
Function Extraction

from Arithmetic Bit-level Circuits

Maciej Ciesielski, Walter Brown, Duo Liu

University of Massachusetts, Amherst

ciesiel@ecs.umass.edu, webrown@umass.edu, duo@engin.umass.edu

André Rossi

Université de Bretagne-Sud - Lab STICC, France

andre.rossi@univ-ubs.fr

Abstract—

The paper describes a method to derive a polynomial function
computed by an arithmetic bit-level circuit. The circuit is modeled
as a bit-level network composed of adders and logic gates and
computation performed by the circuit is viewed as a flow of
binary data through the network. The problem is cast as a
Network Flow problem and solved using standard algebraic
techniques. Extraction of the arithmetic function from the circuit
is accomplished by transforming the expression at the primary
outputs into an expression at the primary inputs. Experimental
results show application of the method to certain classes of large
arithmetic circuits.

I. INTRODUCTION

With the ever-increasing size and complexity of integrated
circuits and systems on chip, hardware verification becomes
a dominating factor of the overall design flow. Despite a
considerable progress in verification of digital circuits for
random and control logic, advances in formal verification of
arithmetic designs have been lagging. This can be contributed
to the difficulty in modeling wide arithmetic datapaths without
resorting to computationally expensive Boolean methods that
require bit-blasting, i.e., flattening the design to a bit level
netlist.

This paper addresses arithmetic verification problem using
algebraic approach recently proposed in [1]. It models the
circuit as a network of standard arithmetic components, and
computation performed by the circuit is viewed as a flow of
binary data through the network, represented as a pseudo-
Boolean expression. Functional correctness of an arithmetic
circuit is then solved by transforming the symbolic expressions
representing the flow at the circuit inputs (the input signature)
into a polynomial expression at the primary outputs (output
signature), and checking if the resulting expression matches
the binary encoding at the primary outputs. This paper goes
one step further: it shows how to extract arithmetic function
computed by the circuit by deriving a unique input signature
from the known output signature (output encoding). Such
derived input signature then determines the arithmetic function
implemented by the circuit. If the functional specification of
the circuit is known and differs from the one derived by this
process by some ∆F (a polynomial), assignment of input
variables for which ∆F is nonzero will provide a bug trace.

A. Related Work

To the best of our knowledge the problem of arithmetic cir-
cuit extraction, as defined here, has not been attempted before.

The literature related to this subject addresses extraction of
arithmetic bit-level structure from gate-level implementations,
[2],[3], without being concerned with the arithmetic function
it implements. Automated techniques for extracting arithmetic
bit level (ABL) information from gate level netlists have
been proposed in the context of property and equivalence
checking [2] but they do not address the issue of the function
implemented by the network. In their work ABL components
are modeled by polynomials over unique ring, and the normal
forms are computed w.r.t. Grobner basis over rings Z/2n using
modern computer algebra algorithms. In our view this model
is unnecessarily complicated and not scalable to practical
designs. A simplified version of this technique replaces the
expensive Grobner base computation with a direct generation
of polynomials representing circuit components [3]. However,
no practical method for deriving such large polynomials and
no systematic comparison against the specification have been
proposed. Other papers that follow the general ABL approach,
address the issue of debugging or functional verification in
some form or another, but they all require knowledge of the
circuit functionality [4]. Other Computer Algebra methods
have been introduced to model arithmetic components as poly-
nomials [5], [6] but they are mostly concerned with word-level
view of computation and as such are not directly applicable to
verifying arithmetic bit-level networks.

Traditional approach to check an arithmetic circuit against
its functional specification is based on canonical, graph-based
representations such as BDDs, BMDs, Taylor Expansion Di-
agrams (TED) [7], and others [8]. Application of BDDs to
verification of arithmetic circuits is limited by a high memory
requirement for complex arithmetic circuits, such as multipli-
ers. BDDs are being used, along with many other methods,
for local reasoning, but not as monolithic data structure [9]
[10]. BMDs and TEDs offer a linear space complexity but
require word-level information of the design, which is often
not available or is hard to extract from bit-level netlists. A
number of SAT solvers have been developed to solve generic
Boolean decision problems, including CryptoMiniSAT [11],
which specifically targets XOR-rich circuits, but they are all
based on a computationally expensive DPLL decision process.
Several techniques combine linear arithmetic constraints with
Boolean SAT in a unified algebraic domain [12] or use ILP to
model the modulo semantics of the arithmetic operators [13]
[14]. In general, ILP models are computationally expensive
and are not scalable. Some techniques combine a word-level
version of automatic test pattern generation (ATPG) and mod-
ular arithmetic constraint-solving techniques for the purpose
of test generation and assertion checking [15].



SMT solvers integrate different theories (Boolean logic,
linear integer arithmetic, etc.) into a DPLL-style SAT deci-
sion procedure [16]. However, in their current format, the
SMT tools are not efficient at solving decision problems that
appear in arithmetic circuits. Another approach to arithmetic
verification, particularly popular in industry, is based on The-
orem Provers, mostly for microprocessor verification [17] [9]
[10]. These are large, deductive systems for proving that an
implementation satisfies a specification, using mathematical
reasoning. The proof system is based on a large (and problem-
specific) database of axioms and inference rules, such as
simplification, rewriting, induction, etc. Some of the best
known theorem proving systems are: HOL, PVS, and Boyer-
Moore/ACL2. In general, these systems are highly interactive,
requiring extensive user guidance and expertise for efficient
use. The success of verification depends on the set of available
axioms, rewrite rules, and on the order in which they are
applied during the proof process, with no guarantee for a
conclusive answer. Similarly, term rewriting techniques, such
as [18], are incomplete, as they rely on simple rewriting rules
and use non-canonical representations.

An original approach to functional arithmetic verification
has been proposed in [19], where an arithmetic bit-level circuit
is described by a system of linear equations. The resulting
set of linear equations is then reduced to a single algebraic
expression (the “signature”) using Gaussian-like elimination
and linear algebra techniques to reason about functional cor-
rectness of the design. The difficulty faced by this method is
the case when not all internal signals can be eliminated from
the signature, resulting in a “residual expression”. In this case,
for the circuit to be functionally correct, the residual expression
must evaluate to zero. Proving this requires solving a separate
and difficult Boolean problem. In [1] the same problem is
solved by modeling the computation of an arithmetic function
as a flow of binary data, and representing it as algebraic
expression. The functional correctness is proved by showing
equivalence between the input and output signatures. In this
approach the issue of possible residual expression translates
into a simpler problem that can be solved using algebraic
methods.

B. Novelty and Contribution

In this work we extend the algebraic approach proposed
in [1] by modeling the problem as a network flow problem.
However, we solve a different problem, namely computing
(extracting) a unique arithmetic function implemented by the
circuit. The extracted function, in form of a unique polynomial
in Z/2n, can be compared to the known circuit functionality (if
available) and used to provide a bug trace or counterexample,
indicating for which set of primary inputs the output differs
from the expected one. In contrast to theorem provers and
traditional term rewriting techniques, which only address func-
tional equivalence and property checking, but not extraction
of functionality, the proposed method is complete. It is based
on a complete set of algebraic expressions describing internal
circuit modules, used as the rewriting rules. The result does not
depend on the order in which the rules are applied; the order
is fixed and unique. The method does not require expertise
in formal verification, can be fully automated, and terminates
with a conclusive answer. Furthermore, no assumption is made

about any structural similarity between the implementation and
the specification, required by commercial verification tools.

II. ARITHMETIC NETWORK MODEL

The circuit is represented as a network composed of two
parts: a non-linear block, typically used for partial product
generation and input recoding; and a linear network, which
operates on such preconditioned signals using a summation
tree. The result is encoded in an n-bit output. All arithmetic
circuits have this kind of structure with the nonlinear part being
relatively shallow. The linear part of the circuit is represented
as a network of standard arithmetic components (adders and
Boolean connectors), referred to as Arithmetic Boolean Level
(ABL) circuits. Several techniques are available to convert a
gate-level arithmetic circuit into such an ABL network [2],
although a highly bit-optimized arithmetic circuits may contain
a sizable number of logic gates that cannot be mapped onto
(half) adders. In principle, those gates will be modeled using
arithmetic operators, such as half adders, and described as
linear equations, as described in Section II-B. Figure 2 shows
a typical structure of such circuits.

A. Preliminaries

Arithmetic function computed by the circuit is expressed
as a polynomial in terms of the primary inputs (PI). We
refer to such a polynomial as input signature, denoted SigPI .
Such a polynomial uniquely describes an arithmetic function
computed by the circuit; it can be linear or nonlinear. For
example, the input signature of an n-bit binary adder with in-

puts {a0, · · · , an−1, b0, · · · , bn−1}, is SigPI =
∑n−1

i=0
2iai +∑n−1

i=0
2ibi, etc. Input signature for non-linear networks can

be similarly obtained. For example, input signature of a 2-
bit signed multiplier can be directly obtained from its high-
level specification: F = (−2a1 + a0)(−2b1 + b0) = 4a1b1 −
2a0b1 − 2a1b0 + a0b0. By substituting product terms by new
variables, x3 = a1b1, x2 = a1b0, x1 = a0b1, x0 = a0b0, we
obtain a linear input signature of the multiplier network in
terms of these fresh variables: SigPI = 4x3−2x2−2x1+x0.
The integer coefficients, called weights, wi, associated with
the corresponding signals, are uniquely determined by the
intended circuit function (specification). For example, in an
adder, w(ai) = w(bi) = 2i for inputs ai, bi at bit position i.

Similarly, the result computed by an arithmetic circuit
can be expressed as polynomial in the primary output (PO)
variables. We refer to such a polynomial as output signature,
SigPO. In contrast to the input signature, SigPO is always
linear as it represents a unique binary encoding of an integer
number computed by the circuit. For example, the output sig-
nature of a 2-bit signed multiplier with outputs S3, S2, S1, S0 is
SigPO = −8S3+4S2+2S1+S0. In general, output signature
of any arithmetic circuit with n output bits Si is represented

as SigPO =
∑n−1

i=0
2i Si. The PO weights are also unique,

defined by the known output encoding. Figure 2 shows an
example of a 3-bit signed multiplier, with a nonlinear product
generator block and a linear ABL structure. More complex
circuits, such as Booth multipliers, have similar structure but
are still relatively shallow compared to the summation network.

In this work we assume that the boundary between the
linear and nonlinear blocks is known (as in the multiplier



example above). However, it is possible to detect such a
boundary automatically using the signature rewriting scheme
adopted by the network-flow approach of [1]. The signals at
the boundary between the linear and nonlinear block will be
referred to as intermediate inputs, MI , and the corresponding
signature as intermediate signature, SigMI . For example, in
a 2-bit singed multiplier, mentioned earlier, SigMI = 4x3 −

2x2 − 2x1 + x0. Here, x3 = a1b1, x2 = a1b0, x1 = a0b1, and
x0 = a0b0, are outputs of the nonlinear block with primary
inputs a0, a1, b0, b1.

B. Algebraic Model

Each arithmetic or logic operator in the linear network is
modeled with a set of linear equations. The half-adder (HA)
with binary inputs a, b, and a full adder (FA) with binary
inputs a, b, c0 and outputs S (sum) and C (carry out) are
represented by:

HA : a+ b = 2C + S; FA : a+ b+ c0 = 2C + S (1)

Logic gates can be similarly derived from a half adder. An
XOR(a, b) is obtained as the sum output S of HA(a, b), and the
AND(a, b) as the carry-out output C of HA(a, b), as shown in
Figure 1(a). If only one gate (say an AND) is needed, the other
output (an XOR) is left unconnected. Such an unused signal is
called floating signal. The role of the floating signals in our
model is to pick up the “slack” in the flow, so that the used
output always assumes the correct binary values required by
the flow. An OR gate R is modeled as: OR : a+ b = 2R−S,
where S represents an unused, floating signal, see Fig. 1(b).
This model can often be simplified to OR∗ : a + b = R if
C = a · b = 0, see Fig. 1(c). This happens often in arithmetic
circuits whenever a, b come as reconvergent fanouts from the
C and S outputs of another HA, where they cannot be both
1. An inverter gate y =INV(x) is modeled by the equation:
x = 1− y.

Special attention must be given to fanouts; they are mod-
eled as dummy modules, called FBox, that do not compute
any arithmetic or logic function and simply replicate the signal
as needed. Signal x0 fanning out to x1, . . . xk is represented
by an FBox with inputs x0, xs and outputs x1, . . . xk , as
shown in Fig. 1(d). Here xs is a fanout slack variable added
to compensate for the difference between x1 + . . . xk and x0.
Fanout slack variables play the same role as floating signals,
except that they appear at the input to the fanout box.

By construction, each module of the linear network, de-
scribed by a linear equation, satisfies the Flow Conservation
Law (FCL). It simply states that weighted sum of the input
bits to the module is equal to the weighted sum at its output.
As such, the FCL also applies to the entire network [1].

III. COMPUTING INPUT SIGNATURE

The method for computing input signature is based on the
observation that in a functionally correct circuit the input and
output signatures must be equivalent, i.e., they must evaluate
to the same integer value for any integer input vector. For
the linear portion of the network, the problem is modeled
as a Network Flow Problem: the data is injected into input
bits and flows through the network to be collected at the
output bits. Such a network can be viewed as a transportation
network, distributing data according to the edge capacities,

a b

C S

a b

OR

2R −S

a b

OR∗

R

w0x0 wsxs

FB

w1x1 ...wkxk

(a) (b) (c) (d)

Fig. 1. Modeling logic gates: (a) C =AND(a, b), S =XOR(a, b), derived
from half-adder: a+b = 2C+S; (b) generic model for OR: a+b = 2R−S;
(c) simplified XOR* model: a+ b = R ; (d) model of fanout box.

here represented as signal weights. In the functionally correct
circuit, the total flow into the inputs, described by the input
signature, must be equal to the flow at the output of the
circuit, encoded by the output signature. As described in
[1], checking if a given circuit performs the given arithmetic
function reduces to checking equivalence between the two
signatures.

In this work, input signature SigPI is not known, and the
transformation is performed from the known output encoding
at the POs towards the PIs. Such a linear transformation
can only be done in the linear network up to the intermediate
inputs, MI„ at the boundary between the linear and nonlinear
block. Transformation from the intermediate inputs to the
primary inputs (PI) is then accomplished by a computing
algebraic expressions for each signal in MI , in terms of the
PIs. Each Boolean function in the logic cone of xi ∈ MI
is recursively replaced by its equivalent algebraic expression:
a′ = 1−a, a∧b = a·b, a∨b = a+b−a·b, a⊕b = a+b−2a·b,
up to the PI set. The resulting algebraic expressions are then
multiplied by the corresponding weight of the intermediate
signature and added to create a final, non-linear input signature.
In the case of the 2-bit signed multiplier, the intermediate linear
signature, SigMI = 4x3 − 2x2 − 2x1 + x0 is transformed into
a nonlinear input signature, SigPI = (−2a1+a0)(−2b1+ b0)
at their primary inputs, by substituting expressions for each
xi in terms of the PIs: a1, a0, b1, b0. The resulting input
signature then serves as the description of the arithmetic
function implemented by the circuit. Figure 2, to be discussed
later, illustrates this concept for a 3-bit signed multiplier.

A. Weight Computation

Input signature is computed by computing weights (integer
coefficients, wi,) associated with all the network signals,
including the floating signals and the fanout slacks. The weight
computation procedure uses a modified version of weight
propagation proposed in [1], adapted to the fact that input
signature is not known, and all the constraints on the weights
must be resolved using the output signature only. Weights must
satisfying the following compatibility rules, determined by the
algebraic models of the network components: all inputs to an
adder HA : a+b = 2C+S must have the same integer weight,
k, equal to the weight of the S output, while the output C of
the adder must have weight 2k. The weight of the output of
an OR∗ : a + b = R must be the same as its inputs, and the
weights of the outputs of an OR : a+ b = 2R−S must be 2k
and -1k, respectively. The weight of the inverter with output
weight k must have the input weight -k, etc.



Every time a weight is assigned to one of the outputs of the
network module, the weights of its input(s) and of the second
output (if applicable) are assigned values determined by the
respective compatibility rule. Computation of fanout weights,
represented by Fbox, requires special treatment, since the
fanout slack variable can take any value needed to satisfy the
flow conservation law (FCL). To solve this problem, additional
computation is invoked that relies on the fundamental FCL
theory, described in Section III-B. Basically, such weights need
to be computed using flow conservation law, expressed by
Equation 3, but applied locally to the cone of influence of
the signal under consideration. Specifically, computation of
fanout weight can only be done after: i) all floating signals
that have the fanout in their cone have their weights computed;
and ii) all components that take the fanout as input have their
weights resolved. The complexity of this process, which relies
on symbolic substitution using TED, increases in the worst
case exponentially, but only over a small part of the network
defined by the cone of influence.

The weight assignment process is illustrated with an ex-
ample of a 3-bit signed multiplier in Fig. 2. In the following,
we will use notation kxi to indicate that signal xi is assigned
weight k, as shown in the figure. Buffers, present in the figure,
are the artifact of converting the name of a signal into the
one needed at the input or output, and do not affect weight
propagation.

The assignment starts from the known weights of POs,
determined by the output encoding. The weights are processed
from the least significant bit to the most significant bit, and
are propagated upwards towards the MI inputs. In this case,
1x44 is connected through a buffer to signal x45, determining
its weight, 1x45. Next, signal 2x46 is propagated through a
buffer to 2x11 and up to HA0, imposing the assignment of
weights 2x9, 2x10 and 4x12. Propagation of of 4x47 similarly
assigns weights 4x21, 4x3 (further propagated to −4x4) and to
4x16 and 8x20, etc. Propagation of 8x48 through the inverter
INV7 assigns negative weights to all signals of HA9, including
the portion of −8x7 which also fans out to HA8, but with
weight +8x7 (sic). This apparent discrepancy is handled by
computing weight of the fanout slack variable, −8x7S, etc.
The correctness of fanout assignments will be verified using
the FCL rule, as explained in the next section.

The intermediate signature in terms of the MI signals,
computed by this weight propagation procedure is:

16x35−8x6−4x2+4x13−4x4+2x10+2x9−8x8+x45 (2)

B. Flow Conservation

It has been shown in [1] that a linear, arithmetic bit-level
circuit satisfies the Flow Conservation Law expressed by the
following condition:

SigMI +∆fn = SigPO +Σfl (3)

where ∆fn and Σfl are the weighted sums of the slack
fanouts and the floating signals, respectively, introduced in the
network. This condition basically states that any additional
flow into the network at the MI inputs, caused by fanouts,
must be compensated by the flow of the floating signals, which
do not reach outputs PO. The term SigMI represents signature
of intermediate signals, MI , which are inputs to the linear

−4

b2

2

b1

1

b0

−4

a2

2

a1

1

a0

NON-LINEAR BLOCK (G): Partial Product Generator {aibk}

16 −8 −4 4 −4 2 2 −8 1

x35 x6 x2 x13 x4 x10 x9 x8 x45

−8x32 −16x31

x50 x49 x48 x47 x46 x44

−8x7S−8x25S

−32 16 8 4 2 1

INV0 INV1 INV2 INV3 BUF4

1x44

BUF5

BUF6

INV7

BUF8

INV9

HA0

C S

HA1

C S

HA2

C S

HA3

C S

HA4

C S

HA5

C S

HA6

C S

HA7

C S

HA8

C S

HA9

C S

HA10

C S

HA11

C S

HA12

C S

FB1

FB2

8x25 −8x25

4x138x516x35 4x1 4x3 2x114x12 8x7

8x7

−8x78x7

4x148x15

8x17 4x16

8x20

8x20

8x22

4x21

16x24

8x23

8x25

16x26

16x29

16x34

−8x30

32x37

16x36

32x39 16x38

32x42

Fig. 2. Arithmetic bit-level network of a 3-bit signed multiplier.

portion of the network, and SigPO represents the signature at
the primary outputs, PO. The above condition also implies
that for SigPO to be equivalent to SigMI , one must satisfy
the relation

∆fn − Σfl = 0 (4)

Only then SigMI represents the sought after linear input



Fanouts

x 2 5

-8

x 7

ONE

Floats

-8

Sig(PI)

a 2

b 2

 -4

a 1

Sig(MI)

a 0

 1

ONE

 -4

b 1

 

 2

b 0

 1

 2

(a) (b)

Fig. 3. (a) TED showing equivalence between the floating signals and fanouts;
(b) Nonlinear signature of a 3-bit multiplier

signature. A naive way to prove this equality would be to
express ∆fn and Σfl, each, as a function of primary inputs and
prove that the resulting expression is zero. However, instead of
expressing ∆fn and Σfl as a function of primary inputs it is
sufficient to express Σfl in terms of the fanout variables only;
and then prove that Σfl = ∆fn in terms of the fanout signals.
This verification is simpler and can be done easily using TED.

In our 3-bit signed multiplier design, ∆fn = −8x7− 8x25

and Σfl = 8x32 − 16x31 are indeed equivalent, indicating
that the computed intermediate input signature, SigMI can be
trusted. This equivalence is demonstrated by the TED in Figure
3(a). Both terms, called Fanouts for ∆fn and Floats for
Σfl, expressed in terms of fanout variables, point to the same
canonical graph, clearly indicating that they are equivalent.

C. Computing Nonlinear Signature

Once the intermediate input signature SigMI of the linear
portion of the network has been computed, we are faced with
a task of transforming this signature into an input signature
SigPI at the primary inputs of the entire design. Recall that
SigMI is a linear pseudo Boolean function of the intermediate
signals xi ∈ MI , while SigPI is (in general) a nonlinear
polynomial function expressed in the primary inputs of the
design. The computed SigPI signature then describes the
complete functionality of the circuit. As mentioned earlier,
this task is achieved by transforming the computed signature
SigMI into the signature at the primary inputs, PI , by recur-
sively substituting variables in MI using respective algebraic
formulas for logic gates. In general, this process can be
computationally expensive, but the nonlinear blocks are usually
shallow and such a computation is very fast. This operation is
done readily using TED representation of polynomials [7].

We illustrate this process for the signed 3-bit multiplier in
Figure 2, whose intermediate input signature SigMI has been
already computed as (c.f. Eq.2).:

16x35 − 8x6 − 4x2 + 4x13 − 4x4 + 2x10 + 2x9 − 8x8 + x45

In this case, the nonlinear block contains only one level of
logic, composed of AND gates, but in general such a block

will have a more complex logic structure. TED representation
will be able to represent such computed input signature in a
canonical, normal factored form for arbitrarily complex logic
structure. The result is shown in Figure 3(b). As we can see,
the resulting function, encoded in factored form by the TED,
is

SigPI = (−4a2 + 2a1 + a0)(−4b2 + 2b1 + b0)

One can determine that this is a 3-bit signed multiplier,
provided that the condition ∆fn − Σfl = 0 is satisfied. This
condition is easily verified using TED, as explained earlier, and
is part of the entire process. In this case, ∆fn = −8x7− 8x25

and Σfl = 8x32 − 16x31 are equivalent, indicating that the
computed primary input signature, SigPI , can be trusted.

IV. RESULTS

The functional extraction technique described in this paper
has been implemented in Perl and integrated with the TDS
(TED-based decomposition) system [7] and tested on a set of
signed multipliers up to 56×56 bits. The current limitation is
dictated by the word size of the TDS system, and not by the
weight propagation and the actual verification algorithm and
can be improved by manipulating the exponents of the weights
instead of the integers (on-going work).

First, a structural Verilog code was generated for each
multiplier using a multiplier generator software [20]. The
Verilog code was parsed to transform the multiplier circuit into
a network of HA, FA and basic logic gates from which a set of
equations was generated in the required format. The process is
fully automated, and the CPU time includes all phases of the
process: computing signal weights; resolving fanout weights
using TED; checking FCL condition ∆fn − Σfl; generating
intermediate and final scripts for TED; and using TED to
compute the final input signature in factored form. In all
cases, the verification (which is an integral part of the system)
confirmed that the input and output signatures were equivalent,
so that the generated input signatures can be trusted. Using
the variable reorder function of the TED, which produced the
factored form of the signatures, we checked that the signatures
indeed corresponded to the respective multipliers.

The results of our experiments are shown in Fig. 4. The
experiments were run on an a PC with an Intel Core i7
processor @ 2.30 GHz and 7 GB memory. The complexity of
the algorithm is almost quadratic in the number of logic gates.
Specifically, asymptotic CPU runtime (computed using power
test on the experimental data) is O(n1.5) and memory usage is
O(n2), where n is the number of logic gates. Since most of the
research in this area has been done in the context of property
checking rather than a complete functional verification, we
could not find suitable data for comparison. Some new results
are available in Galois field arithmetic [21] that enjoy certain
properties that make the verification significantly easier than
for integer arithmetic in Z/2n.

V. CONCLUSIONS

The paper presents a novel idea of verifying an arithmetic
circuits by extracting the arithmetic function that it imple-
ments. It can be particularly useful in reverse engineering of
existing designs, to determine functions of arithmetic circuits
with incomplete or lost documentation, and with research in



Fig. 4. Extracting arithmetic function: CPU time and memory usage for
signed multipliers.

computer security. The method performs these tasks without
resorting to expensive Boolean or bit-blasting methods. We are
not aware of any other approach that addresses such defined
functional extraction problem in arithmetic circuits. Another
important application is identification and localization of bugs
in the design. This can be accomplished by analyzing areas
containing incompatible weights. Such errors may happen due
to miss-wiring, crossing, or missing wires, which will result
in violating the weight compatibility condition. It seems that
the module which violates the weight assignment and the
bit position that imposes a violating assignment may provide
important information about the bug location.

An obvious limitation of this method is the need to generate
an ABL network from an arbitrary gate-level arithmetic circuit,
which is in general difficult. Also, different mappings onto
ABL structure may result in a different set of floating and
fanout signals, which may affect a complexity of proving
relation (4). Nevertheless, we believe the method can find
applications in verifying new arithmetic circuit architectures
based on novel computer architecture algorithms, were the
design is already specified in terms of adder trees and relatively
few connecting gates. Future work will be devoted to extending
this idea to sequential circuits and floating point arithmetic.

ACKNOWLEDGMENT:
This work has been supported by a grant from the National
Science Foundation under award CCF-1319496.

REFERENCES

[1] M. Ciesielski, W. Brownn, and A. Rossi, “Arithmetic Bit-level Veri-
fication using Network Flow Model”, Haifa Verification Conference,
HVC’13, Nov. 2013, pp.327-343, Springer, LNCS 8244.

[2] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel, “An
Algebraic Approach for Proving Data Correctness in Arithmetic Data
Paths,” Proc. ICCAD, July 2008, pp. 473–486

[3] E. Pavlenko, M. Wedler, D. Stoffel, and W. Kunz, “STABLE: A new
QF-BV SMT Solver for hard Verification Problems combining Boolean
Reasoning with Computer Algebra,” Proc. Design Automation and Test

in Europe, 2011, pp. 155-160.

[4] O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. Fyjita, “A Formal
Approach to for Debugging Arithmetic Circuits” IEEE Trans. on CAD

(TCAD), pp. 742-754, May 2009.

[5] T. Raudvere, A. K. Singh, I. Sander, and A. Jantsch, “System Level Veri-
fication of Digital Signal Processing application based on the Polynomial
Abstraction Technique,” Proc. ICCAD, 2005, pp. 285–290.

[6] N. Shekhar, P. Kalla, and F. Enescu, “Equivalence Verification of
Polynomial Data-Paths Using Ideal Membership Testing,” in IEEE Trans.

on Computer-Aided Design, July 2007, vol.26, pp. 1320–1330.

[7] M. Ciesielski, D. Gomez-Prado, Q. Ren, J. Guillot, and E. Boutillon,
“Optimization of Dataflow Computation using Canonical TED Repre-
sentation,” IEEE Transactions on Computer Aided Design of Integrated

Circuits and Systems, vol. 28, no. 9, pp. 1321–1333, Sept. 2009.

[8] D.K. Pradhan, and I.G. Harris, ed., "Practical Design Verification",
Cambridge University Press, 2009.

[9] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S.
Pandav, A. Slobodova, C. Taylor, V. Frolov, E. Reeber, and A. Naik
“Replacing Testing with Formal Verification in Intel Core i7 Processor
Execution Engine Validation” CAV 2009, LNCS 5643, pp. 414âĂŞ429,
2009.

[10] C-J.H. Seger, R.B. Jones, J.W. OâĂŹLeary, T. Melham, M.D. Aagaard,
C. Barrett, and D. Syme, “An Industrially Effective Environment for
Formal Hardware Verification”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 9 (September
2005), pp. 1381âĂŞ1405.

[11] M. Soos, “Enhanced Gaussian Elimination in DPLL-based SAT
Solvers”, Pragmatics of SAT, 2010.

[12] F. Fallah, S. Devadas, and K. Keutzer, “Functional Vector Generation
for HDL Models using Linear Programming and 3-Satisfiability,” Proc.

Design Automation Conference, 1998, pp. 528–533.

[13] R. Brinkmann and R. Drechsler, “RTL-Datapath Verification using
Integer Linear Programming,” Proc. ASPDAC, 2002, pp. 741–746.

[14] Z. Zeng, K. Talupuru, and M. Ciesielski, “Functional Test Generation
based on Word-level SAT,” J. Systems Architecture, Elsevier. Aug. 2005,
vol. 5, pp. 488–511.

[15] C.-Y. Huang and K.-T. Cheng, “Using Word-level ATPG and Modular
Arithmetic Constraint-Solving Techniques for Assertion Property Check-
ing,” IEEE Trans. on CAD, vol. 20, no. 3, pp. 381–391, March 2001.

[16] A. Biere, M. Heule, H. V. Maaren, and T. Walsch, Satisfiability Modulo

Theories in Handbook of Satisfiability, IOS Press, 2008, Chapter 12.

[17] A. Slobodova, “A Flexible Formal Verification Framework”, MEM-
CODE 2011.

[18] S. Vasudevan, V. Viswanath, R. W. Sumners, and J. A. Abraham,
“Automatic Verification of Arithmetic Circuits in RTL using Stepwise
Refinement of Term Rewriting Systems,” in IEEE Trans. on Computers,
2007, vol. 56, pp. 1401–1414.

[19] M. A. Basith, T. Ahmad, A. Rossi, and M. Ciesielski, “Algebraic
Approach to Arithmetic Design Verification,” Formal Methods in CAD,
2011, pp. 67–71.

[20] M. Wedler, Univ. Kaiserslautern, MultGen software, 2010.

[21] J. Lv, P. Kalla, and F. Enescu, “Efficient Grobner Basis Reductions for
Formal Verification of Galois Field Arithmatic Circuits,” IEEE Trans.

on CAD, vol. 32, no. 9, pp. 1409–1420, September 2013.


