
The Birthday Paradox 
 
The “Birthday Paradox” refers to the fact that it is much more likely that two people in a large 
group will have the same birthday than it is that someone in that group will have a birthday on a 
specific day. For example, in order to have a 50% probability that one person in a group has a 
specific birthday requires a group of 253 people, but in a group of only 23 people there is a 50% 
probability that at least two of those people have the same birthday. 
 
Of course, this is not really a paradox, just a result that is non-intuitive. The birthday paradox arises 
in a number of situations, including cryptography and the design of secure hashing algorithms, 
digital communications systems and, most recently, in the performance of the random shuffling 
feature on the Apple iPod. Many users of the iPod noticed that songs by the same group seemed to 
play unusually close together, leading to the speculation that Apple engineers did not implement a 
truly random shuffle algorithm. (Apparently some iPod users actually thought their iPod might have 
some sort of intelligence that “knew” what songs they wanted to hear.) See the following links for 
news stories on this: 
 
http://www.nytimes.com/2004/08/26/technology/circuits/26ipod.html?ex=1251345600&en=a81c76
2718429d7e&ei=5088&partner=USERLAND 
 
http://www.wired.com/news/culture/0,1284,68893,00.html?tw=wn_story_page_prev2 
 
Here we will derive the key result for the birthday paradox. We will initially put the problem in the 
context of birthdays, but the results are much more general than this. 
 
The question to consider is how many people must be in a room so that the probability that at least 
two people will have the same birthday is 0.5. Let N be the number of possible values, in this case 
365. Let M be the number of people in the room. Let ix  be the birthday date of the i-th person in the 
room, for 1, 2, 3, ... i M= . We begin by finding the probability that no two birthdays of people in 
the room are equal. 
 
 
First consider the case with only two people ( )1 2, x x  in the room (M = 2). Then, 
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Now add a third person to the room, ( )1 2 3, ,  x x x , for M=3: 
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This process continues, so that the probability that no two birthdays are equal for a room of M 
people is, 
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Now we need to make an approximation, which is generally good if N is large. For small x we know 
that 1xe x− − , so for N M>> we can write, 
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If we choose this probability to be 50%, then we can solve for the group size: 
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( )2 ln 2 1N M M= − , 

 
2 ln 2 1.17M N N . 

 
For the case of birthdays, with N = 365, this gives M = 23 people. For an iPod with, say, 100 
albums, there is a 50% probability that you will hear at least two songs from the same album after 
playing only 12 songs. Of course, your mileage may vary unless the sample size is very large. 


