
1

FunctionalTestGeneration
usingConstraintLogic Programming

ZhihongZeng,MaciejCiesielski,BrunoRouzeyre

Dept.of Electrical& ComputerEngineering LIRMM
Universityof Massachusetts UniversitedeMontpellier
Amherst,MA 01003,USA 34090Montpellier, France�
zzeng,ciesiel� @ecs.umass.edu rouzeyre@lirmm.fr

Abstract—
Semi-formal verification basedon symbolic simulation

offers a goodcompromisebetweenformal model checking
and numerical simulation. The generation of functional
test vectors, guided by miscellaneouscoveragemetrics to
satisfy the simulation target, can be posedasa satisfiabil-
ity problem (SAT). This paper presentsa novel approach
to solving SAT basedon Constraint Logic Programming
(CLP) technique. The proposedSAT solver allows to ef-
ficiently handle the designswith mixed word-level arith-
metic operators and Booleanlogic. It is applicable for de-
signsspecifiedat differ ent levels,including HDL, RTL, and
Boolean. The experimental resultsare quite encouraging
compared with classicalCNF-based,BDD-based,and LP-
basedSAT solvers.

I . SATISFIABIL ITY IN SEMI-FORMAL VERIFICATION

Numericalsimulationremainsa dominantdesignvalidation
methodin industrysinceit scaleswell with the designcom-
plexity. A typicaldesignverificationscenarioincludesrandom
andpseudo-randomdirectedtests,bringingthefunctionalcov-
erageof thedesignspecificationto a desiredlevel. Functional
coveragemetricstypically includeline coverage,statecover-
age, transitioncoverage,branchcoverage,etc. In the early
designphase,both randomanddirectedtestvectorscanhelp
to find designbugs easily and improve functional coverage
quickly. When the functional coveragereachescertainlevel
(say90%)of coverage,improving thecoverageanddiscover-
ing cornercasesby addingmorerandomor manualtestvectors
becomesvery inefficient. At this point, the remaininggapin
functionalitycoveragecanbesolvedby applyingdeterministic
tests. The generationof suchtestsmustsatisfya predefined
simulationtarget,suchasreachinga particularstateof thede-
sign,exercisingabranch,orcoveringapieceof HDL code,and
is guidedby miscellaneouscoveragemetricsandmonitors.The
functionaltestgenerationproblemguidedby suchconstraints
canbeposedasasatisfiabilityproblem(SAT).

Severaltoolshavebeendevelopedin industryandacademia
to facilitatethegenerationof deterministictestvectors.SIVA
[1] is anexampleof suchatool, usedto generateinputvectors
to exploit morestatespaceandcheckthe desiredproperties.

The core algorithms in SIVA use a combinationof BDD-
basedand ATPG tools to solve satisfiability. In our context
of semi-formalverification, a symbolicsimulationengineis
usedto generatea set of symbolic expressionsaccordingto
the simulation targets. The set of symbolic expressionsis
then transformedinto a SAT instance. A solution to this
SAT problemgivesa sequenceof input vectorsto exercisethe
simulationtarget,or provesthat it is not possibleto find such
vectors.

SAT belongsto theclassof NP-completeproblems,with al-
gorithmicsolutionshaving exponentialworst-casecomplexity.
Hencetheefficiency of thesemi-formalverificationapproach
is largely determinedby the performanceof the SAT solvers.
In this paper, we investigatea methodfor solving SAT prob-
lems that originatefrom RTL designswith mixed arithmetic
andcontrol logic, thatarecommonin thedatapathof modern
microprocessorandDSPdesigns.

I I . PREVIOUS APPROACHES IN SOLVING SATISFIABIL ITY

Classicalapproachesto SAT arebasedon variationsof the
well known Davis andPutnamprocedure[2] which workson
CNF formulae.Typical versionsof this procedureincorporate
achronologicalbacktrack-basedsearch[3]; ateachnodein the
searchtree,it selectsanassignmentandprunesthesubsequent
searchby iterativeapplicationof theunit clauseandpureliteral
rules. Recent approachesincorporatelearning techniques
andotherconflict analysisprocedureswith non-chronological
backtracksto prunethesearchspace[4].

Anotherpopularapproachto solving the Booleansatisfia-
bility problemsis basedonBinaryDecisionDiagrams(BDDs)
[5]. Given a circuit for which a SAT instanceneedsto be
solved,asetof BDDscanbeconstructedrepresentingtheout-
put valueconstraints.The conjunctionof all the constraints
expressedasa Booleanproductof the correspondingBDDs,
referredto asa productBDD, representsthesetof all satisfy-
ing solutions[6].However, a major limitation of this approach
is thememoryexplosionproblemassociatedwith theconstruc-
tion of the productBDD. Recently, Kalla et al. [7] proposed
a BDD-basedSAT techniquethatovercomestheproblemsre-
latedto BDD sizeby exploiting elementsof theunaterecursive
paradigm.Thistechniquesearchesfor SAT solutionsin theco-
factorsof the individual constraintBDDs, thusrestrictingthe

2

growth of theentireBDD searchspace.

CNF-basedSAT solverscanbe directly integratedinto the
semi-formalverification framework. However, the practical
RTL or behavioral descriptionsoften have word-level oper-
ators. Collapsing those word-level operatorsinto a single
CNF formulaedestroys the regularity of the problemandof-
ten makes the problemmuch harderto solve. On the other
hand,BDD-basedtechniquessuffer from the size explosion
problems.For example,the sizeof a BDD for a multiplier is
exponential,regardlessof thevariableordering.

To overcomethesedrawbacks,Fallah et al. [8] proposed
a hybrid satisfiabilityapproach,HSAT, to generatefunctional
testvectorsfor structuredHDL designs.Working on theRTL
descriptions,thehybridmethodgeneratesasetof CNFclauses
for randomBooleanlogic, and linear arithmetic constraints
for arithmetic blocks in the design. Then, a 3-SAT solver
is applied to solve SAT for Booleanlogic, while a Linear
Programming(LP) techniqueis usedto checkthe feasibility
of linear constraintsfor arithmeticportion of the design. It
should be noted that the two problems, SAT for Boolean
logic and LP for arithmetic blocks, are solved separately,
eachin its own domain. In such a framework, backtracks
betweenthetwo solutionenginesareinevitableandperformed
explicitly. Hence the performanceof HSAT is limited by
the heuristicsthat selectthe set of assignmentsto Boolean
variables.Constraintpropagationtechniquesbetweendifferent
domains have been explored to generatetest vectors and
checkassertionson HDL descriptions[9] [10]. Sometimes,
word-level ATPG and modulararithmeticconstraint-solving
techniqueare combined to solve the SAT problems [10].
Again, thosetechniquesrely on heuristicsto propagatethe
constraintsbetweenthearithmeticandBooleandomains.

It would be desirableto use an infrastructurethat can
representboth theBooleanaswell asarithmeticconstraintsin
a singleunified domain. By doing so,constraintpropagation
betweenthe arithmetic and Boolean parts can be handled
implicitly and efficiently. Zeng et al. [11] presentedan
enhancedword-level satisfiability solver, LPSAT, basedon
linearprogramming.By generatinglinearconstraintsfor both
the Booleanlogic andthe arithmeticoperators,this approach
allows to solve the SAT problem in a unified integer linear
programming(ILP) domain.By doingso,LPSAT utilizes the
implicit constraintpropagationof theILP solver.

However, suchgenericILP solverstendto be inefficient in
solving satisfiability problemsencounteredin RTL verifica-
tion. First, genericLP solversarebasedon numericalproce-
duresthat are designedpredominantlyto solve optimization
problems,rather than satisfiability. As a result, they suffer
from numericalconvergenceproblems,andaresensitive to a
numberof internalparameters.Also, they tendto beinefficient
in thebranchandboundpartfor solvingthedecisionproblems,
which areat the heartof SAT problems.Secondly, any non-
lineararithmeticoperatorsin LP-basedSAT hasto beexplic-
itly linearizedinto linearconstraints.This includesthemodel-
ing of mixedarithmetic/Booleanblocks,suchascomparators,

shifters,multiplexors,etc.,with integerdecisionvariables,that
mayleadto thenumericalconvergenceproblems.Finally, the
ILP canonly computea singlesolution; it is computationally
expensiveto forceit to produceseveraldifferentsolutionsdur-
ing subsequentruns.

In this paper we investigatea new satisfiability checker
basedonConstraintLogic Programming(CLP).By transform-
ing the SAT instancesinto predicatesin Logic Programming,
we preserve the regularity of the word-level operators.Com-
paredto LP, themodelingof implications,oftenencounteredin
theverificationproblems,is simplerandmorenaturalfor CLP.
Also the modelingof mixed blocks is easier: it doesnot re-
quiretheintroductionof (integer)variablesandis not plagued
with thenumericalconvergenceproblems.Anotherimportant
aspectof this approachis that it allows to generatemultiple
vectors,neededfor simulation-basedfunctionalvalidation.Fi-
nally, efficient modelingof both arithmeticandBooleando-
mainsinherentto CLP makesit applicablenot only to satisfi-
ability (or justification),but alsoto simulation(numericaland
symbolic),andequivalencechecking.

The rest of the paper is organizedas follows: Section
III explains how to generatea SAT problemfrom symbolic
simulation using Prolog predicates. Section IV discusses
a practical aspectof modeling wide arithmetic operators.
Finally, SectionV givestheexperimentalresults,andSection
VI containsconcludingremarks.

I I I . FORMULATING A SAT PROBLEM FOR RTL
VALIDATION

A. SymbolicSimulation

Thefirst stepin ourverificationflow is to generatesymbolic
expressionsusingsymbolpropagationtechniques.Theresult-
ing designdescriptionremainsin thetext format,hencemini-
mizing a risk for memoryblow-up,commonlyencounteredin
BDD basedrepresentation[12]. Then, the symbolicexpres-
sionsof a SAT instanceis translatedinto aninternalrepresen-
tation (suchas BLIF format) so that different kinds of SAT
solverscanbe appliedto solve the SAT instance.The gener-
atedexpressionscaptureonly theportionof thedesignwhich
lies in theconeof influenceof thesimulationtarget,or astatic
assertionproperty. Thusa SAT problemgeneratedby this ap-
proachremainssmall evenfrom a largedesign.A simulation
targetcouldbedescribedassimply as: “Output signalA must
takevalue100after5 clock cyclesfromthecurrentsimulation
time”. Or it canbeascomplex asexercisingdifferentbranches
at differentclock cycle. An exampleof a staticpropertyis:
“No multipledriversareallowedin a commonbusat thesame
time”. Puttingthesymbolicexpressionstogetherwith thecon-
straintsencodingthe simulationtargetsor properties,a SAT
instanceis obtained.

Figure 1 shows a 4-statefinite statemachine(FSM) for a
simpledatapathcircuit with initial stateS1. Assume,through
numericalsimulationthatstateS2 is reachedfrom initial state
S1 by a sequenceof input vectors. Starting from stateS2,
calledthe seedenvironment, we want to verify the following

3

target: “is the machine able to return to the initial stateS1
in two clock cycles?”. Througha combinationof symbolic
simulationandSAT, we areableto formally answertheabove
question.Thegeneratedsymbolicexpressionsareasfollows:

S2 � f � A1 � B1 � Ctl1 � S1 �� f � A1 � B1 � Ctl1 � f � A0 � B0 � Ctl0 � � S0 � S2�����
where f � A � B � Ctl � S� is the next statefunction,Ai denotesthe
symbolicinputvariableA duringthe i’ th clockcycle. Together
with thesimulationtargetS2 ��� S1,aSAT problemis formed.

In casewhen the SAT problem cannotbe solved within
reasonable/allowedtime,we candecreasetheproblemsizeby
fixing somesymbolicvariable,suchasCtl in Figure 1, to a
constantvalue. In this case,we tradethe SAT performance
for the completeness.In the above example,if the symbolic
variable Ctl is fixed to constant’0’, then we may fail to
explore somepartsof statespaceby the two-cycle symbolic
simulation.

S1

S2

S3

S4

A+B>255

Ctl=
1

GCD(A,B) = 1

Ctl=1

Ctl=0

Initial

A[31:0]

B[31:0]

Ctl

DOUT[63:0]

DataPath

S

Fig. 1. A FSMfor asimpledatapathcircuit

B. SymbolicExpressionsin Prolog

ConstrainedLinear Programming(CLP) is a constraint
solving method basedon logic programming. In recent
decades,CLPdrew extensiveresearchinterestsandmadea lot
of progressin solvingpracticalproblems[13]. Therearemany
publicly available CLP solvers basedon different constraint
solvingtechniques.AmongthemGNUProlog (GProlog)[14],
[15] has reporteda good performance,even comparableto
someof the commercialtools. It is a native Prologcompiler
with constraintsolvingover thefinite domain,which makesit
especiallysuitablefor solvingourSAT problems.

Thesymbolicexpressionsarefirst translatedinto thewidely
acceptedBLIF format,with theannotationmadefor any sub-
module, if it is a word-level operator. The BLIF file is
then transformedinto a Prolog program. The GNU Prolog
solver we used supportsmany built-in predicatesin finite
domain. Thesebuilt-in predicatesmadeour translationtask
from BLIF to Prolog quite straightforward. Table I has
someexamplesillustrating how to modelBooleangatesand
arithmeticoperatorsin termsof GNU Prologpredicates.Here
’# 	 ’ means AND, ’#
 ’ means OR, ’# � ’ meansNOT and

’# � ��
 ’ meansequivalence. For more detailsof the usage
of GNU Prologpredicates,thereaderis referredto [15].

Typeof Operators/Gates GNU PrologPredicates
Z = and(A,B) A #	 B # � ��
 Z
Z = or(A, B) A #
 B # � ��
 Z
Z = not(A) A #� Z

Z = A ��������� �
 B Z #� A ��������� �
 B
z = A � B z # � ��
 A # � B

A � B A # ����
 B
z = A == B z # � ��
 A #� B

Z = mux(A, B, s) Z #� s * A + (1-s)*B

TABLE I

MODELING OF BOOLEAN LOGC AND ARITHMETIC OPERATORS BY LOGIC

PREDICATES

The following is a descriptionof a designcontainingboth
arithmetic blocks and Boolean logic, shown in Figure 2.
Here Ahi

� A � 31 : 28� � Alo
� A � 27 : 0� , and similarly for

B. For simplicity, the equationsare given using standard
mathematicalnotation for compare(
�� �), implication (�)
andothers. �

����� �����
m � � Ahi � Bhi

�
n � � Ahi

��� Bhi
�

k � � Alo � Blo
�

d � n 	 k
c � m
 d

(1)

Finally we shouldcommenthereon the modelingof non-
linear operators,such as multiplier. In general,one of the
word-level inputs (operands)of a a non-linearoperatormust
beexpandedin termsof its bits. Thechoiceof theoperandto
be expandedis dictatedby its interactionwith the remaining
partof thecircuit. Thebestcandidatefor bit-wiseexpansionis
theonewhich interactswith theBooleanpart. In thefollowing
hypotheticalcode,a multiplier is modeledasa sumof partial
products,where X is expandedinto an n-bit variable, and
Pi
� Xi � Y isapartialproductassociatedwith bit i. In principle,

variableXi hasto bedeclaredasafinite domainelement,while
Pi is left as a boundedvariable, becauseit will assumean
integervalueautomatically.

Z � n � 1

∑
i � 0

2i � Pi (2)

andfor eachi !� 0 ��"�"�"�� n � 1� ,#
Xi
� 0 � Pi

� 0
Xi
� 1 � Pi

� Y
(3)

Notice that the above descriptionis simpler than the one
modeling an MPLY operatorin LPSAT [11] (equations7-
10), as it does not require any auxiliary integer variables.

4

Furthermore,Gprolog solver usedin our tool hasa built-in
predicate’*’ that allow us directly model the multiplier as
Z � X � Y, without an explicit expansion. This is another
importantadvantageoverLPSAT.

IV. HANDLING WIDE WORD-LEVEL OPERATORS

In realistic designsand RTL specifications,wide word-
level signals(with bit width larger than32 bits) arecommon.
Unfortunately, the largestintegerdomainthat canbe allowed
in GNU Prologsolver is currently limited to 228. Any wide
operatorgreaterthan28bitshasto bedecomposedinto smaller
blocks. For example,a 32 bits comparatorc � � A � 31 : 0�$�
B � 31 : 0� � can be decomposedinto three smaller arithmetic
operatorsandtwo Booleangates,asshown in Figure2.

c
A[31:0]

m

kA[27:0]

B[27:0]

nB[31:0]

c

==

A[31:28]

B[31:28]

Fig. 2. Decomposingawide word-level comparator

Therearetwo waysto decomposewideoperators.In ourex-
periments,thedecompositionis doneduringthetranslationof
symbolicexpressionsinto BLIF representation.Theotherpos-
sibility is to performthedecompositionduringthe translation
from BLIF (or any otherintermediateformat) to Prolog. This
requirescreatinguser-definedpredicates(macros),with wide
word-level operandsdecomposedinto a setof subword-level
vectors.

V. EXPERIMENTS

We did a preliminaryimplementationof our SAT solver by
integratingGProloginto our satisfiabilitysolving framework.
Theexperimentalresultsarequiteencouragingcomparedwith
thoseof othersatisfiabilitysolvers.Thewholeprocessof read-
ing theRTL Verilogdesign,decomposingwideoperators,gen-
eratingsymbolicexpressions,andsolvingSAT usingGProlog
is doneautomatically, without nay humanintervention. It is
implementedin theframework of VIS system[16].

We comparedour CLP-basedSAT solver, CLP-SAT, to an-
otherword-level solver, LPSAT [11]; two CNF-basedsolvers,
SATO [17] andGRASP[4]; andaBDD-basedtool, B-SAT [7]
overarangeof availablebenchmarks.Theoverheadassociated
with transformingthe SAT instanceinto CNF formulaswere
ignored.In orderto geta fair comparison,we alsoignoredthe
overheadassociatedwith translatingSAT instanceinto linear
constraintsfor LPSAT or predicatesfor GProlog.Weobserved
thatsuchatranslationwaswithin secondsor lessfor theexper-
imentsconductedhere.All experimentswereperformedon a
PentiumIII/500MHz PCrunningLinux.

A. Descriptionof Benchmarks

In order to have a better comparisonwith LPSAT, we
usedthe SAT instancesgeneratedfor the functional vector
generationpurposereportedin [11]. Theexperimentalresults
areshown in TableII.

The circuit square correspondsto a designwhoseoutput
assertshigh if � Z2 � X2 � Y2 � , whereX � Y andZ are 16-bit
wide operators.The SAT instancessquare� 1� andsquare� 0�
correspondto the two different output requirements. The
benchmarkquadratic is an implementationof a solution to
the quadraticequationX2 � a � X � b � 0, wherea andb are
constantsandX is a 16-bit wide variable.Giventheconstants
a andb, theSAT instancecorrespondsto computingthevalue
of X. Examplesl inear � 1� and l inear � 2� are circuits with a
relatively simplestructure(a chainof comparators)but with a
largenumberof primaryinputs(over1200).Thetwo instances
differ in their size. gcd20 and gcd40 are extensionsof the
greatestcommon divisor (GCD), a 24-bit input sequential
circuit. They aregeneratedby symbolicsimulationof GCD
circuit over 20 and 40 time frames,respectively. m13 % 13
andm16 % 16 are13-bit and16-bit multipliers. Two different
SAT instancesfor eachwere created: (sat) with a feasible
solution,and(non) with anon-satisfiablerequirement.Finally,
mdpe� 1��& � 2� , is a circuit composedof a multiplier feedinga
dynamicpriority encoder, taken from a realisticdesign. The
two casesdiffer in thesizeof theBooleanpartof thecircuit.

It shouldbe emphasized,that all the testcaseswerecom-
prisedof both,thearithmeticandtheBooleanparts,including
the 16-bit multiplier circuits (thestructureof unsignedmulti-
pliers wasobtainedby a recursive setof adders,andrequired
certainamountof connectingBooleanlogic dueto wide oper-
atordecomposition).

In TableII, column2 is the codesizeof the corresponding
GPrologprogram. Column4 (# constr) givesthe numberof
linear constraintsgeneratedby LPSAT. Columns6 gives the
numberof clausesin theCNF formulae.

B. ExperimentalResults

Table II shows the experimentalresults,where’ � ’ means
not finishingwithin 3600seconds.The CPU time is given in
seconds. Column 3 shows a CPU time for CLP-SAT using
GProlog.It is composedof two parts:onefor thecompilation
(from Prologinput file to executableprogram),andthe other
for the actualexecution. The compilationtime rangesfrom
about1 to 12 seconds,which is a significantportion of the
total solvingtime. Theremainingcolumnsreportthesizeand
performanceof LPSAT, SATO, GRASP, andBSAT [7].

From the results, we can concludethat the satisfiability
solver (CLP-SAT) basedon GPrologcompetesvery well with
the establishedCNF-basedsolvers SATO and GRASP, and
with the BDD-basedSAT solvers, and is comparableto the
performanceof LPSAT. An interestingnoteis thatLPSAT and
CLP-SAT eachfailed on only one test case,square� 1� and
mdpe� 2� , respectively. As a generalobservation, the word-
level SAT approachesexemplified by CLP-SAT and LPSAT

5

CLP-SAT LPSAT CNF-SAT BSAT
Benchmark time SATO GRASP

lines comp / exe # constr time # clauses time time time
m13x13(sat) 78 0.23/ 0.00 68 0.04 16704 2.51 187.24 137

m13x13(non) 78 0.24/ 0.00 68 0.60 16704 12.12 1355.8 520
m16x16(sat) 116 0.29/ 0.37 149 44.09 24720 722.35 2819.3 –

m16x16(non) 116 0.24/ 53.1 149 2.34 24720 132.12 – –
square(1) 529 0.58/ 0.00 701 – 77361 – 1344 –
square(0) 529 0.82/ 0.00 701 0.96 77361 – – –
quadratic 413 0.78/ 4.29 469 0.05 72015 10.68 14.38 923.8
linear(1) 1109 1.53/ 0.00 950 0.37 36914 5.01 2.98 –
linear(2) 3527 11.7/ 0.01 2749 1.34 77887 1.27 6.73 –

gcd20 876 1.10/ 0.01 542 0.03 117785 – – –
gcd40 1515 1.90/ 0.01 1062 0.08 248449 – – –

mdpe(1) 147 0.46/ 0.67 2933 1.12 29560 75.2 572.27 –
mdpe(2) 685 5.32/ – 3673 8.98 30851 4.4 59.1 –

TABLE II

COMPARISON OF DIFFERENT SAT RESULTS

work well on large yet simple sequentialdesignslike GCD.
For CNF-basedsolvers thesedesignsare too hard due to a
large number of CNF clauses. Similarly, the BDD-based
satisfiability tool, BSAT [7], could solve but small examples
becauseof theexcessive time/memoryneededto createBDDs
for thetestcircuits.

VI . SUMMARY AND FUTURE WORK

We investigateda new word-level satisfiability checker
basedon CLP. Thenew SAT checker is successfulappliedto
solve problemsposedfrom semi-formalverificationarea.The
preliminarypromisingresultsdemonstratedthat theproposed
CLPbasedSAT solvercanbeagoodalternativeto otherword-
level SAT solvers like LPSAT [11] in verifying RTL designs
with mixed arithmeticandBooleanlogic. In future research
works,we will continueto try out someotherCLPsolversbe-
sidesGPrologandwill try to understandbetterthe modeling
SAT instanceby Prologsincetherearesomeinconsistentre-
sultslike mdpe� 2� in TableII.

Sequentialequivalencecheckingis one of the verification
approachto checkingequivalencebetweenspecificationand
implementation,or among different implementationlevels.
Ritter [18] performssequentialequivalencecheckingbased
on symbolic simulation. While generatingsymbolic expres-
sionson-the-flyby parallelsimulatingthe two comparedde-
scriptions,hisapproachclassifiestheexpressionsinto different
equivalenceclasses.The techniquesof detectingequivalence
amongsymbolicexpressionsarenot limited to oneapproach,
i.e. any techniquecouldbeappliedto if appropriate.Our CLP
basedSAT solver is particularlyeffectiveonmixedword-level
andbit-level SAT problems.Soweconceivethatthepresented
SAT approachcouldbealsohelpful in thecontext of sequential
equivalencechecking.

REFERENCES

[1] M. K. Ganai,A. Aziz, andA. Kuehlmann,“Enhancing
simulationwith BDDs andATPG,” in Proc. of Design
AutomationConf., June1999.

[2] M. Davis andH. Putnam, “A ComputingProcedurefor
QuantificationTheory,” Journal of the ACM, vol. 7, pp.
201–215,1960.

[3] J. W. Freeman,“Improvementsto PropositionalSatisfi-
ability SearchAlgorithms,” Ph.D.Dissertation,Dept.of
Comp.andInf. Sc.,Univ. of Penn., May 1995.

[4] J.Marques-SilvaandK. A. Sakallah,“GRASP- A New
SearchAlgorithm for Satisfiability,” in ICCAD’96, 1996,
pp.220–227.

[5] R. E. Bryant, “Graph BasedAlgorithms for Boolean
FunctionManipulation,” IEEE TransactionsonComput-
ers, vol. C-35,pp.677–691,August1986.

[6] S. Jeongand F. Somenzi, “A New Algorithm for the
Binate Covering Problem and its Application to the
Minimization of BooleanRelations,” in ICCAD, 92.

[7] P. Kalla, Z. Zeng, M. J. Ciesielski,andC. Huang, “A
BDD-BasedSatisfiabilityInfrastructureusingthe Unate
Recursive Paradigm,” in Proc.of DATE 2000, 2000,pp.
232–236.

[8] F. Fallah,S.Devadas,andK. Keutzer, “FunctionalVector
Generationfor HDL modelsusingLinear Programming
and3-Satisfiability,” in Proc.DAC, 1998,pp.528–533.

[9] R. VemuriandR. Kalyanaraman,“Generationof design
verificationtestsfrom behavioral VHDL programsusing
path enumerationand constraintprogramming,” IEEE
Tran. on VLSISystems, vol. 3, no. 2, pp. 201–214,June
1995.

[10] C. HuangandK.-T. Cheng,“Assertioncheckingby com-
binedword-levelatpgandmodulararithmeticconstraint-

6

solvingtechniques,” in Proc.of 37thDesignAutomation
Conf., June2000,pp.118–123.

[11] Z. Zeng,P. Kalla, andM. Ciesielski, “LPSAT: A unified
approachto rtl satisfiability,” in Proc. DATE, March
2001,pp.398–402.

[12] R. E. Bryant, “Symbolic simulation–techniquesand
applications,” in Proc.of 27thDesignAutomationConf.,
June1990,pp.517–521.

[13] JoxanJaffarandMichaelJ.Maher, “Constraintlogic pro-
gramming: A survey,” TheJournal of Logic Program-
ming, vol. 19 & 20,pp.503–582,1994.

[14] Daniel Diaz andPhilippeCodognet, “The GNU prolog
systemand its implementation,” in SAC (2), 2000,pp.
728–732.

[15] Daniel Diaz and Philippe Codognet,
“gnu.org/software/prolog,” 1999.

[16] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-
Vencentelli,F. Somenzi,A. Aziz, S-T. Cheng,S. Ed-
wards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R.Ranjan,S.Sarwary, G.Shiple,S.Swamy, andT. Villa,
“Vis: A systemfor verification and synthesis,” Pro-
ceedingsof theComputerAidedVerificationConference,
1996.

[17] H. Zhang, “Sato: An efficient propositionalprover,” in
Proc.of 14thConferenceonAutomatedDeduction, 1997,
pp.272–275.

[18] GerdRitter, “Sequentialequivalencecheckingby sym-
bolic simulation,” in Proc.FMACD, 2000.

