality 
constraint on the radiated power spectral density. Using variational methods, general 
optimization results are derived for arbitrary antennas, including the effects of generator and load 
impedances, and numerical examples are provided for lossless dipoles and resistively loaded 
dipoles using moment method solutions. Closed-form results are provided for short dipole 
antennas for some special cases. 
 
This work was supported by a MURI Project under Contract DAAD19-01-1-0477 from the US 
Army Research Laboratory. 
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1. Introduction 
Ultra-wideband (UWB) radio is characterized by a wide system bandwidth and a low radiated 
power spectral density. Typical 3 dB bandwidths of UWB systems are 20% or greater, over 
frequency bands generally ranging from several hundred MHz to a few GHz (new FCC 
regulations restrict UWB operation primarily to the 3.1 – 10.6 GHz band). UWB radio does not 
employ a carrier, relying instead upon the radiation and propagation of bandlimited baseband 
transient pulses. Wide bandwidth provides potentially fine time resolution, while significant low-
frequency components allow propagation through a wide variety of materials and structures. The 
following features of UWB radios are of interest in a number of future applications involving 
short-range communications, data networking, ranging, and location [1]-[2]: 
 

• UWB radio maximizes the utility of under-used spectrum segments 
• fine time resolution helps to mitigate indoor fading and multipath effects 
• low radiated power levels provide an inherent measure of covertness 
• wide bandwidth allows ranging accuracy of one foot or less 
• low frequency content allows operation through walls, foliage, etc 
• low power densities allow high levels of multi-user scaling 

 
The UWB radio concept is not without potential drawbacks, however – notably the risk of 
interference with licensed spectrum users. Of particular concern is the potential for interference 
with GPS systems, cellular telephones, and public safety communications. Since power 
decreases with separation between an interfering transmitter and a legitimate receiver, the 
maximum allowable power spectral density radiated at a particular distance from a UWB 
transmitter should be specified to minimize the possibility of interference. The FCC is presently 
considering this issue [3]. 
 
The radiated power spectral density from a UWB transmitter should ideally be as flat as possible, 
but the frequency characteristics of practical transmit and receive antennas are seldom conducive 
to this goal. In fact, antenna performance is often the primary limiting factor on the overall 
performance of UWB systems. Since the transmit and receive antennas invariably distort the 
shape of the transmitted and received waveforms [4]-[5], it is worthwhile to consider the 
question of finding the best waveforms to optimize overall system performance in a particular 
sense. 
 
This paper extends the variational methods developed in [6]-[7] for optimizing transient radiation 
to derive solutions for input and output waveforms in a UWB radio system that optimize either 
received signal amplitude, received signal energy, or received signal duration. As such, these 
solutions represent upper bounds on the performance that could be expected from practical UWB 
systems. The resulting fields satisfy Maxwell’s equations, along with additional constraints on 
input energy and signal bandwidth. General solutions are derived for arbitrary antennas, and 
numerical examples are provided for specific cases of lossless and resistively loaded dipole 
antennas. Frequency domain moment method solutions are used for this purpose; the necessary 
transfer functions and input impedances can be obtained from the integral equation analysis. 
Finally, simple closed-form results for short dipole antennas are presented for some special cases 
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2. Analysis 
The general configuration of a UWB radio is shown in Figure 1. The transmit antenna is driven 
with a voltage source ( )GV ω  having an internal impedance ( ) ( ) ( )G G GZ R jXω ω ω= + , while the 

receive antenna is terminated with load impedance ( ) ( ) ( )L L LZ R jXω ω ω= + , and has a terminal 

voltage ( )LV ω . The input impedance of the transmit and receive antennas are 

( ) ( ) ( )T T TZ R jXω ω ω= + and ( ) ( ) ( )R R RZ R jXω ω ω= + , respectively. The antennas are 
separated by a distance r, assumed to be large enough so that each antenna is in the far field 
region of the other over the operating bandwidth. The transmit antenna radiates an electric field 

( )E ω  incident at the position of the receive antenna. 
 
The corresponding time domain quantities are given in terms of the inverse Fourier transforms: 
 

( ) ( )1
2

j t
G G

BW

v t V e dωω ω
π

= ∫      (1a) 

 

( ) ( )1
2

j t
L L

BW

v t V e dωω ω
π

= ∫      (1b) 

 

( ) ( )1
2

j t

BW

e t E e dωω ω
π

= ∫      (1c) 

 
The integrations in (1a)-(1c) are over the bandlimited frequency range of –B to B Hertz. 
 
The current at the input to the transmit antenna is given by 
 

( ) ( )
( ) ( )

G
T

G T

V
I

Z Z
ω

ω
ω ω

=
+

,     (2) 

 
and the receiver load voltage in terms of ( )ocV ω , the open-circuit voltage of the receive antenna, 
is given by 

( ) ( ) ( )
( ) ( )

oc L
L

L R

V Z
V

Z Z
ω ω

ω
ω ω

=
+

.     (3) 

 
We also define two transfer functions. Let ( )LGH ω  be the voltage transfer function that relates 
the receive antenna load voltage to the generator voltage at the transmit antenna: 
 

( ) ( ) ( ) /j r c
L LG GV H V e ωω ω ω −= ,    (4) 
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where c  is the speed of light. This definition thus excludes the time delay between the transmit 
and receive antenna. Also, let ( )EGF ω  be a vector transfer function that relates the radiated 
electric field at the receive antenna to the transmit antenna generator voltage: 
 

( ) ( ) ( ) /j r c
EG GE F V e ωω ω ω −= .    (5) 

 
Although not explicitly shown, it should be understood that both of these transfer functions are 
functions of range as well as the elevation and azimuth angles at each antenna. 
 
The open-circuit voltage at the receive antenna can be found from the vector effective height, 

( )h ω , of the receive antenna [8]: 
 

( ) ( ) ( )ocV h Eω ω ω= ⋅ .     (6) 
 
The time domain voltage waveform at the receive antenna can now be written in terms of the 
generator voltage using (1b) and (4): 
 

( ) ( ) ( )1
2

j t
L LG G

BW

v t H V e dωω ω ω
π

′′ = ∫ ,   (7) 

 
where /t t r c′ = −  is the retarded time variable. 
 
We also need to define various energy quantities. The energy available from the generator is 
given as [9], 

( )
( )

2
1

8
G

avail
G

BW

V
W d

R
ω

ω
π ω

= ∫ ,     (8a) 

 
where ( )GR ω  is the real part of the generator impedance. The energy delivered to the transmit 
antenna is given by, 
 

( ) ( )
( ) ( )

2

2
1

2
G T

in

T GBW

V R
W d

Z Z

ω ω
ω

π ω ω
=

+∫ .    (8b) 

 
The energy received by the load at the receive antenna is given by, 
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ω
π ω

= ∫ .     (8c) 
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Again, the integrations in (8a)-(8c) are over the bandwidth of –B to B Hertz. Use of the fact that 
the imaginary part of a physically realizable input impedance is an odd function of frequency has 
been used to simplify (8b). 
 
The following results are useful for extremizing linear and quadratic functionals of the function 

( )ωV  [10]: 
 

( ) ( ) ( )*V H d Hω ω ω ω∇ =∫  

   ( ) ( ) ( ) ( ) ( ) ( )* *V H V d H H Vω ω ω ω ω ω ω ∇ = + ∫  
 
In these results, ( )ωH  is a potentially non-self-adjoint operator, but the adjoint is conveniently 
given by the conjugate function for the problems considered here. ∇  is the gradient operator, 
defined in the context of variational calculus as in [10]. 
 
A. Maximization of Received Voltage Amplitude 
We first consider the maximization of the received voltage amplitude at the receive antenna, for 
bandlimited signals, with a constraint on the energy delivered to the transmit antenna. Following 
the variational calculus procedures used in [6], [7], [10], we define the functional 
 

( )0L inJ v t Wλ′= − = + ,     (9) 
 
relative to the independent function ( )GV ω , and where λ  is a Lagrange multiplier. (The 
negative sign on Lv ensures maximization for the functionals being used in this work.) The 
constraint that 1inW =  Joule must also be enforced by using (8b). We choose the maximization 
time as 0t′ =  with no loss of generality.  
 
Then the functional of (9) can be extremized with the following result: 
 

( ) ( ) ( )
( ) ( )

*
2

10
2

T G
LG

T G

R V
J H

Z Z

λ ω ω
ω

π π ω ω

−
∇ = = +

+
.    (10) 

Solving for ( )GV ω  gives, 
 

( ) ( ) ( ) ( )
( )

2*

2
LG T G

G
T

H Z Z
V

R
ω ω ω

ω
λ ω

+
= .     (11) 

 
The Lagrange multiplier is found by using (11) in (8b) and setting 1inW = : 
 

( ) ( ) ( )
( )

2 2

2 1
2 4

LG T G

T
BW

H Z Z
d

R
ω ω ω

λ ω
π ω

+
= ∫ .   (12) 
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The solution given in (11)-(12) is essentially the matched filter solution [10] for the linear system 
that consists of the transmit and receive antennas, along with their termination impedances. 
 
A slightly different solution can be obtained by constraining the available energy from the 
generator, as opposed to the energy delivered to the transmit antenna. The required functional 
then becomes: 
 

( )0L availJ v t Wλ′= − = + ,     (13) 
 
where the available energy is given by (8a). Then the optimum solution is, 
 

( ) ( ) ( )*2 G LG
G

R H
V

ω ω
ω

λ
= ,     (14) 

with 

( ) ( ) 22 1
2 G LG

BW

R H dλ ω ω ω
π

= ∫ .    (15) 

 
This solution accounts for power dissipated in the internal generator impedance, and so will 
generally result in a lower maximum receive voltage amplitude at 0t′ = than the solution of (11)-
(12). But presumably less energy will be lost in the generator impedance. 
 
B. Optimizing Received Waveform “Sharpness” 
A technique proposed in [10] suggests that minimizing the received energy while constraining 
the received voltage amplitude to a fixed value at a specific point in time, as well as constraining 
the input energy, will enhance the sharpness of the output voltage waveform. The output voltage 
amplitude should be chosen less than the maximum that can be obtained from the matched filter 
solution given in (11)-(12) – this then introduces additional freedom that may allow the 
optimization process to reduce the effective duration of the output pulse. 
 
The necessary function thus becomes, 
 

( )1 20rec L inJ W v t Wλ λ′= + = +  ,    (16) 
 
where we now have two Lagrange multipliers, 1λ and 2λ . The constraints are applied to the 
receive voltage amplitude at 0t′ = , 
 

( ) 0 max0Lv t v v′ = = ≤ ,      (17) 
 
and to the input energy, 1inW =  Joule. We define maxv as the value of the maximum voltage 
amplitude as obtained from the matched filter solution of (11)-(12). Extremizing the functional 
of (16) gives, 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )2 2*
1 2*

21 10 T
LG G LG G

L L T G

R
J H V H V

Z Z Z Z

λ ω
ω ω λ ω ω

ω ω ω ω

 
∇ = = + + + 

+ 
  (18) 

 
Solving for ( )GV ω  gives, 

( ) ( )
( ) ( )

( )
( )

( ) ( )

*
1

2

2
2 2

2 2
LG

G

L LG T

L T G

H
V

R H R

Z Z Z

λ ω
ω

ω ω λ ω

ω ω ω

−
=

+
+

.   (19) 

 
The normalizations are given by using (19) in (7) and (17), and in (8b): 
 

( )
( ) ( )

( )
( )

( ) ( )

2

1
0 2

2
2 2

2 2 2
LG

L LG T
BW

L T G

H
v d

R H R

Z Z Z

ωλ ω
π ω ω λ ω

ω ω ω

−
=

+
+

∫ ,   (20) 

 

( ) ( )

( ) ( ) ( ) ( )
( )

( )
( ) ( )

2
2

1
2

2 2
2 2

1 Joule
2 2 2

LG T
in

L LG T
BW T G

L T G

H R
W d

R H R
Z Z

Z Z Z

ω ωλ ω
π ω ω λ ω

ω ω
ω ω ω

= =
 
 + +
 + 

∫  (21) 

 
Observe that for specified values of 0v  and inW , (20) and (21) represent coupled equations for 

1λ and 2λ . Numerical root-finding techniques are generally required for solution. 
 
C. Maximizing Received Energy with an Inequality Constraint on the Radiated Field 
The expected FCC regulation that the radiated power spectral density at a specified distance from 
a UWB transmitter be less than a fixed value can be accommodated in optimization solutions 
through the use of an inequality constraint. Mathematically, we can attempt to maximize 
received voltage amplitude, or received energy, subject to the constraint that, 
 

( ) 0E Eω ≤ ,      (22) 
 
where 0E  is the maximum allowable (peak) electric field intensity at a specified distance from 
the receiver. In the far field of the transmit antenna, this can be translated to a maximum power 
density of 2

0 02E η , where 0 377η =  ohms. 
 
Inequality constraints of the form in (22) can be treated analytically in some cases by applying 
nonlinear programming techniques such as the Kuhn-Tucker theorem [11]. An alternative that 
can be applied more directly for the present case is the technique of slack functions, whereby the 
functional is modified with a non-negative auxiliary function [11]. Thus, we can rewrite (22) as 
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( ) ( )2 2 2
0E E uω ω= − ,     (23) 

 
where ( )2u ω  is the slack function. Since ( )2u ω  is real and non-negative, it is clear that (22) 
will always be satisfied. If we desire to maximize received energy, we can form the functional, 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2 2 2 2
0

2 2

1 1
2 2

L L
rec

R L R LBW BW

h E R h R E u
J W d d

Z Z Z Z

ω ω ω ω ω ω
ω ω

π πω ω ω ω

 ⋅ − = = =
+ +∫ ∫ , (24) 

 
and extremize relative to ( )u ω , and thus indirectly relative to ( )E ω . The result is, 
 

( ) ( )
( ) ( )

( )
2

2

2
0 L

R L

h R
J u

Z Z

ω ω
ω

ω ω

−
∇ = =

+
,     (25) 

 
which implies that ( ) 0u ω = , and thus ( ) 0E Eω = . Once ( )E ω  is found, we can work 

backward to find the necessary ( )GV ω  that will produce this radiated electric field. Note that the 

phase of ( )E ω  is not specified in this solution, as a result of the fact that the energy functional is 
independent of phase. Otherwise the result is not surprising, as it says that the available spectrum 
should be filled with the maximum allowable power density in order to maximize received 
energy. Maximizing the received voltage amplitude at a particular time would, in principle, 
define a phase distribution for the electric field, but maximizing voltage amplitude alone does 
not involve a quadratic functional, and so does not lead to an analytic solution using these 
techniques. 
 
D. Maximizing Received Energy with a Constraint on the Generator Voltage Amplitude 
In this case the required functional is given by, 
 

( )0=+−= tvWJ Grec λ .     (26) 
 
Note that the constraint only applies to the generator voltage at a specific instant of time, and so 
does not provide an overall limit on the generator amplitude. This might seem to limit the utility 
of this case, but there may be some situations where this is a useful approach. In addition, this 
result essentially completes the possible permutations of UWB antenna optimizations that can be 
carried out with a variational approach. 
 
The optimum generator voltage is found to be 
 

( )
( ) ( ) ( )






+

=

ωω
ω

λω

*
2 11

RR
LG

G

ZZ
H

V ,    (27) 
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with the normalization 
 

( ) ( ) ( )

0

2

*

2

1
1 1

LGBW
R R

v

d
H

Z Z

πλ

ω
ω

ω ω

=

 
+ 

 
∫

,    (28) 

 
where 0v  is the constrained value of the generator voltage at t = 0. 
 
 
3. Numerical Examples for Dipole Antennas 
The above results have been derived for arbitrary transmit and receive antennas, and will be 
demonstrated here for several cases involving lossless and resistively loaded wire dipole 
antennas. The piecewise sinusoidal moment method is used to obtain the necessary quantities to 
implement the above optimization results. These include the input impedances of the antennas 
and the voltage transfer function, ( )ωLGH , between the antennas. Since moment method 
solutions for dipole antennas are well-established, we refer the reader to the literature for details 
of the calculation of these quantities [12]-[13]. For simplicity, we assume both dipoles are 
identical, with length L, radius a, and conductivity σ . We also assume the dipoles are parallel, 
and radiating in the broadside directions. The range dependence of the received antenna voltage 
is removed. 
 
A. Maximization of Received Voltage Amplitude 
First consider the maximization of received voltage amplitude at 0t′ = , with a constraint of 1 
Joule for the available generator energy. The optimum generator voltage is given by (14)-(15). 
Applying these results to a lossless pair of dipoles with L = 15 cm, a = 0.02 cm, σ = ∞, ZG  = 50 
Ω, and  ZL = ∞   leads to the generator and receiver voltages shown in Figures 2a-2b, where the 
peak receive voltage amplitude is 4.04E4 Volts, and the received energy is 1.53E-5 Joules 
(normalized by multiplying by r). The solutions are bandlimited to 2 GHz. 
 
Next consider the same set of dipoles, but with a resistive loading modeled by setting the dipole 
conductivity to 1000 S/m. The resulting generator and receiver voltages are shown in Figures 3a-
3b. The peak voltage has now dropped to about 2.3E4 Volts, and the received energy is 4.4E-6 
Joules (normalized by multiplying by r). This represents a drop of about 4.9 dB in voltage, and -
5.4 dB in energy. Also note that there is somewhat less overshoot and ringing in the response of 
the lossy dipoles, presumably due to the enhanced bandwidth introduced by the loading. 
 
As a comparison with non-optimized pulse excitation, the same antenna geometries of Figures 2-
3 were analyzed with a gaussian pulse excitation. For an available energy of 1 J, and a gaussian 
half-power width of about 5E-11 S, the resulting peak voltage amplitude for the lossless dipole 
was reduced by 6.3 dB from the optimum result of Figure 2, while the resulting peak voltage 
amplitude for the lossy dipole was reduced by 4.8 dB from the optimum result of Figure 3. 
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 To further understand the effect of resistive loading and termination impedance on the optimum 
solution, Figure 4 shows the magnitude of the transfer function magnitude versus frequency, for 
the dipoles used in the cases of Figures 2 and 3, along with lossless dipoles with a receiver load 
impedance of ZL = 50 Ω. Observe that the receiver load impedance has a far greater effect on the 
transfer function than does the dipole conductivity. 
 
Effects of generator and load impedances, bandwidth, orientation angles, and other parameters 
can easily be studied with these solutions, but space limitations prevent us from presenting 
extensive data on these results. One important observation is that the use of complex termination 
impedances at either the generator or the receiver generally has the effect of greatly reducing the 
peak amplitude at the receiver, and greatly increasing the ringing of the response. This is caused 
by the resulting resonant circuit introduced by reactive terminating impedances in conjunction 
with the resonant dipole response. Conjugate matching and other reactive matching networks 
should therefore be avoided in UWB antenna systems, even at the expense of lower efficiency. 
Another observation is that increasing the signal bandwidth generally has minimal effect on the 
maximum amplitude, at least in the case of electrically large dipoles, since these antennas radiate 
effectively only over a relatively narrow band of frequencies near the first resonance. 
 
B. Optimizing Received Waveform “Sharpness” 
Next consider the optimization of the receive voltage waveform “sharpness”, for a pair of lossy 
dipoles with L = 15 cm, a = 0.02 cm, σ = 1.0E4 S/m, ZG  = 50 Ω,  and ZL = ∞, over a bandwidth 
of 4 GHz. The optimum solution is given by (19)-(21). A numerical root-finding method is used 
to solve (20)-(21) for 1λ and 2λ , the Lagrange multipliers. This can be facilitated by first using 
(20) to eliminate 1λ  from (21). Then, for a specified value of v0 (the constrained receive voltage 
amplitude at 0t′ = ) , (21) can be solved for 2λ . The required root-finding procedure is very 
sensitive, generally requiring double precision computation. 
 
Figure 5 shows the relation between these two quantities. Note that for a specified value of v0 
there are two possible roots for 2λ . We have found that the negative root leads to a maximization 
of received pulse width, while the positive root leads to a minimum value. The maximum value 
of v0 is vmax – the matched filter solution of Section 2A for constrained input energy. In the 
present example vmax = 5381 Volts. Clearly the solution for optimized “sharpness” cannot 
produce a larger receive voltage amplitude than the matched filter case – this can be 
demonstrated mathematically by manipulating the results of (19)-(20). 
 
Setting v0 to values progressively less than vmax leads to output waveforms that show increasing 
compression, as evidenced by lower amplitudes away from the main pulse at 0t′ = . The effect is 
demonstrated in Figures 6a,b,c. (The results in these figures are normalized to a maximum value 
of unity in order to more easily compare the waveform shapes.) Observe that the response for v0 
= vmax = 5381 Volts in Figure 6a has a sinx/x form that exhibits a considerable amount of energy 
outside the region of the central pulse, continuing out to (normalized) time values of ±8 or more. 
Lowering the constrained output voltage amplitude to 3000 Volts (Figure 6b) causes 
considerable sharpening of the response – the first overshoots are about half the values for the 
case of Figure 6a, and the ringing of the pulse is negligible for (normalized) time values of ±4 or 
more. Further reduction of v0  to 500 Volts (Figure 6c) continues this trend, although with 
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diminishing rewards. The first overshoots are reduced to about a third of the values in the 
response of Figure 6a, and the ringing is effectively stopped for (normalized) time values of ±3. 
 
A quantitative measure of the improvement in receive pulse “sharpness” can be defined as the 
following “compression ratio”: 
 

2
max

2
0maxlog10

vW
vWCR

rec

rec−= .     (29) 

 
Where max−recW  is the receiver energy associated with the maximum received voltage amplitude 
(which occurs when max0 vv = ). Thus, as v0 approaches vmax, Wrec approaches Wrec-max, and the 
compression ratio approaches 0 dB (no compression, or improvement in “sharpness”). But as v0 
is decreased, the received energy may decrease faster than the square of the receiver voltage 
(which is roughly proportional to the energy of the main pulse), resulting in an overall ratio 
greater than one. Figure 7 shows the compression ratio for the dipoles of Figures 5-6, and for 
solutions for the same dipoles but with two other values of bandwidth and conductivity. We see 
than compression ratios as high as 4 – 5 dB can be obtained. Such waveforms have very little 
ringing, and so can be advantageous for reducing intersymbol interference in UWB systems. 
 
 
4. Analytical Results for Short Dipoles 
Essentially closed-form results for several of the optimizations of Section 2 can be obtained for 
electrically small antennas such as short dipoles and small loops, as long as the bandwidth is 
such that closed-form expressions can be found for the necessary input impedances and transfer 
functions. This section presents such results for short perfectly conducting transmit and receive 
dipole antennas. In this case, the input impedance of each antenna (assumed identical) can be 
approximated as, 
 

  ( ) ( ) ( )
0C

jRZZ RT ω
ωωω −== ,    (30) 

 
where the radiation resistance is given by, 
 

  ( ) 2
2

225 αωωω ==
c

LR ,     (31) 

 
where 2 25 /L cα = is a constant. The dipole capacitance is given by, 
 

  






 −

=
1

2
ln240

0

a
Lc

LC .     (32) 

 
The capacitance expression in (32) has been derived from the exact induced EMF result after 
using small argument approximations for the sine and cosine integrals – it has been compared to 
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numerical moment method results and found to be more accurate than the usual expressions 
found in the literature. 
 
The voltage transfer function between two short dipoles can be derived as, 
 

( ) ( )
( ) ( ) ( ) ( )

2
0

4
L

LG
G T L R

j h Z
H

r Z Z Z Z
ωµ ω

ω
π ω ω ω ω

−
=

+ +      
,   (33) 

 
where 2/Lh =  is the dipole half-length. These expressions assume a piecewise sinusoidal 
current distribution on each dipole, and generally give good results for frequencies such that L < 
λ/20 
 
A. Maximize Received Voltage Amplitude, Constrained Input Energy, ZG = 0,  ZL = ∞ 
The solution for this problem is given by the general expressions in (11) and (12).  For the 
special case of short dipoles with ZG = 0 and ZL = ∞, the transfer function of (33) further reduces 
to, 
 

( ) ( )
2

0

4LG
T

j hH
rZ
ωµω

π ω
−

= ,     (34) 

 
and then (11) can be evaluated as, 
 

( ) ( )
( )ωλπ

ωωµω
T

T
G Rr

ZhjV
8

2
0= .     (35) 

 
The normalization of (12) can also be evaluated in closed-form: 
 

απ
µλ 22

42
02

32 r
Bh

= ,     (36) 

 
where B is the bandwidth in Hertz, and α is a constant defined in (31). Combining these results 
and using the inverse transform of (7) provides the optimized time domain receiver voltage: 
 

( )
tB

tBB
r
htvL ′

′
=′

π
π

2
2sin103 ,     (37) 

 
showing that the response has a sinx/x form, with a peak value that increases as the square root of 
bandwidth. The expected 1/r range dependence is also apparent. The peak value of the receiver 
voltage response is rBh /103 . The optimized amplitude moment method results of Section 3A 
were compared with these results for electrically short dipoles, with good agreement. 
 
It is probably logical to next derive the required generator voltage for this solution, but this is not 
possible because ( )ωGV  in (35) has a non-removable singularity at 0=ω  (due to the fact 
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that ( ) 0=ωTR  at DC). The physical meaning of this result seems to be that the solution is trying 
to capture low frequency energy at the source, even though low frequency components will not 
propagate to the receive antenna, and also do not contribute to the input energy (due to the very 
high reactive impedance of the transmit antenna). If we restrict the operating band to some 
minimum frequency (above DC), the inverse transform of (35) can then be obtained – the 
resulting receiver response is virtually unaffected by this lower limit, but it has a substantial 
effect on the transmit antenna waveform. 
 
B. Maximize Received Voltage Amplitude, Constrained Input Energy, 

( ) ( )ωω *
TG ZZ = , ZL = ∞. 

In this case we conjugate match the generator to the transmit antenna – in principal this 
maximizes power transfer to the transmit antenna. Of course, this requires a generator reactance 
that is positive with a slope of 1/ω  - conditions that are not possible for a physically realizable 
passive element. Nevertheless, the solution gives an upper bound on what can be achieved, and it 
may be possible to approximate the required frequency dependence with active circuit matching. 
 
Setting ( ) ( )ωω *

TG ZZ =  simplifies the transfer function of (33) to the following: 
 

( ) ( )
2 2

0 0

8 8LG
j h j hH
rR r
ωµ µω

π ω π αω
− −

= = .     (38) 

 
Then applying the general solution of (11)-(12) gives the following optimization results: 
 

( )
r
hjVG πλ

ωµω
4

2
0= ,      (39) 

 

23

42
02

64 r
Bh

απ
µλ = ,      (40) 

 
Then the time domain receiver voltage is found as, 
 

( )
tB

tBB
r

htvL ′
′

=′
π

πππ
2

2sin512 ,     (41) 

 

which has a peak value of B
r

h ππ 512 . This value is larger than the previous case where ZG = 0 

by a factor of 2/4 ππ , or about 24 dB. Again, the generator voltage has a singularity at DC. 
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C.  Maximize Received Voltage Amplitude, Constrained Available Energy, 
( ) ( )ωω *

TG ZZ = , ZL = ∞ 
In this case we maximize receiver voltage with a constraint on the available generator energy. 
The general solutions are given by (14)-(15). The transfer function is the same as in (38). The 
optimum generator voltage is then, 
 

( )
r
hjVG πλ

ωµω
4

2
0= ,      (42) 

 
and the normalization condition is, 
 

23

42
02

64 r
Bh

απ
µλ = .      (43) 

 
Finally, the time domain receiver voltage is found as, 
 

( )
tB

tBB
r
htvL ′

′
=′

π
ππ

2
2sin

5
30 .      (44) 

 

The peak value of this response is 
5

30 B
r
h π , which is about 4 dB larger than the case where the 

input energy was constrained and ZG = 0. 
 
Note that similar closed-form optimizations can be obtained for other small antennas such as 
electrically small loops, slots, and monopoles, although the required integrals can become very 
complicated. In fact, similar optimizations can be derived for any pair of antennas that can be 
represented with simple RC or RL equivalent circuits that are valid over the frequency band of 
interest. 
 
 
5. Conclusions 
Several possible optimization solutions for bandlimited radiated waveforms for ultra-wideband 
radio systems have been presented for general radiating elements, with arbitrary generator and 
load impedances. Constraints include input energy, available energy, received voltage amplitude, 
generator voltage amplitude, and radiated power spectral density. These solutions represent 
upper bounds on the performance of actual UWB systems. Examples of optimized results have 
been presented for lossless and resistively loaded wire dipole antennas. Closed-form results have 
been presented for optimization solutions for short dipoles. These results can be applied to 
arbitrary UWB antenna elements, and to any set of antennas that can be represented with lumped 
element equivalent circuits over the frequency band of interest. 
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Figure captions: 
 
Figure 1. Frequency domain model of transmit and receive antennas for a UWB radio system. 
 
Figure 2a. Generator voltage waveform to maximize receive voltage amplitude for lossless 
dipoles with L = 15 cm, a = 0.02 cm, σ = ∞, ZG  = 50 Ω,  ZL = ∞.  Available generator energy 
constrained to 1 Joule; bandwidth is 2 GHz. 
 
Figure 2b. Resulting optimized receive antenna voltage waveform for the antenna parameters of 
Figure 2a. 
 
Figure 3a. Generator voltage waveform to maximize receive voltage amplitude for dipoles with 
L= 15 cm, a = 0.02 cm, σ = 1000 S/m, ZG  = 50 Ω,  ZL = ∞.  Available generator energy 
constrained to 1 Joule; bandwidth is 2 GHz. 
 
Figure 3b. Resulting optimized receive antenna voltage waveform for the antenna parameters of 
Figure 3a. 
 
Figure 4. Voltage transfer function magnitude versus frequency for a pair of dipoles with L = 15 
cm, a = 0.02 cm, ZG  = 50 Ω, for various conductivities and receiver load impedance. 
 
Figure 5. Constrained receive voltage amplitude at 0t′ =  versus the Lagrange multiplier 2λ , for 
lossy dipoles having L = 15 cm, a = 0.02 cm, σ = 1.0E4 S/m, ZG  = 50 Ω,  and ZL = ∞. The signal 
bandwidth is 2 GHz, and the constrained input energy is Win = 1 Joule. 
 
Figure 6a. Normalized receive voltage versus time for optimized waveform “sharpness” with v0 
= 5381 Volts for the lossy dipoles defined in Figure 5. 
 
Figure 6b. Normalized receive voltage versus time for optimized waveform “sharpness” with v0 
= 3000 Volts for the lossy dipoles defined in Figure 5. 
 
Figure 6c. Normalized receive voltage versus time for optimized waveform “sharpness” with v0 
= 500 Volts for the lossy dipoles defined in Figure 5. 
 
Figure 7. Compression ratio versus normalized constrained receiver voltage for dipoles defined 
in Figure 5. 
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Figure 2a. 
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Figure 2b. 
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Figure 3a. 
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Figure 3b. 
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Figure 4. 
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Figure 5. 
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Figure 6a. 
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Figure 6b. 
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Figure 6c. 
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