FunctionalTestGeneration
usingConstraint_ogic Programming

ZhihongZeng,Maciej Ciesielski,BrunoRouzegre

Dept. of Electrical& ComputerEngineering

Universityof Massachusetts
Amherst,MA 01003,USA
{zzengciesiel @ecs.umass.edu

Abstract—

Semi-formal verification basedon symbolic simulation
offers a good compromisebetweenformal model checking
and numerical simulation. The generation of functional
test vectors, guided by miscellaneouscoverage metrics to
satisfy the simulation target, can be posedas a satisfiabil-
ity problem (SAT). This paper presentsa novel approach
to solving SAT basedon Constraint Logic Programming
(CLP) technique. The proposedSAT solver allows to ef-
ficiently handle the designswith mixed word-level arith-
metic operators and Booleanlogic. It is applicable for de-
signsspecifiedat differ entlevels,including HDL, RTL, and
Boolean. The experimental resultsare quite encouraging
compared with classicalCNF-based,BDD-based,and LP-
basedSAT solwers.

|I. SATISFIABILITY IN SEMI-FORMAL VERIFICATION

Numericalsimulationremainsa dominantdesignvalidation
methodin industry sinceit scaleswell with the designcom-
plexity. A typical designverificationscenariancludesrandom
andpseudo-randordirectedtests bringingthefunctionalcov-
erageof thedesignspecificatiorto a desiredevel. Functional
coveragemetricstypically includeline coverage statecover-
age, transition coverage,branchcoverage,etc. In the early
designphase both randomanddirectedtestvectorscanhelp
to find designbugs easily and improve functional coverage
quickly. Whenthe functional coveragereachescertainlevel
(say90%) of coverageimproving the coverageanddiscover-
ing cornercasedy addingmorerandomor manuakestvectors
becomesvery inefficient. At this point, the remaininggapin
functionality coveragecanbe solvedby applyingdeterministic
tests. The generationof suchtestsmustsatisfy a predefined
simulationtarget, suchasreachinga particularstateof the de-
sign,exercisingabranch or coveringapieceof HDL code,and
is guidedby miscellaneousoveragemetricsandmonitors.The
functionaltestgeneratiorproblemguidedby suchconstraints
canbeposedasa satisfiabilityproblem(SAT).

Severaltoolshave beendevelopedin industryandacademia
to facilitatethe generatiorof deterministictestvectors. SIVA
[1] is anexampleof suchatool, usedto generaténputvectors
to exploit more statespaceand checkthe desiredproperties.

LIRMM

Universitede Montpellier
34090Montpellier, France
rouze/re@lirmm.fr

The core algorithmsin SIVA use a combinationof BDD-
basedand ATPG tools to solve satisfiability In our context
of semi-formalverification, a symbolicsimulationengineis
usedto generatea set of symbolic expressionsaccordingto
the simulation targets. The set of symbolic expressionsis
then transformedinto a SAT instance. A solution to this
SAT problemgivesa sequencef inputvectorsto exercisethe
simulationtarget, or provesthatit is not possibleto find such
vectors.

SAT belongsto theclassof NP-completgproblemswith al-
gorithmicsolutionshaving exponentialworst-caseomplexity.
Hencethe efficiency of the semi-formalverificationapproach
is largely determinedby the performanceof the SAT solvers.
In this paper we investigatea methodfor solving SAT prob-
lemsthat originatefrom RTL designswith mixed arithmetic
andcontrollogic, thatarecommonin the datapatiof modern
microprocessoandDSPdesigns.

Il. PREVIOUS APPROACHES IN SOLVING SATISFIABILITY

Classicalapproacheso SAT arebasedon variationsof the
well known Davis and Putnamprocedurg2] which workson
CNF formulae. Typical versionsof this procedure@ncorporate
achronologicabacktrack-basesearcH3]; ateachnodein the
searchree,it selectsanassignmenandpruneshesubsequent
searclby iterative applicationof theunit clauseandpureliteral
rules. Recentapproachedncorporatelearning techniques
andotherconflict analysisproceduresvith non-dronolagical
backtrackgo prunethe searctspacd4].

Another popularapproachto solving the Booleansatisfia-
bility problemss basedn Binary DecisionDiagramgBDDs)
[5]. Given a circuit for which a SAT instanceneedsto be
solved,asetof BDDs canbe constructedepresentingheout-
put value constraints. The conjunctionof all the constraints
expresseds a Booleanproductof the correspondind3DDs,
referredto asa productBDD, representshe setof all satisfy-
ing solutions[6].However, a majorlimitation of this approach
isthememoryexplosionproblemassociatevith theconstruc-
tion of the productBDD. Recently Kalla et al. [7] proposed
a BDD-basedSAT techniquethatovercomeghe problemsre-
latedto BDD sizeby exploiting element®f theunaterecursve
paradigm.Thistechniquesearchefor SAT solutionsin theco-
factorsof the individual constraintBDDs, thusrestrictingthe

growth of theentireBDD searchspace.

CNF-basedSAT solverscanbe directly integratedinto the
semi-formalverification framewnork. However, the practical
RTL or behaioral descriptionsoften have word-level oper
ators. Collapsingthose word-level operatorsinto a single
CNF formulaedestrqs the regularity of the problemand of-
ten makes the problemmuch harderto solve. On the other
hand, BDD-basedtechniquessuffer from the size explosion
problems.For example,the size of a BDD for a multiplier is
exponential regardlesof thevariableordering.

To overcomethesedrawbacks,Fallah et al. [8] proposed
a hybrid satisfiabilityapproachHSAT, to generatdunctional
testvectorsfor structuredHDL designs.Working on the RTL
descriptionsthehybrid methodgeneratea setof CNF clauses
for randomBooleanlogic, and linear arithmetic constaints
for arithmetic blocks in the design. Then, a 3-SAT solver
is appliedto solve SAT for Booleanlogic, while a Linear
Programming(LP) techniqueis usedto checkthe feasibility
of linear constraintsfor arithmetic portion of the design. It
should be noted that the two problems, SAT for Boolean
logic and LP for arithmetic blocks, are solved separately
eachin its own domain. In sucha framework, backtracks
betweerthetwo solutionenginesareinevitableandperformed
explicitly. Hencethe performanceof HSAT is limited by
the heuristicsthat selectthe set of assignmentto Boolean
variables. Constrainpropagatiortechniquebetweerdifferent
domains have been explored to generatetest vectors and
checkassertionon HDL descriptiong9] [10]. Sometimes,
word-level ATPG and modular arithmetic constraint-solving
techniqueare combinedto solve the SAT problems[10].
Again, thosetechniquesrely on heuristicsto propagatethe
constraintdetweerthearithmeticandBooleandomains.

It would be desirableto use an infrastructurethat can
represenboththe Booleanaswell asarithmeticconstraintsn
a single unified domain. By doing so, constraintpropagation
betweenthe arithmetic and Boolean parts can be handled
implicitly and efficiently. Zeng et al. [11] presentedan
enhancedword-level satisfiability solver, LPSAT, basedon
linearprogramming.By generatindinear constraintfor both
the Booleanlogic andthe arithmeticoperatorsthis approach
allows to solve the SAT problemin a unified integer linear
programming(ILP) domain. By doing so,LPSAT utilizesthe
implicit constrainfpropagatiorof the ILP solver.

However, suchgenericlLP solverstendto beinefficientin
solving satisfiability problemsencounteredn RTL verifica-
tion. First, genericLP solversarebasedon numericalproce-
duresthat are designedpredominantlyto solve optimization
problems,ratherthan satisfiability As a result, they suffer
from numericalcorvergenceproblems,and are sensitve to a
numberof internalparametersAlso, they tendto beinefficient
in thebranchandboundpartfor solvingthedecisionproblems,
which are at the heartof SAT problems. Secondly ary non-
linear arithmeticoperatordn LP-basedSAT hasto be explic-
itly linearizedinto linearconstraintsThis includesthe model-
ing of mixedarithmetic/Boolearblocks,suchascomparators,

shifters,multiplexors,etc.,with integerdecisionvariablesthat
may leadto the numericalcorvergenceproblems.Finally, the
ILP canonly computea singlesolution; it is computationally
expensveto forceit to produceseveraldifferentsolutionsdur-
ing subsequemuns.

In this paperwe investigatea new satisfiability checler
basedn Constrint Logic Programming(CLP).By transform-
ing the SAT instancesnto predicatesn Logic Programming
we presere the regularity of the word-level operators.Com-
paredto LP, themodelingof implications,oftenencountereéh
theverificationproblemsjs simplerandmorenaturalfor CLP.
Also the modelingof mixed blocksis easier:it doesnot re-
quiretheintroductionof (integer)variablesandis not plagued
with the numericalcorvergenceproblems.Anotherimportant
aspectof this approachis thatit allows to generatemultiple
vectorsneededor simulation-baseéunctionalvalidation. Fi-
nally, efficient modelingof both arithmeticand Booleando-
mainsinherentto CLP makesit applicablenot only to satisfi-
ability (or justification),but alsoto simulation(numericaland
symbolic),andequivalencechecking.

The rest of the paperis organizedas follows: Section
[l explains how to generatea SAT problemfrom symbolic
simulation using Prolog predicates. Section IV discusses
a practical aspectof modeling wide arithmetic operators.
Finally, SectionV givesthe experimentalresults,and Section
VI containsconcludingremarks.

I1l. FORMULATING A SAT PROBLEM FOR RTL
VALIDATION

A. SymbolicSimulation

Thefirst stepin our verificationflow is to generatesymbolic
expressionaisingsymbolpropagatiortechniquesTheresult-
ing designdescriptionremainsin the text format, hencemini-
mizing a risk for memoryblow-up, commonlyencounteredh
BDD basedrepresentatioffil2]. Then,the symbolic expres-
sionsof a SAT instances translatednto aninternalrepresen-
tation (suchas BLIF format) so that differentkinds of SAT
solverscanbe appliedto solve the SAT instance.The gener
atedexpressiongaptureonly the portion of the designwhich
liesin the coneof influenceof the simulationtarget,or a static
assertiorproperty Thusa SAT problemgeneratedby this ap-
proachremainssmall evenfrom a large design. A simulation
targetcould be describedassimply as: “Output signal A must
take value100after 5 clodk cyclesfromthe currentsimulation
time”. Orit canbeascomplec asexercisingdifferentbranches
at differentclock cycle. An exampleof a static propertyis:
“No multipledrivers are allowedin acommorbusat thesame
time”. Puttingthe symbolicexpressionsogethemith thecon-
straintsencodingthe simulationtargetsor properties,a SAT
instancds obtained.

Figure 1 shows a 4-statefinite statemachine(FSM) for a
simpledatapattcircuit with initial stateS1. Assume through
numericalsimulationthatstateS2 is reachedrom initial state
Sl by a sequenceof input vectors. Startingfrom state 2,
calledthe seedervironment we wantto verify the following

target: “is the madine able to return to the initial stateSl
in two clock cycles?”. Througha combinationof symbolic
simulationand SAT, we areableto formally answerthe above
guestion.Thegeneratedymbolicexpressionareasfollows:

& = (AL, B Ctll, S
= f(AL, B, CtlL, £ (A%, BO,Ctl® (S =)

where f(A,B,Ctl,S) is the next statefunction, A’ denoteshe
symbolicinputvariableA duringthei’th clock cycle. Together
with thesimulationtargetS* == S1, a SAT problemis formed.

In casewhen the SAT problem cannotbe solved within
reasonable/allwedtime, we candecreas¢he problemsizeby
fixing somesymbolic variable,suchasCtl in Figurel, to a
constantvalue. In this case,we tradethe SAT performance
for the completenessin the above example,if the symbolic
variable Ctl is fixed to constant’0’, then we may fail to
explore somepartsof statespaceby the two-cycle symbolic
simulation.

cti=1
Initial
A[3L:0 <,

(31.0] DOUTI[63:0] "6
B[31:0] — <5
Ctl DataPath C

[
< N
% &
N
Cti=0

Fig. 1. A FSMfor asimpledatapatttircuit

B. SymbolicExpressionsn Prolog

ConstrainedLinear Programming(CLP) is a constraint
solving method basedon logic programming. In recent
decadesCLP drew extensveresearclinterestsandmadealot
of progressn solvingpracticalproblemq13]. Therearemary
publicly available CLP solvers basedon different constraint
solvingtechniguesAmongthemGNU Prolog (GProlog)[14],
[15] hasreporteda good performance,even comparableto
someof the commercialtools. It is a native Prologcompiler
with constraintsolving over thefinite domain,which makesit
especiallysuitablefor solvingour SAT problems.

Thesymbolicexpressionsrefirst translatednto thewidely
acceptedLIF format, with the annotatiormadefor any sub-
module, if it is a word-level operator The BLIF file is
then transformedinto a Prolog program. The GNU Prolog
solver we used supportsmary built-in predicatesin finite
domain. Thesebuilt-in predicatesmadeour translationtask
from BLIF to Prolog quite straightforward. Table | has
someexamplesillustrating how to model Booleangatesand
arithmeticoperatorsn termsof GNU PrologpredicatesHere
'#A' meansAND, '#V' meansor, '#\' meansNoOT and

'# <=>' meansequialence. For more detailsof the usage
of GNU Prologpredicatesthereadetis referredto [15].

| Type of Operators/Gates | GNU Prolog Predicates|

Z=and(A,B) A#NB#H<=>Z
Z=or(A, B) A#VBH#H<=>Z
Z =not(A) A#\Z
Z=A<+|—|x>B ZH#=A<+|—|x>B
z=A<B ZH#<=>A#<B
A=1B A#==>B
z=A== ZH#<=>A#=B
Z=mux(A,B,s) Z#=s* A +(1-s)*B
TABLE |
MODELING OF BOOLEAN LOGC AND ARITHMETIC OPERATORSBY LOGIC
PREDICATES

The following is a descriptionof a designcontainingboth
arithmetic blocks and Boolean logic, shavn in Figure 2.
Here An = A[31: 28], A, = A[27: 0], and similarly for
B. For simplicity, the equationsare given using standard
mathematicahotation for compare(>, <), implication (=)
andothers.

m= (Ani < Bnj)

N = (Anj == Bnj)

k= (Ao <Bio) 1)
d=nAKk

c=mvd

Finally we shouldcommenthereon the modelingof non-
linear operators,such as multiplier. In general,one of the
word-level inputs (operandspf a a non-linearoperatormust
be expandedn termsof its bits. The choiceof the operando
be expandedis dictatedby its interactionwith the remaining
partof thecircuit. Thebestcandidatdor bit-wiseexpansionis
theonewhichinteractswith the Booleanpart. In thefollowing
hypotheticalcode,a multiplier is modeledasa sumof partial
products,where X is expandedinto an n-bit variable, and
P =X xY isapartialproductassociatedith biti. In principle,
variableX; hasto bedeclaredasafinite domainelementwhile
R is left as a boundedvariable, becausdat will assumean
integervalueautomatically

n-1
Z=Y 2%P 2)
27"
andfor eachi € [0,...,n—1],
X=0=R=0
{m:1¢R:Y @)

Notice that the above descriptionis simpler than the one
modeling an MPLY operatorin LPSAT [11] (equations7-
10), as it doesnot require arny auxiliary integer variables.

Furthermore,Gprolog solver usedin our tool hasa built-in

predicate™ that allow us directly model the multiplier as
Z = X xY, without an explicit expansion. This is another
importantadvantageover LPSAT.

IV. HANDLING WIDE WORD-LEVEL OPERATORS

In realistic designsand RTL specifications,wide word-
level signals(with bit width largerthan32 bits) are common.
Unfortunately the largestinteger domainthat canbe allowed
in GNU Prologsolver is currently limited to 228, Any wide
operatogreatetthan28bits hasto bedecomposeadhto smaller
blocks. For example,a 32 bits comparatorc = (A[31: 0] <
B[31: Q]) can be decomposednto three smaller arithmetic
operatorsandtwo Booleangatesasshavn in Figure?2.

A[31:28]
B[31:28] < pm
A[31:0] ¢
C
A —
A[27:0] | K
Blzr:o]__ | <

Fig. 2. Decomposingwide word-level comparator

Therearetwo waysto decompose&ide operatorsin our ex-
perimentsthe decompositioris doneduring the translationof
symbolicexpressiongnto BLIF representationTheotherpos-
sibility is to performthe decompositiorduringthe translation
from BLIF (or ary otherintermediatormat)to Prolog. This
requirescreatinguserdefinedpredicate{macros),with wide
word-level operandslecomposeihto a setof subword-level
vectors.

V. EXPERIMENTS

We did a preliminaryimplementatiorof our SAT solver by
integrating GProloginto our satisfiability solving framework.
The experimentakesultsarequite encouragingomparedvith
thoseof othersatisfiabilitysolvers. Thewhole procesof read-
ing theRTL Verilog designdecomposingvide operatorsgen-
eratingsymbolicexpressionsandsolving SAT usingGProlog
is doneautomatically without nay humanintervention. It is
implementedn theframework of VIS system[16].

We comparedur CLP-basedAT solver, CLP-SA, to an-
otherword-level solver, LPSAT [11]; two CNF-basedolvers,
SATO [17] andGRASPI[4]; anda BDD-basedool, B-SAT [7]
overarangeof availablebenchmarksTheoverheadhssociated
with transformingthe SAT instanceinto CNF formulaswere
ignored.In orderto getafair comparisonye alsoignoredthe
overheadassociatedvith translatingSAT instanceinto linear
constraint$or LPSAT or predicategor GProlog.We obsered
thatsuchatranslationvaswithin second®r lessfor theexper
imentsconductechere. All experimentswere performedon a
Pentiumlll/500MHz PCrunningLinux.

A. Descriptionof Bendimarks

In order to have a better comparisonwith LPSAT, we
usedthe SAT instancesgeneratedor the functional vector
generatiorpurposereportedin [11]. The experimentalresults
areshavnin Tablell.

The circuit squae correspondgo a designwhoseoutput
assertshigh if (2% = X2 +Y?), whereX,Y andZ are 16-bit
wide operators.The SAT instancesquae(1) and squae(0)
correspondto the two different output requirements. The
benchmarkquadratic is an implementationof a solution to
the quadraticequationX? + ax X +b = 0, wherea andb are
constantandX is a 16-bitwide variable.Giventhe constants
a andb, the SAT instancecorresponds$o computingthevalue
of X. Exampleslinear(1) andlinear(2) are circuits with a
relatively simplestructure(a chainof comparatorsput with a
large numberof primaryinputs(over1200). Thetwo instances
differ in their size. gcd20 and gcd40 are extensionsof the
greatestcommon divisor (GCD), a 24-bit input sequential
circuit. They are generatedy symbolic simulationof GCD
circuit over 20 and 40 time frames,respectiely. m13x 13
andml6 x 16 are 13-bit and 16-bit multipliers. Two different
SAT instancesfor eachwere created: (saf) with a feasible
solution,and(non) with anon-satisfiableequirementFinally,
mdpe(1)/(2), is a circuit composedf a multiplier feedinga
dynamicpriority encodertaken from a realisticdesign. The
two casedliffer in the sizeof the Booleanpartof thecircuit.

It shouldbe emphasizedthat all the testcaseswere com-
prisedof both, the arithmeticandthe Booleanparts,including
the 16-bit multiplier circuits (the structureof unsignedmulti-
plierswasobtainedby a recursve setof addersandrequired
certainamountof connectingBdooleanlogic dueto wide oper
atordecomposition).

In Tablell, column?2 is the codesize of the corresponding
GPrologprogram. Column4 (# constp givesthe numberof
linear constraintsggeneratedy LPSAT. Columns6 givesthe
numberof clausesn the CNF formulae.

B. ExperimentaResults

Table Il shaws the experimentalresults,where’—' means
not finishing within 3600seconds.The CPUtime is givenin
seconds. Column 3 shavs a CPU time for CLP-SAT using
GProlog.It is composedf two parts:onefor the compilation
(from Prologinput file to executableprogram),andthe other
for the actualexecution. The compilationtime rangesfrom
about1 to 12 secondswhich is a significantportion of the
total solvingtime. Theremainingcolumnsreportthe sizeand
performancef LPSAT, SATO, GRASR andBSAT [7].

From the results, we can concludethat the satisfiability
solver (CLP-SAT) basedon GPrologcompetesery well with
the establishedCNF-basedsolvers SATO and GRASR and
with the BDD-basedSAT solvers, andis comparableto the
performancef LPSAT. An interestingnoteis thatLPSAT and
CLP-SAT eachfailed on only one test case,squae(1l) and
mdpe(2), respectiely. As a generalobsenation, the word-
level SAT approachegxemplifiedby CLP-SAT and LPSAT

CLP-SAT LPSAT CNF-SAT BSAT

Benchmark time SATO | GRASP
#lines | comp/exe | #constr | time | #clauses| time time time
m13x13(sat) 78 | 0.23/0.00 68| 0.04 16704 251| 187.24 137
m13x13(non) 78 | 0.24/0.00 68| 0.60 16704| 12.12| 1355.8 520
m16x16(sat) 116 | 0.29/0.37 149 | 44.09 24720 722.35| 2819.3 -
m16x16(non) 116 | 0.24/53.1 149 | 2.34 24720\ 132.12 - -
square(1) 529 | 0.58/0.00 701 - 77361 - 1344 -
square(0) 529 | 0.82/0.00 701 | 0.96 77361 - - -
guadratic 413 | 0.78/4.29 469 | 0.05 72015| 10.68 14.38| 923.8
linear(1) | 1109| 1.53/0.00 950 | 0.37 36914 5.01 2.98 -
linear(2)| 3527| 11.7/0.01 2749 | 1.34 77887 1.27 6.73 -
gcd20 876 | 1.10/0.01 542 | 0.03 117785 - - -
gcd40| 1515 1.90/0.01 1062 | 0.08| 248449 - - -
mdpe(1) 147 | 0.46/0.67 2933 | 1.12 29560 75.2| 572.27 -
mdpe(2) 685 5.32/ - 3673| 8.98 30851 4.4 59.1 -

TABLE Il
COMPARISON OF DIFFERENT SAT RESULTS
work well on large yet simple sequentialdesignslike GCD. REFERENCES

For CNF-basedsolvers thesedesignsare too hard due to a
large number of CNF clauses. Similarly, the BDD-based
satisfiability tool, BSAT [7], could solve but small examples
becaus®f theexcessie time/memoryneededo createBDDs
for thetestcircuits.

V1. SUMMARY AND FUTURE WORK

We investigateda new word-level satisfiability checler
basedon CLP. The new SAT checler is successfubppliedto
solve problemsposedfrom semi-formalverificationarea.The
preliminary promisingresultsdemonstratedhat the proposed
CLP basedSAT solvercanbeagoodalternatveto otherword-
level SAT solverslike LPSAT [11] in verifying RTL designs
with mixed arithmeticand Booleanlogic. In future research
works,we will continueto try outsomeotherCLP solversbe-
sidesGPrologandwill try to understandetterthe modeling
SAT instanceby Prologsincethereare someinconsistente-
sultslike mdpe(2) in Tablell.

Sequentialequivalencecheckingis one of the verification
approachto checkingequialencebetweenspecificationand
implementation,or among different implementationlevels.
Ritter [18] performssequentialequivalencecheckingbased
on symbolic simulation. While generatingsymbolic expres-
sionson-the-fly by parallel simulatingthe two comparedde-
scriptions hisapproacttlassifiegsheexpressiongnto different
equivalenceclasses.The techniquesf detectingequivalence
amongsymbolicexpressionsarenot limited to oneapproach,
i.e. ary techniquecouldbeappliedto if appropriate Our CLP
basedSAT solweris particularlyeffective on mixedword-level
andbit-level SAT problems.Sowe concevethatthe presented
SAT approaclttouldbealsohelpfulin thecontext of sequential
equivalencechecking.

[1]

(2]

(3]

[4]

5]

[6]

[7]

(8]

9]

[10]

M. K. Ganai,A. Aziz, andA. Kuehlmann, “Enhancing
simulationwith BDDs and ATPG; in Proc. of Design
AutomationConf, Junel999.

M. Davis andH. Putnam, “A ComputingProcedurdor
QuantificationTheory” Journal of the ACM, vol. 7, pp.
201-2151960.

J. W. Freeman,“Improvementgo PropositionalSatisfi-
ability SearchAlgorithms; Ph.D. Dissertation,Dept. of
Comp.andInf. Sc.,Univ. of Penn, May 1995.
J.Marques-SilaandK. A. Sakallah,"GRASP- A New
SearchAlgorithm for Satisfiability’ in ICCAD’96, 1996,
pp.220-227.

R. E. Bryant, “Graph BasedAlgorithms for Boolean
FunctionManipulation; IEEE Transactionson Comput-
ers, vol. C-35,pp.677-691 August1986.

S. Jeongand F. Somenzi, “A New Algorithm for the
Binate Covering Problem and its Application to the
Minimization of BooleanRelations), in ICCAD, 92.

P. Kalla, Z. Zeng, M. J. Ciesielski,and C. Huang, “A
BDD-BasedSatisfiability Infrastructureusingthe Unate
Recursve Paradigm, in Proc. of DATE 200Q 2000, pp.
232-236.

F. Fallah,S.DevadasandK. Keutzer“FunctionalVector
Generatiorfor HDL modelsusingLinear Programming
and3-Satisfiability’ in Proc. DAC, 1998,pp.528-533.
R. VemuriandR. Kalyanaraman;' Generationof design
verificationtestsfrom behaioral VHDL programausing
path enumeratiorand constraintprogramming, |EEE
Tran. on VLSI Systemsvol. 3, no. 2, pp. 201-214 June
1995.

C.HuangandK.-T. Cheng,“Assertioncheckingby com-
binedword-level atpgandmodulararithmeticconstraint-

solvingtechnique$, in Proc. of 37th DesignAutomation
Conf, June2000,pp.118-123.

[11] Z. Zeng,P. Kalla, andM. Ciesielski,“LPSAT: A unified
approachto rtl satisfiability” in Proc. DATE, March
2001,pp.398-402.

[12] R. E. Bryant, “Symbolic simulation—techniquesnd
applications, in Proc. of 27thDesignAutomationContf,
Junel990,pp.517-521.

[13] JoxanJafarandMichaelJ.Maher, “Constraintiogic pro-
gramming: A sunwey,” The Journal of Logic Program-
ming, vol. 19 & 20, pp.503-582,1994.

[14] Daniel Diaz andPhilippe Codognet,“The GNU prolog
systemandits implementatiori, in SAC (2), 2000, pp.
728-732.

[15] Daniel Diaz and Philippe Codognet,
“gnu.org/software/prolog’ 1999.

[16] R. K. Brayton, G. D. Hachtel, A. Sangiwvanni-
Vencentelli, . Somenzi,A. Aziz, S-T. Cheng,S. Ed-
wards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer
R.RanjanS. Samwary, G. Shiple,S. Swamy, andT. Villa,
“Vis: A systemfor verification and synthesi$, Pro-
ceeding®f the ComputerAided\erification Confeence
1996.

[17] H. Zhang, “Sato: An efficient propositionalprover,” in
Proc. of 14thConfeenceon Automateddeduction 1997,
pp.272-275.

[18] GerdRitter, “Sequentialequivalencecheckingby sym-
bolic simulation’ in Proc. FMACD, 2000.

