
1

Taylor Expansion Diagrams: A Canonical Representation for

Verification of Data Flow Designs

Maciej Ciesielski1, Priyank Kalla2, Serkan Askar1

1Department of Electrical and Computer Engineering

University of Massachusetts, Amherst, MA-01003

2Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT 84112

Accepted for publication in IEEE Transactions on Computers

TC-0118-0404

April 28, 2006

This work has been supported by a grant from the National Sci-
ence Foundation, CCR-0204146, and in part by the international
NSF/CNRS/DAAD supplement grant, INT-0233206.

Abstract—
Taylor Expansion Diagram (TED) is a compact, word-

level, canonical representation for data flow computations
that can be expressed as multi-variate polynomials. TEDs
are based on a decomposition scheme using Taylor series
expansion that allows to model word-level signals as alge-
braic symbols. This power of abstraction, combined with
canonicity and compactness of TED, makes it applicable to
equivalence verification of dataflow designs. The paper de-
scribes the theory of TEDs and proves their canonicity. It
shows how to construct a TED from a HDL design specifi-
cation and discusses application of TEDs in proving equiv-
alence of such designs. Experiments were performed with a
variety of designs to observe the potential and limitations of
TEDs for dataflow design verification. Application of TEDs
to algorithmic and behavioral verification is demonstrated.

I. Introduction

Design verification is the process of ensuring the correctness of de-
signs described at different levels of abstraction during various stages
of the design process. Continuous increase in the size and complexity
of digital systems has made it essential to address verification issues
at early stages of the design cycle. Identification of errors early in the
design process can significantly expedite time-to-market and make the
design and verification process more efficient. To address this prob-
lem, robust, automated verification tools that can handle designs at
higher levels of abstraction, such as at behavioral and algorithmic
levels, need to be developed.

Having matured over the years, formal design verification meth-
ods, such as theorem proving, property and model checking, equiv-
alence checking, etc., have found increasing application in industry.
Canonic graph-based representations, such as Binary Decision Dia-
grams (BDDs) [1], Binary Moment Diagrams (BMDs) [2] and their
variants (PHDDs [3], K*BMDs [4], etc.) play an important role in
the development of computer-aided verification tools. In particular,
these representations have been be used to model RTL designs and
prove their equivalence at the bit level. However, these representa-
tions are limited in their ability to represent algebraic computations
in abstract, higher-level, symbolic forms.

This motivated us to derive a new representation for high-level
design descriptions, termed Taylor Expansion Diagrams (TEDs).
This representation is particularly suited for modeling and supporting
equivalence verification of designs specified at the behavioral level [5]
[6]. Similar to BDDs and BMDs, TED is a canonical, graph-based
representation. In contrast to BDDs and BMDs, TED is based on a
non-binary decomposition principle, modeled along the Taylor’s series
expansion [7], [8]. With this new data structure, word-level signals
are represented as algebraic symbols, raising the level of abstraction

of the design to higher levels. The power of abstraction of TEDs
allows one to represent behavioral dataflow designs efficiently, with
memory requirements several orders of magnitude smaller than those
of other known representations.

TEDs are applicable to modeling, symbolic simulation and equiv-
alence verification of dataflow and algorithm-dominant designs, such
as digital signal processing for audio, video and multimedia appli-
cations and embedded systems. Computations performed by those
designs can often be modeled as polynomials and readily be repre-
sented with TEDs. The test for functional equivalence is then per-
formed by checking isomorphism of the resulting graphs. While appli-
cation of TEDs is limited to those designs whose computations can be
expressed as multi-variate polynomials, their use for algorithmic ver-
ification is particularly appealing. Experimental results confirm the
potential of TEDs for equivalence verification of dataflow oriented
designs at behavioral and algorithmic levels.

The paper is organized as follows. Section II reviews contemporary
canonic representations and discusses their limitations. A complete
theory of TED is described in Section III. The composition operations
and analysis of their complexity are presented in Section IV, while
Section V describes the construction of TEDs for RTL designs and
discusses their limitations. Section VI describes the implementation
of the TED package along with some experimental results. Finally,
Section VII concludes the paper with comments and directions for
future work.

II. Review of Previous Work

In the realm of high-level design verification, the issue of abstrac-
tion of symbolic, word-level computations have received a lot of atten-
tion. This is visible in theorem-proving techniques, automated deci-
sion procedures for Presburger arithmetic [9] [10], techniques using al-
gebraic manipulation [11], symbolic simulation [12], or in the decision
procedures that use “a combination of theories” [13] [14], etc. Term
re-writing systems, particularly those used for hardware verification
[15] [16] [17], etc., also represent computations in high-level sym-
bolic forms. The above representations and verification techniques,
however, do not rely on canonical forms. For example, verification
techniques using term rewriting are based on rewrite rules that lead
to normal forms. Such forms may produce false negatives, which may
be difficult to analyze and resolve. In contrast, the TED representa-
tion proposed in this paper not only abstracts bit-vector arithmetic
computations as polynomials, but also represents them canonically.

Various forms of high-level logics have been used to represent
and verify high-level design specifications. Such representations are
mostly based on quantifier free fragments of first order logic. The
works that deserve particular mention include: the logic of equal-
ity with uninterpreted functions (EUF) [18] and with memories
(PEUFM) [19] [20], and the logic of counter arithmetic with lambda
expressions and uninterpreted functions (CLU) [21]. To avoid expo-
nential explosion of BDDs, equivalence verification is generally per-
formed by transforming high-level logic description of the design into
propositional logic formulas [21] [14] [19] and employing satisfiabil-

2

ity tools [22] [23] for testing the validity of the formulas. While these
techniques have been successful in the verification of control logic and
pipelined microprocessors, they have found limited application in the
verification of large data-path designs.

Word-Level ATPG techniques [24] [25] [26] [27] [28] have also been
used for RTL and behavioral verification. However, their applications
are generally geared toward simulation, functional vector generation
or assertion property checking, but not so much toward high-level
equivalence verification of arithmetic datapaths.

A. Decision Diagram Based Representations

Reduced Ordered Binary Decision Diagrams (ROBDDs, or BDDs
for short) [1], along with their efficient implementation as software
packages [29], are credited with significantly increasing the efficiency
of equivalence checking for logic designs. BDD represents a set of
binary valued decisions in a rooted directed acyclic graph (DAG),
based on a recursive Shannon decomposition. This decomposition,
combined with a set of reduction rules, makes the resulting diagram
minimal and canonical for a given ordering of variables [1].

BDDs have found wide application in a number of verification prob-
lems, including combinational equivalence checking [30], implicit state
enumeration [31], symbolic model checking [32] [33], etc. However,
as the designs have grown in size and complexity, the size-explosion
problems of BDDs have limited their scope. Most BDD-based veri-
fication systems, such as SMV [33] and VIS [34], have been success-
ful in verifying control-dominated applications. However, for designs
containing large arithmetic data-path units, BDDs have not been
very successful due to prohibitive memory requirements, especially
for large multipliers.

Numerous attempts have been made to extend the capabili-
ties of verification engines to target arithmetic units. Majority of
these methods are based on generic Word Level Decision Diagrams
(WLDDs), graph-based representations for functions with a Boolean
domain and an integer range. Most of the WLDD representations
are based on a point-wise, or binary decomposition principle. Differ-
ent flavors of Boolean decomposition (Shannon, Davio, Reed-Muller,
etc.) are used to decompose functions w.r.t. their bit-level variables,
leading to different Decision Diagrams. In addition to BDDs [1] and
Partitioned BDDs [35], they include edge-valued BDDs (EVBDDs)
[36], and functional decision diagrams (FDDs, KFDDs) [37] [38]. By
extending BDDs to allow numeric leaf values point-wise decomposi-
tion leads to different Multi-terminal BDDs, or MTBDDs [39], and
Algebraic Decision Diagrams (ADDs) [40]. However, the decomposi-
tion at each variable is still binary. As a result, a linear increase in
the size of input variables results, in the worst case, in an exponen-
tial increase in the size of decision diagrams. A thorough review of
WLDDs can be found in [41].

B. Moment Diagram Based Representations

Binary Moment Diagrams, BMDs, *BMDs [2], and their deriva-
tives (PHDDs [42], K*BMD [4], etc.), depart from a point-wise de-
composition and perform a decomposition of a linear function based
on its first two moments. BMD uses a modified Shannon’s ex-
pansion, in which a binary variable is treated as a (0,1) integer:
f(x) = x · fx + x′ · fx′ = x · fx + (1 − x) · fx = fx + x · (fx − fx)
where “·”, “+” and “-” denote algebraic multiplication, addition and
subtraction, respectively. The above decomposition is termed as mo-
ment decomposition, where (fx−fx) is the linear moment and fx the
constant moment. In this form, f can be viewed as a linear function
in its variables x, and (fx − fx) as the partial derivative of f with
respect to x.

Binary moment diagrams provide a concise representation of
integer-valued functions defined over bit vectors (words), X =∑

i
2ixi, where each xi is a binary variable. The binary moment de-

composition is recursively applied to each variable xi. In such defined
BMD, multiplicative constants reside in the terminal nodes. The con-
stants can also be represented as multiplicative terms and assigned to
the edges of the graph, giving a rise to Multiplicative Binary Moment
Diagram, or *BMD [2]. An example of such a diagram is depicted in
the left part of Fig. 1. Several rules for manipulating edge weights
are imposed on the graph to allow the graph to be canonical. For
linear and multi-linear expressions *BMD representation is linear in
the number of variables. However, the size of *BMD for Xk, where
X is an n-bit vector, is O(nk). Thus, for high-degree polynomials

defined over words with large bit-width, as commonly encountered in
many DSP applications, *BMD remains an expensive representation.

K*BMD [4] attempts to make the BMD decomposition more effi-
cient in terms of the graph size. This is done by admitting multiple
decomposition types, such as Davio, Shannon, etc., to be used in a sin-
gle graph, and allowing both the multiplicative and additive weights
assigned to the graph edges. However, a set of restrictions imposed
on the edge weights to make it canonical makes such a graph difficult
to construct.

C. Symbolic Algebra Methods

Many computations encountered in behavioral design specifica-
tions, can be represented in terms of polynomials. This includes
digital signal and image processing designs, digital filter designs, and
many designs that employ complex transformations, such as DCT,
DFT, FFT, etc. Polynomial representations of discrete functions have
been explored in literature long before the advent of contemporary
canonical graph-based representations. Particularly, Taylor’s expan-
sion of Boolean functions has been studied in [43] [44]. However, these
works mostly targeted classical switching theory problems: logic min-
imization, functional decomposition, fault detection, etc. The issue
of abstraction of bit-vectors and symbolic representation of compu-
tations for high-level synthesis and formal verification was not their
focus.

Polynomial models of high-level design specifications have been
used recently in the context of behavioral synthesis for the purpose
of component mapping [45], [46], [47]. A polynomial representation
is created for each component (operator) from the library and the
polynomials are matched by comparing their coefficients. However,
storing and comparing large matrices of such coefficients is ineffi-
cient for large multi-variate polynomials. The TED representation
described in this paper can provide a more robust data structure for
performing these tasks efficiently, due to its compact and canonical
structure.

Several commercial symbolic algebra tools, such as Maple [48],
Mathematica [49], and MatLab [50], use advanced symbolic algebra
methods to perform efficient manipulation of mathematical expres-
sions. These tools have also been used for the purpose of polynomial
mapping, namely to perform simplification modulo polynomial [47].
However, despite the unquestionable effectiveness and robustness of
these methods for classical mathematical applications, they are less
effective in modeling of large scale digital circuits and systems. We
believe that these methods can benefit from canonical representations
such as TED, in particular for component matching and equivalence
checking.

It is interesting to note that symbolic algebra tools offered by
Mathematica and alike cannot unequivocally determine the equiv-
alence of two polynomials. The equivalence is checked by subject-
ing each polynomial to a series of expand operations and comparing
the coefficients of the two polynomials ordered lexicographically. As
stated in the manual of Mathematica 5, Section 2.3.1, “there is no
general way to find out whether an arbitrary pair of mathematical ex-
pressions are equal” [49]. Furthermore, Mathematica “cannot guar-
antee that any finite sequence of transformations will take any two
arbitrarily chosen expressions to a standard form.” (Mathematica 5,
Section 2.62). In contrast, the TED data structure described in the
sequel provides an important support for equivalence verification by
offering a canonical representation for multi-variate polynomials.

III. Taylor Expansion Diagrams

A known limitation of all decision and moment diagram repre-
sentations is that word-level computations, such as A + B, require
the decomposition of the function with respect to bit-level variables
A[k],B[k]. Such an expansion creates a large number of variables
in the respective diagram framework and requires excessive memory
and time to operate upon them. In order to efficiently represent and
process the HDL description of a large design, it is desirable to treat
the word-level variables as algebraic symbols, expanding them into
their bit-level components only when necessary.

Consider the *BMD for A · B, shown in Fig. 1 (a), which depicts
the decomposition with respect to the bits of A and B. It would be
desirable to group the nodes corresponding to the individual bits of
these variables to abstract the integer variables they represent, and
use the abstracted variables directly in the design. Fig. 1 depicts the

3

B[0:2]

A[0:2]

0 110

b2

b1

b0

a2

2
1

4

a0

a1 4
2

1 *BMD: A*B

4a2 + 2a1 + a0 => A[0:2]

4b2 + 2b1 + b0 => B[0:2]
TED: A*B

Fig. 1. Abstraction of bit-level variables into algebraic symbols for
F = A · B.

idea of such a symbolic abstraction of variables from their bit-level
components.

In order to achieve the type of abstracted representation depicted
above, one can rewrite the moment decomposition f = fx+x·(fx−fx)

as f = f(x = 0) + x ·
∂(f)
∂x

. This equation resembles a truncated
Taylor series expansion of the linear function f with respect to x. By
allowing x to take integer values, the binary moment decomposition
can be generalized to a Taylor’s series expansion. This way one can
represent integer variables without expanding them into bits.

A. The Taylor Series Expansion

Let f(x) be a continuous, differentiable function defined over the
domain R of real variables. The Taylor series expansion of f w.r.t.
variable x at an initial point, x0 = 0, is represented as follows [8]:

f(x) =

∞∑

k=0

1

k!
(x−x0)kfk(x0) = f(0)+xf ′(0)+

1

2
x2f ′′(0)+.... (1)

where f ′(x0), f ′′(x0), etc., are first, second, and higher order deriva-
tives of f with respect to x, evaluated at x0 = 0. The Taylor series
expansion can be suitably adapted to represent computations over
integer and Boolean variables, as commonly encountered in HDL de-
scriptions. Arithmetic functions and dataflow portions of those de-
signs, can be expressed as multi-variate polynomials of finite degree
for which Taylor series is finite.

Let f(x, y, . . .) be a real differentiable function in variables
{x, y, . . .}. Assume an algebra (R, ·,+) over real numbers R. Us-
ing the Taylor series expansion with respect to a variable x, function
f can be represented as: f(x, y, . . .) = f(x = 0, y, · · ·) + xf ′(x =
0, y, · · ·)+ 1

2
x2f”(x = 0, y, · · ·)+ The derivatives of f evaluated at

x = 0 are independent of variable x, and can be further decomposed
w.r.t. the remaining variables, one variable at a time. The result-
ing recursive decomposition can be represented by a decomposition
diagram, called the Taylor Expansion Diagram, or TED.

Definition III.1: The Taylor Expansion Diagram, or TED,
is a directed acyclic graph (Φ, V,E, T), representing a multi-variate
polynomial expression Φ. V is the set of nodes, E is the set of directed
edges, and T is the set of terminal nodes in the graph. Every node
v ∈ V has an index var(v) which identifies the decomposing variable.
The function at node v is determined by the Taylor series expansion
at x = var(v) = 0, according to equation 1. The number of edges em-
anating from node v is equal to the number of nonempty derivatives
of f (including f(0)) w.r.t. variable var(v). Each edge points to a
subgraph whose function evaluates to the respective derivative of the
function with respect to var(v). Each subgraph is recursively defined
as TED w.r.t. the remaining variables. Terminal nodes evaluate to
constants.

Starting from the root, the decomposition is applied recursively
to the subsequent children nodes. The internal nodes are in one-
to-one correspondence with the successive derivatives of function f
w.r.t. variable x evaluated at x = 0. Figure 2 depicts one-level
decomposition of function f at variable x. The k-th derivative of a
function rooted at node v with var(v) = x is referred to as a k-child
of v; f(x=0) is a 0-child, f ′(x=0) is a 1-child, 1

2!
f ′′(x=0) is a 2-child,

etc. We shall also refer to the corresponding arcs as 0-edge (dotted),
1-edge (solid), 2-edge (double), etc.

x2
x3

x

1 x

v
...

f

f(0) f’(0) f"(0)/2

f‘"(0)/3!

Fig. 2. A decomposition node in a TED.

Example: Figure 3 shows the construction of a TED for the alge-
braic expression F = (A+B)(A+2C) = A2+A·(B+2·C+2·B·C). Let
the ordering of variables be A,B, C. The decomposition is performed
first with respect to variable A. The constant term of the Taylor ex-
pansion F (A = 0) = 2 ·B ·C. The linear term of the expansion gives
F ′(A = 0) = B+2·C; the quadratic term is 1

2
·F ′′(A = 0) = 1

2
·2 = 1.

This decomposition is depicted in Fig. 3 (a). Now the Taylor series
expansion is applied recursively to the resulting terms with respect
to variable B, as shown in Fig. 3(b), and subsequently with respect
to variable C. The resulting diagram is depicted in Fig. 3(c), and
its final reduced and normalized version (to be explained in Section
III-B) is shown in Fig. 3(d). The function encoded by the TED can
be evaluated by adding all the paths from non-zero terminal nodes to
the root, each path being a product of the variables in their respective
powers and the edge weights, resulting in F = A2+AB+2AC+2BC.

Using the terminology of computer algebra [51], TED employs
a sparse recursive representation, where a multivariate polynomial
p(x1, · · · , xn) is represented as:

p(x1, · · · , xn) =

m∑

i=0

pi(x1, · · · , xn−1)xi
n (2)

The individual polynomials pi(x1, · · · , xn−1) can be viewed as “coef-
ficients” of the leading variable xn at the decomposition level corre-
sponding to xn. By construction, the sparse form stores only non-zero
polynomials as the nodes of the TED.

B. Reduction and Normalization

It is possible to further reduce the size of an ordered TED by a
process of TED reduction and normalization. Analogous to BDDs
and *BMDs, Taylor Expansion Diagrams can be reduced by remov-
ing redundant nodes and merging isomorphic subgraphs. In general,
a node is redundant if it can be removed from the graph, and its
incoming edges can be redirected to the nodes pointed to by the out-
going edges of the node, without changing the function represented
by the diagram.

Definition III.2: A TED node is redundant if all of its non-0
edges are connected to terminal 0.
If node v contains only a constant term (0-edge), the function com-
puted at that node does not depend on the variable var(v), associated
with the node. Moreover, if all the edges at node v point to the ter-
minal node 0, the function computed at the node evaluates to zero.
In both cases, the parent of node v is reconnected to the 0-child of v,
as depicted in Fig. 4.

u

v

0

y

x

uy

Fig. 4. Removal of redundant node with only a constant term edge.

Identification and merging of isomorphic subgraphs in a TED are
analogous to that of BDDs and *BMDs. Two TEDs are considered
isomorphic if they match in both their structure and their attributes;
i.e. if there is a one-to-one mapping between the vertex sets and the
edge sets of the two graphs that preserve vertex adjacency, edge labels
and terminal leaf values. By construction, two isomorphic TEDs
represent the same function.

4

A

1

F’(A=0) = B + 2C

F(A=0) = 2BC

1

A

B

0

B

2C

1

A

B

0

B

C

2

A

B

0

B

C

1
2

(a)

1/2 F’’(A=0) = 1

(b) (d)(c)

Fig. 3. Construction of a TED for F = (A + B)(A + 2C): (a)-(c) decomposition w.r.t. individual variables; (d) normalized TED

In order to make the TED canonical, any redundancy in the graph
must be eliminated and the graph must be reduced. The reduction
process entails merging the isomorphic sub-graphs and removing re-
dundant nodes.

Definition III.3: A Taylor expansion diagram is reduced if it
contains no redundant nodes and has no distinct vertices v and v′,
such that the subgraphs rooted at v and v′ are isomorphic. In other
words, each node of the reduced TED must be unique.

It is possible to further reduce the graph by performing a procedure
called normalization, similar to the one described for *BMDs [2]. The
normalization procedure starts by moving the numeric values from
the non-zero terminal nodes to the terminal edges, where they are
assigned as edge weights. This is shown in Fig. 3(d) and Fig. 5(b). By
doing this, the terminal node holds constant 1. This operation applies
to all terminal edges with terminal nodes holding values different than
1 or 0. As a result, only terminal nodes 1 and 0 are needed in the
graph. The weights at the terminal edges may by further propagated
to the upper edges of the graph, depending on their relative values.
The TED normalization process that accomplishes this is defined as
follows.

Definition III.4: A reduced, ordered TED representation is nor-
malized when:
• The weights assigned to the edges spanning out of a given node are
relatively prime.
• Numeric value 0 appears only in the terminal nodes.
• The graph contains no more than two terminal nodes, one each
for 0 and 1.
By ensuring that the weights assigned to the edges spanning out of
a node are relatively prime, the extraction of common subgraphs is
enabled. Enforcing the rule that none of the edges be allowed zero
weight is required for the canonization of the diagram. When all the
edge weights have been propagated up to the edges, only the value 0
and 1 can reside in the terminal nodes.

The normalization of the TED representation is illustrated by an
example in Fig. 5. First, as shown in Fig. 5(b), the constants (6,
5) are moved from terminal nodes to terminal edges. These weights
are then propagated up along the linear edges to the edges rooted
at nodes associated with variable B, see Fig. 5(c). At this point the
isomorphic subgraphs (B+C) are identified at the nodes of B and the
graph is subsequently reduced by merging the isomorphic subgraphs,
as shown in Fig. 5(d).

It can be shown that normalization operation can reduce the size
of a TED exponentially. Conversely, transforming a normalized TED
to a non-normalized TED can, in the worst-case, result in an expo-
nential increase in the graph size. This result follows directly from
the concepts of normalization of BMDs to *BMDs [2].

C. Canonicity of Taylor Expansion Diagrams

It now remains to be shown that an ordered, reduced and normal-
ized Taylor Expansion Diagram is canonical; i.e. for a fixed ordering
of variables, any algebraic expression is represented by a unique re-
duced, ordered and normalized TED. First, we recall the following
Taylor’s Theorem, proved in [8].

Theorem 1 (Taylor’s Theorem [8]) Let f(x) be a polynomial func-
tion in the domain R, and let x = x0 be any point in R. There
exists one and only one unique Taylor’s series with center x0 that
represents f(x) according to the equation 1.
The above theorem states the uniqueness of the Taylor’s series rep-
resentation of a function, evaluated at a particular point (in our case
at x = 0). This is a direct consequence of the fact that the succes-
sive derivatives of a function evaluated at a point are unique. Using

the Taylor’s theorem and the properties of reduced and normalized
TEDs, it can be shown that an ordered, reduced and normalized TED
is canonical.

Theorem 2: For any multivariate polynomial f with integer coef-
ficients, there is a unique (up to isomorphism) ordered, reduced and
normalized Taylor Expansion Diagram denoting f , and any other
Taylor Expansion Diagram for f contains more vertices. In other
words, an ordered, reduced and normalized TED is minimal and
canonical.
Proof: The proof of this theorem follows directly the arguments used
to prove the canonicity and minimality of BDDs [1] and *BMDs [2].
Uniqueness. First, a reduced TED has no trivial redundancies; the
redundant nodes are eliminated by the reduce operation. Similarly, a
reduced TED does not contain any isomorphic subgraphs. Moreover,
after the normalization step, all common subexpressions are shared
by further application of the reduce operation. By virtue of the Tay-
lor’s Theorem all the nodes in an ordered, reduced and normalized
TED are unique and distinguished.
Canonicity. We now show that the individual Taylor expansion
terms, evaluated recursively, are uniquely represented by the internal
nodes of the TED. First, for polynomial functions the Taylor series
expansion at a given point is finite and, according to the Taylor’s The-
orem, the series is unique. Moreover, each term in the Taylor’s series
corresponds to the successive derivatives of the function evaluated at
that point. By definition, the derivative of a differentiable function
evaluated at a particular point is also unique. Since the nodes in
the TED correspond to the recursively computed derivatives, every
node in the diagram uniquely represents the function computed at
that node. Since every node in an ordered, reduced and normalized
TED is distinguished and it uniquely represents a function, the Taylor
Expansion Diagram is canonical.

Minimality. We now show that a reduced, ordered and normalized
TED is also minimal. This can be proved by contradiction. Let G be
a graph corresponding to a reduced, normalized and hence canonical
TED representation of a function f . Assume there exists another
graph G′, with the same variable order as in G, representing f that
is smaller in size than G. This would imply that graph G could be
reduced to G′ by the application of reduce and normalize operations.
However, this is not possible as G is a reduced and normalized rep-
resentation and contains no redundancies. The sharing of identical
terms across different decomposition levels in the graph G has been
captured by the reduction operation. Thus G′ cannot have a repre-
sentation for f with fewer nodes than G. Hence G is a minimal and
canonical representation for f . 2

D. Complexity of Taylor Expansion Diagrams

Let us now analyze the worst-case size complexity of an ordered
and reduced Taylor Expansion Diagram. For a polynomial function
of degree k, decomposition with respect to a variable can produce
k+1 distinct Taylor expansion terms in the worst-case.

Theorem 3: Let f be a polynomial in n variables and maximum
degree k. In the worst case, the ordered, reduced, normalized Taylor
Expansion Diagram for f requires O(kn−1) nodes and O(kn) edges.
Proof: The top-level contains only one node, corresponding to the
first variable. Since its maximum degree is k, the number of distinct
children nodes at the second level is bounded by k+1. Similarly, each
of the nodes at this level produces up to k + 1 children nodes at the
next level, giving a rise to (k+1)2 nodes, and so on. In the worst case
the number of children increases in geometric progression, with the
level i containing up to (k + 1)i−1 nodes. For an n-variable function,

5

1 0 1 0 1

C

A

B
5

56

6

1 0 1 0 1

C

A

B
6 5

0

(A +5A+6)(B+C)22A (B+C)+5A(B+C)+6(B+C)

0 1

C

A

B

6 0 5

B

C

1

A

6 5 1

(d)(c)(b)(a)

Fig. 5. Normalization of the TED for F = (A2 + 5A + 6)(B + C)

there will be n-1 such levels, with the n-th level containing just two
terminal nodes, 1 and 0. Hence the total number of internal nodes in

the graph is N =
∑n−1

i=0
(k+1)i =

(k+1)n
−1

k
. The number of edges E

can be similarly computed as E =
∑n

i=1
(k + 1)i =

(k+1)n+1
−1

k
− 1,

since there may be up to (k + 1)n terminal edges leading to the 0
and 1 nodes. Thus, in the worst-case, the total number of internal
nodes required to represent an n-variable polynomial with degree k
is O(kn−1) and the number of edges is O(kn). 2

One should keep in mind, however, that the TED variables rep-
resent symbolic, word-level signals, and the number of such signals
in the design is significantly smaller than the number of bits in the
bit-level representation. Subsequently, even an exponential size of the
polynomial with a relatively small number of such variables may be
acceptable. Moreover, for many practical designs the complexity is
not exponential.

Finally, let us consider the TED representation for functions with

variables encoded as n-bit vectors, X =
∑n−1

i=0
2ixi. For linear ex-

pressions, the space complexity of TED is linear in the number of
bits n, the same as *BMD. For polynomials of degree k ≥ 2, such as
X2, etc., the size of *BMD representation grows polynomially with
the number of bits, as O(nk). For K*BMD the representation also
becomes nonlinear, with complexity O(nk−1), for polynomials of de-
gree k ≥ 3. However, for ordered, reduced and normalized TEDs, the
graph remains linear in the number of bits, namely O(n · k), for any
degree k, as stated in the following theorem.

Theorem 4: Consider variable X encoded as an n-bit vector, X =∑n−1

i=0
2ixi. The number of internal TED nodes required to represent

Xk in terms of bits xi, is k(n − 1) + 1.

Proof: We shall first illustrate it for the quadratic case k = 2.

Let Wn be an n-bit representation of X: X = Wn =
∑n−1

i=0
2ixi =

2(n−1)xn−1 + Wn−1 where Wn−1 =
∑n−2

i=0
2ixi is the part of X

containing the lower (n-1) bits. With that, W 2
n = (2n−1xn−1 +

Wn−1)2 = 22(n−1)x2
n−1 + 2nxn−1Wn−1 + W 2

n−1. Furthermore,

let Wn−1 = (2n−2xn−2 + Wn−2), and W 2
n−1 = (22(n−2)x2

n−2 +

2n−1xn−2Wn−2 + W 2
n−2).

Notice that the constant term (0-edge) of Wn−1 w.r.to variable
xn−2 contains the term Wn−2, while the linear term (1-edge) of W 2

n−1

contains 2n−1Wn−2. This means that the term Wn−2 can be shared
at this decomposition level by two different parents.As a result, there
are exactly two non-constant terms, Wn−2 and W 2

n−2 at this level.

n2

22(n−1)

Wn−1
2 Wn−1

1
n−1x

n−2x

nW2

Wn−1
2 Wn−1

1

1
22(n−2)

Wn−2
2

n2

22(n−1)

1

Wn−2

nW2 n−1x

n−2x

n−3x

n−12 n−22

Fig. 6. Construction of TED for X2 with n bits

In general, at any level l, associated with variable xn−l, the ex-
pansion of terms W 2

n−l
and Wn−l will create exactly two different

non-constant terms, one representing W 2
n−l−1 and the other Wn−l−1;

plus a constant term 2n−l. The term Wn−l−l will be shared, with
different multiplicative constants, by W 2

n−l
and Wn−l.

This reasoning can be readily generalized to arbitrary integer de-
gree k; at each level there will always be exactly k different non-
constant terms. Since on the top variable (xn−1) level there is only
one node (the root), and there are exactly k non-constant nodes at
each of the remaining (n − 1) levels, the total number of nodes is
equal to k(n − 1) + 1. 2

E. Limitations of Taylor Expansion Diagram Representation

It should be obvious from the definition of TED that it can only
represent those functions that have finite Taylor expansion, and in
particular multi-variate polynomials with finite integer degrees. For
polynomials of finite integer degree k ≥ 1, successive differentiation
of the function ultimately leads to zero, resulting in a finite number of
terms. However, those functions that have infinite Taylor series (such
as ax, where a is a constant) cannot be represented with a finite TED
graph.

Another natural limitation of TEDs is that they cannot represent
relational operators (such as comparators, A ≥ B, A == B, etc.)
in symbolic form. This is because Taylor series expansion is defined
for functions and not for relations. Relations are characterized by
discontinuities over their domain and are not differentiable. In order
to use TEDs to represent relational operators, often encountered in
RTL descriptions, the expansion of word-level variables and bit vec-
tors into their bit-level components is required. Finally, TEDs cannot
represent modular arithmetic. This issue will be discussed in Section
V-C in the context of RTL verification.

IV. Composition Operations for Taylor Expansion Diagrams

Taylor Expansion Diagrams can be composed to compute complex
expressions from simpler ones. This section describes general com-
position rules to compute a new TED as an algebraic sum (+) or
product (·) of two TEDs. The general composition process for TEDs
is similar to that of the apply operator for BDD’s [1], in the sense that
the operations are recursively applied on respective graphs. However,
the composition rules for TEDs are specific to the rules of the algebra
(R, ·,+).

Starting from the roots of the two TEDs, the TED of the result is
constructed by recursively constructing all the non-zero terms from
the two functions, and combining them, according to a given opera-
tion, to form the diagram for the new function. To ensure that the
newly generated nodes are unique and minimal, the reduce operator
is applied to remove any redundancies in the graph.

Let u and v be two nodes to be composed, resulting in a new node
q. Let var(u) = x and var(v) = y denote the decomposing variables
associated with the two nodes. The top node q of the resulting TED
is associated with the variable with the higher order, i.e., var(q) = x,
if x ≥ y, and var(q) = y otherwise. Let f, g be two functions rooted
at nodes u, v, respectively, and h be a function rooted at the new
node q.

For the purpose of illustration, we describe the operations on lin-
ear expressions, but the analysis is equally applicable to polynomials

6

of arbitrary degree. In constructing these basic operators, we must
consider several cases:
1. Both nodes u, v are terminal nodes. In this case a new terminal
node q is created as val(q) = val(u) + val(v) for the add operation,
and as val(q) = val(u) · val(v) for the mult operation.
2. At least one of the nodes is non-terminal. In this case the TED
construction proceeds according to the variable order. Two cases
need to be considered here: (a) when the top nodes u, v have the
same index, and (b) when they have different indices. The detailed
analysis of both cases is given in [6]. Here we show the multiplication
of two diagrams rooted at variables u and v with the same index.

h(x) = f(x) · g(x) = (f(0) + xf ′(0)) · (g(0) + xg′(0)) (3)

= [f(0)g(0)] + x[f(0)g′(0) + f ′(0)g(0)] + x2[f ′(0)g′(0)].

In this case, the 0-child of q is obtained by pairing the 0-children
of u, v. Its 1-child is created as a sum of two cross products of 0-
and 1-children, thus requiring an additional add operation. Also,
an additional 2-child (representing the quadratic term) is created by
pairing the 1-children of u, v.

u0*v1+u1*v0u0*v0
u1*v1

x2
u*vx

x1*
u0 u1

u

v0 v1

vx x =

Fig. 7. Multiplicative composition for nodes with same variables.

Figure 8 illustrates the application of the add and mult procedures
to two TEDs. As shown in the figure, the root nodes of the two
TEDs have the same variable index. The mult operation requires the
following steps: (i) performing the multiplication of their respective
constant (0-) and linear (1-) children nodes; and (ii) generating the
sum of the cross-products of their 0- and 1-children. On the other
hand, the two TEDs corresponding to the resulting cross-product,
as highlighted in the figure, have different variable indices for their
root nodes. In this case, the node with the lower index corresponding
to variable C is added to the 0-child of the node corresponding to
variable B.

0 1

A

BB

C 2
0,0

0,7

0,2 1

B

C

8,7

0 2

C 7

0 1

B 8

+ =

0,20,0

0,5

1,0 1,2

1,5

1,0 1,2

1,5 C

1,10,1

3,1 B

4,6A

3,5

1,1

+
C

B

10

4A

3B

A + B

0

6A

5C

12

A + 2C

(A+B)(A+2C)

* =

Fig. 8. Example of mult composition: (A+B)(A+2C).

It should be noted that the add and mult procedures described
above will initially produce non-normalized TEDs, with numeric val-
ues residing only in the terminal nodes, requiring further normaliza-
tion. When these operations are performed on normalized TEDs,
with weights assigned to the edges, then the following modification
is required: when the variable indices of the root nodes of f and g

are different, the edge weights have to be propagated down to the
children nodes recursively. Downward propagation of edge weights
results in the dynamic update of the edge weights of the children
nodes. In each recursion step, this propagation of edge weights down

to the children proceeds until the weights reach the terminal nodes.
The numeric values are updated only in the terminal nodes. Every
time a new node is created, the reduce and normalize operations
are required to be performed in order to remove any redundancies
from the graph and generate a minimal and canonical representation.

We now analyze the computational complexity of the basic TED
operations described above. Let |f | and |g| be the size, expressed in
the number of nodes, of the two TEDs, f and g, respectively. The
number of recursive calls made to add is bounded by ≤ (|f | · |g|). The
mult operation has higher complexity than add. The worst case for
the multiply operation would occur when each node in f is multiplied
by each node in g, resulting in (|f |·|g|) recursive mult calls. However,
each multiply operation further relies on (|f | · |g|) recursive calls to
the add operation, in the worst case (see Fig. 8).

In order to derive an absolute worst-case upper bound for the com-
position operations, we have to consider the case where edge-weights
have to be propagated all the way down to terminal nodes. In such
cases, non-normalized TEDs are dynamically created from their nor-
malized counterparts. As discussed in Section III-B, non-normalized
TEDs can be exponentially more complex than normalized TEDs.
This may result in an exponential worst-case complexity of the com-
position operations. However, it should be noted that the number
of calls to the mult operation can be efficiently reduced by using a
computed table to store the results, as is done in the recent implemen-
tation. A detailed analysis of the complexity of basic TED operations
is presented in [52]. It should be noted that the multiplication of two
multi-variate polynomials has been shown to be exponential. For in-
stance, time complexity of Karatsuba algorithm for multiplying two
n-variate polynomials with maximum degree d is O((d + 1)n log23)
[51].

At the first glance, time complexity for TED construction appears
to be prohibitive. However, we observed that for dataflow computa-
tions specified at sufficiently high level (see Section VI) the composi-
tion operations do not exhibit exponential complexity. The number
of symbolic variables is orders of magnitude smaller than that of
Boolean variables present in the *BMD and BDD representations.
Exponential complexity can be observed in cases when the Boolean
variables start dominating in the design, in which case the behavior
of TED starts approaching that of a *BMD.

V. Design Modeling and Verification with TEDs

Using the operations described in the previous section, Taylor Ex-
pansion Diagrams can be constructed to represent various compu-
tations over symbolic variables in a compact, canonical form. The
compositional operators add and mult can be used to compute any
combination of arithmetic functions by operating directly on their
TEDs. However, the representation of Boolean logic, often present
in the RTL designs, requires special attention since the output of a
logic block must evaluate to Boolean rather than to an integer value.

A. Representing Boolean Logic

We now define TED operators for Boolean logic, or, and, and xor,
where both the range and domain are Boolean. Figure 9 shows TED
representations for these basic Boolean operators. In the diagrams,
x and y are Boolean variables represented by binary variables, and
+ and · represent algebraic operators of add and mult, respectively.
The resulting functions are 0,1 integer functions. These diagrams are
structurally identical to their *BMD counterparts [53] [2].

0 1

x

y

0 1

x

1

−1

x

y y
−1

0 1

y

x

y
−2

NOT AND OR XOR

Fig. 9. TED representation for Boolean operators: a) not: x′ =
(1 − x); b) and: x ∧ y = x · y; c) or: x ∨ y = x + y − xy; d) xor:
x ⊕ y = x + y − 2xy.

Similarly one can derive other operators which rely on Boolean
variables as one of their inputs, with other inputs being word-level.

7

One such example is the multiplexer, mux(c,X, Y) = c ·X+(1−c) ·Y ,
where c is a binary control signal, and X and Y are word-level inputs.

In general, TED, which represents an integer-valued function, will
also correctly model designs with arithmetic and Boolean functions.
Note that the add (+) function will always create correct integer
result over Boolean and integer domains, because Boolean variables
are treated as binary (0,1), a special case of integer. However the
mult (·) function may create powers of Boolean variables, xk, which
should be reduced to x. A minor modification of TED is done to
account for this effect so that the Boolean nature of variable x can be
maintained in the representation. Such modified Taylor Expansion
Diagrams are also canonical.

B. Verification of RTL and Behavioral Designs

TED construction for an RTL design starts with building trivial
TEDs for primary inputs. Partial expansion of the word-level input
signals is often necessary when one or more bits from any of the
input signals fan out to other parts of the design. This is the case in
the designs shown in Fig. 10 (a) and (b), where bits ak = A[k] and
bk = B[k] are derived from word-level variables A and B. In this case,
the word-level variables must be decomposed into several word-level
variables with shorter bit-widths. In our case, A = 2(k+1)Ahi+2kak+
Alo and B = 2(k+1)Bhi + 2kbk + Blo, where Ahi = A[n − 1:k+1],
ak = A[k], and Alo = A[k-1:0]; and similarly for variable B. Variables
Ahi, ak, Alo, Bhi, bk, Blo form the abstracted primary inputs of the
system. The basic TEDs are readily generated for these abstracted
inputs from their respective bases (Ahi, ak, Alo), and (Bhi, bk , Blo).

Once all the abstracted primary inputs are represented by their
TEDs, Taylor Expansion Diagrams can be constructed for all the
components of the design. TEDs for the primary outputs are then
generated by systematically composing the constituent TEDs in the
topological order, from the primary inputs to the primary outputs.
For example, to compute A + B in Fig. 10 (a) and (b), the add

operator is applied to functions A and B (each represented in terms
of their abstracted components). The subtract operation, A − B, is
computed by first multiplying B with a constant −1 and adding the
result to the TED of A. The multipliers are constructed from their
respective inputs using the mult operator, and so on. To generate a
TED for the output of the multiplexers, the Boolean functions s1 and
s2 first need to be constructed as TEDs. Function s1 is computed
by transforming the single-bit comparator ak > bk into a Boolean
function and expressed as an algebraic equation, s1 = ak ∧ bk =
ak · (1 − bk), as described in Section V-A. Similarly, s2 = ak ∨ bk

is computed as s2 = 1 − ak · (1 − bk) and represented as a TED.
Finally, the TEDs for the primary outputs are generated using the
mux operator with the respective inputs. As a result of such a series
of composition operations, the outputs of the TED represent multi-
variate polynomials of the primary inputs of the design.

After having constructed the respective ordered, reduced, and nor-
malized Taylor Expansion Diagram for each design, the test for func-
tional equivalence is performed by checking for isomorphism of the
resulting graphs. If the corresponding diagrams are isomorphic, they
represent equivalent functions. Fig. 10(c) shows the isomorphic TED
for the two designs, demonstrating that they are indeed equivalent. In
fact, the generation of the TEDs for the two designs under verification
takes place in the same TED manager; when the two functions are
equivalent, both top functions point to the same root of the common
TED.

C. Limitations of TEDs in RTL Verification

The proposed TED representation naturally applies to functions
that can be modeled as finite polynomials. However, the efficiency of
TED relies on its ability to encode the design in terms of its word-level
symbolic inputs, rather than bit-level signals. This is the case with
the simple RTL designs shown in Figure 10, where all input variables
and internal signals have simple, low-degree polynomial representa-
tion. The abstracted word-level inputs of these designs are created
by partial bit selection (ak , bk) at the primary inputs, and a poly-
nomial function can be constructed for its outputs. However, if any
of the internal or output signals is partitioned into sub-vectors, such
sub-vectors cannot be represented as polynomials in terms of the sym-
bolic, word-level input variables, but depend on the individual bits
of the inputs. The presence of such signal splits creates a fundamen-
tal problem for the polynomial representations, and TEDs cannot
be used efficiently in those cases. For similar reasons TED cannot

represent modular arithmetic. An attempt to fix this problem was
proposed in [54], by modeling the discrete functions as finite, word-
level polynomials in Galois Field (GF). The resulting polynomials,
however, tend to be of much higher degree than the original function,
with the degree depending on the signal bit-width, making the rep-
resentation less efficient for practical applications. This is the case
where TEDs can exhibit space explosion similar to that encountered
in BDDs and BMDs.

Despite these limitation, TEDs can be successfully used for verify-
ing equivalence of high-level, behavioral and algorithmic descriptions.
Such algorithmic descriptions typically do not exhibit signal splits,
hence resulting in polynomial functions over word-level input signals.

VI. Implementation and Experimental Results

We have implemented a prototype version of TED software for
behavioral HDL designs using as a front end a popular high-level
synthesis system GAUT [55]. This system was selected due to its
commercial quality, robustness, and its open architecture. The input
to the system is behavioral VHDL or C description of the design.
The design is parsed and the extracted data flow is automatically
transformed into canonical TED representation.

The core computational platform of the TED package consists of
a manager that performs the construction and manipulation of the
graph. It provides routines to uniquely store and manipulate the
nodes, edges and terminal values, in order to keep the diagrams
canonical. To support canonicity, the nodes are stored in a hash
table, implemented as unique table, similar to that of the CUDD
package [29],[56]. The table contains a key for each vertex of the
TED, computed from the node index and the attributes of its chil-
dren and the edge weights. As a result, equivalence test between two
TEDs reduces to a simple scalar test between the identifiers of the
corresponding vertices.

Variable ordering. As shown in this paper, TEDs are a canon-
ical representation subject to the imposition of a total ordering on
the variables. Therefore it is desirable to search for a variable order
that would minimize the size of TEDs. We have recently developed
a dynamic variable ordering for TEDs based on local swapping of
adjacent variables in the diagram, similar to those employed in BDD
ordering [57], [58]. It has been shown that, similarly to BDDs, local
swapping of adjacent variables does not affect the structure of the
diagram outside of the swapping area. We are currently experiment-
ing with different static ordering heuristics, including the ordering
of variables that correspond to constant coefficients. Due to initial
nature of these heuristics, in our initial experiments we have used the
default (topological) order in which the signals appear in the design
specification.

A. Experimental Setup

Several experiments were performed using our prototype software
on a number of dataflow designs described in behavioral VHDL. The
designs range from simple algebraic (polynomial) computations to
those encountered in signal and image processing algorithms. Sim-
ple RTL designs with Boolean-algebraic interface were also tested.
We wish to emphasize that the goal of these experiments was to
demonstrate, as a proof of concept, the application of TED to high-
level dataflow design representation and verification, and in particular
to functional equivalence checking of behavioral HDL specifications,
rather than to develop a complete equivalence verification system.

Our experimental setup is as follows. The design described in be-
havioral VHDL or C is parsed by a high-level synthesis system GAUT
[55]. The extracted data flow is then automatically translated into a
canonical TED representation using our software. Statistics related
to graph size and composition time are reported. We have compared
TEDs against *BMDs to demonstrate the power of abstraction of
TED representation. For this purpose, each design was synthesized
into a structural netlist from which *BMDs were constructed. In
most cases BDDs could not be constructed due to their prohibitive
size, and they are not reported. Experiments confirm that word-size
abstraction by TEDs results in much smaller graph size and compu-
tation times as compared to *BMDs.

B. Verification of High-level Transformations

During the process of architectural synthesis, the initial HDL de-
scription often proceeds through a series of high-level transformations.

8

a > bk k
ak

bk

−

+ * 1
0

D

F1

s1

B
A

ak

bk

D

F2*

*

− 0
1

s2
B

A

(b)

(a)

 F1

D

aK.1

-1

aK.2

bK.1

Ahi

-1

Bhi

-1

T1

256 Alo.2

32

Alo.1

-1

256

Blo.2

32

Blo.1

-1

16

-64

8

bK.2

-1

 D

 aK

 bK

 Ahi

 Bhi

 Alo

 Blo

(c)

Fig. 10. RTL verification using canonical TED representation: (a), (b) Functionally equivalent RTL modules; (c) The isomorphic TED for
the two designs.

For example, computation AC+BC can be transformed into an equiv-
alent one, (A + B)C, which better utilizes the hardware resources.
TEDs are ideally suited to verify the correctness of such transfor-
mations by proving equivalence of the two expressions, regardless of
the word size of the input/output signals. We performed numerous
experiments to verify the equivalence of such algebraic expressions.
Results indicate that both time and memory usage required by TEDs
is orders of magnitude smaller as compared to *BMDs. For example,
the expression (A + B)(C + D), where A,B, C,D are n-bit vectors,
has a TED representation containing just 4 internal nodes, regardless
of the word size. The size of *BMD for this expression varies from
418 nodes for the 8-bit vectors, to 2,808 nodes for 32-bit variables.
BDD graphs could not be constructed for more than 15 bits.

C. RTL Verification

As mentioned earlier, TEDs offer the flexibility of representing de-
signs containing both arithmetic operators and Boolean logic. We
used the generic designs of Figure 10 and performed a set of experi-
ments to observe the efficiency of TED representation under varying
size of Boolean logic. The size of the algebraic signals A,B was kept
constant at 32 bits, while the word size of the comparator (or the
equivalent Boolean logic) was varied from 1 to 20. As the size of
Boolean logic present in the design increases, the number of bits ex-
tracted from A, B also increases (the figure shows it for single bits).
Table I gives the results obtained with TED and compares them to
those of *BMDs. Note that, as the size of Boolean logic increases,
TED size converges to that of *BMD. This is to be expected as
*BMDs can be considered as a special (Boolean) case of TEDs.

TABLE I

Size of TED vs. Boolean logic

bits *BMD TED
(k) Size CPU time Size CPU
4 4620 107 s 194 44 s
8 15K 87 s 998 74 s
12 19K 93 s 999 92 s
16 23.9K 249 s 4454 104 s
18 timeout >12 hrs 12.8K 29 min
20 timeout >12 hrs timeout >12 hrs

D. Array Processing

An experiment was also performed to analyze the capability of
TEDs to represent computations performed by an array of proces-
sors. The design that was analyzed is an n × n array of configurable
Processing Elements (PE), which is a part of a low power motion

estimation architecture [59]. Each processing element can perform
two types of computations on a pair of 8-bit vectors, Ai, Bi, namely
(Ai − Bj) or (A2

i
−B2

j
), and the final result of all PEs is then added

together. The size of the array was varied from 4× 4 to 16× 16, and
the TED for the final result was constructed for each configuration.

When the PEs are configured to perform subtraction (Ai − Bj),
both TEDs and *BMDs can be constructed for the design. However,
when the PEs are configured to compute A2

i −B2
j , the size of *BMDs

grows quadratically. As a result, we were unable to construct *BMDs
for the 16 × 16 array of 8-bit processors. In contrast, the TEDs were
constructed easily for all the cases. The results are shown in Table
II. Note that we were unable to construct the BDDs for any size n

of the array for the quadratic computation.

TABLE II

PE computation: (A2
i
− B2

j
).

Array size *BMD TED
(n × n) Size CPU time Size CPU time
4× 4 123 3 s 10 1.2 s
6× 6 986 3.4 s 14 1.5 s
8× 8 6842 112 s 18 1.6 s

16× 16 out of mem - 34 8.8 s

E. DSP Computations

One of the most suitable applications for TED representation are
algorithmic descriptions of dataflow computations, such as digital sig-
nal and image processing algorithms. For this reason, we have exper-
imented with the designs that implement various DSP algorithms.

Table III presents some data related to the complexity of the TEDs
constructed for these designs. The first column in the Table describes
the computation implemented by the design. These include: FIR
and IIR filters, fast Fourier transform (FFT), elliptical wave filter
(Elliptic), least mean square computation (LMS128), discrete cosine
transform (DCT), matrix product computation (ProdMat), Kalman
filter (Kalman), etc. Most of these designs perform algebraic compu-
tations by operating on vectors of data, which can be of arbitrary size.
The next column gives the number of inputs for each design. While
each input is a 16-bit vector, TED represents them as word-level
symbolic variable. Similarly, the next column depicts the number of
16-bit outputs. The remaining columns of the table show: BMD size
(number of nodes), CPU time required to construct the BMD for the
16-bit output words, TED size (number of nodes) required to repre-
sent the entire design; CPU times required to generate TED diagrams
does not account for the parsing time of the GAUT front end.

9

TABLE III

Signal Processing Applications

Design No. of No. of *BMD size BMD CPU TED size TED CPU
inputs outputs (nodes) time (s) (nodes) time (s)

Dup-real 3x16 1x16 92 10 5 1
IIR 5x16 1x16 162 13 7 1

FIR16 16x16 1x16 450 25 18 1
FFT 10x16 8x16 995 31 29 1

Elliptic 8x16 8x16 922 19 47 1
LMS128 50x16 1x16 8194 128 52 1

DCT 32x16 16x16 2562 77 82 1
ProdMat 32x16 16x16 2786 51 89 1
Kalman 77x16 4x16 4866 109 98 1

Fig. 11 depicts a multiple-output TED for the elliptical wave filter
(design elliptic), where each root node corresponds to an output of
the design.

F. Algorithmic Verification

In this final set of experiments we demonstrate the natural capa-
bility of Taylor Expansion Diagrams to verify equivalence of designs
described at the algorithmic level. Consider two dataflow designs
computing convolution of two real vectors, A(i), B(i), i = 0, . . .N −1,
shown in Fig. 12. The design in Fig. 12(a) computes FFT of each
vector, computes product of the FFT results, and performs the in-
verse FFT operation, producing output IFFT . The operation shown
in Fig. 12(b) computes convolution directly from the two inputs,

C(i) =
∑N−1

k=0
A(k) ·B(i − k). TED was used to represent these two

computations for N = 4 and to prove that they are indeed equivalent.
Fig. 13 depicts the TED for vector C of the convolution operation,
isomorphic with the vector IFFT . All graphs are automatically gen-
erated by our TED-based verification software.

x
x
x
x

A0
A1
A2
A3

FFT(A)

FFT(B)
B2
B1
B0

B3

FAB0

FAB1

FAB2

FAB3 In
vF

FT
(F

AB
)

IFFT3

IFFT1

IFFT2

IFFT0

B0
B1
B2
B3

C3

C0

C1

C2

A1
A2
A3

A0

Conv(A,B)

a)
b)

Fig. 12. Equivalent Computations: (a) FFT-Product-Inv(FFT); (b)
Convolution.

 C3 C2

A0.1

 C1

A0.2

 C0

A0.3 A0.4

B0.1

B3.1

B1.1

A3.1

A1.1

A2.1

B2.1

T1

B0.4B0.3

B1.3

A1.2

B0.2

B1.2

 A0

 B0

 A3

 B1

 A1

 B2

 A2

 B3

Fig. 13. TED for convolution vector C, isomorphic with IFFT

As illustrated by the above example, TEDs can be suitably aug-
mented to represent computations in the complex domain. In fact,

it can be shown that TEDs can represent polynomial functions over
an arbitrary field. The only modification required is that the weights
on the graph edges be elements of the field, and that the composition
(mult and add) be performed with the respective operators of the
field. Subsequently, TEDs can also be used to represent computations
in Galois field [54].

VII. Conclusions and Future Work

This paper has presented a compact, canonical, graph-based rep-
resentation, called Taylor Expansion Diagram (TED). It has been
shown that, for a fixed ordering of variables, TED is a canonical
representation that can be used to verify equivalence of arithmetic
computations in dataflow designs. The power of abstraction of TEDs
makes them particularly applicable to dataflow designs specified at
the behavioral and algorithmic level. The theory of TEDs has been
presented, and the various operations on TEDs described that make
the graph minimal and canonical. Size complexity of the representa-
tion and time complexity of its composition operations has also been
analyzed and compared to other contemporary representations. It
has been shown how TEDs can be constructed for behavioral and
some RTL design descriptions.

An initial implementation of a TED package and experimental re-
sults have been described. Experiments were conducted over a num-
ber of designs to observe the power and limitations of the TED rep-
resentation. The experiments demonstrate the applicability of TED
representation to verification of behavioral and algorithmic designs.
Of particular promise is the use of TEDs in equivalence verification of
behavioral and algorithmic descriptions, where the use of symbolic,
word-level operands, without the need to specify their bit-width, is
justified. For large systems, involving complex bit-select operations,
relational operators and memories, TEDs can be used to represent
datapath portions of the design that can be modeled as polynomi-
als. Equivalence checking of such complex designs typically involves
finding structurally similar points of the designs under verification.
TED data structure can be used here to raise the level of abstraction
of large portions of designs, aiding in the identification of such simi-
lar points and in the overall verification process. In this sense TEDs
complements existing representations, such as BDDs and *BMDs, in
places where the level of abstraction can be raised.

A number of open problems remain to be researched to make TEDs
a reliable data structure for high-level design representation and ver-
ification. While a simple VHDL and C interface has been already
provided based on the GAUT high-level synthesis system, a front-
end interface to the TED data structure should be developed for
designs described in Verilog and System C. The recently developed
dynamic variable ordering needs to be tested and integrated with the
system. Also, a robust static variable ordering needs to be investi-
gated. Finally, we have recently demonstrated the potential of TEDs
in symbolic factorization and architectural synthesis, especially for
DSP designs. TEDs can be used to perform top-level transforma-
tions of dataflow graphs and for architectural space exploration [60].
It can also be used for DSP transform optimization by means of com-
mon subexpression elimination and factorization [61]. A prototype
software for TED-based verification and behavioral transformations,
TEDify, is available on the web [62].

In summary, TEDs can play a fundamental role in providing an
efficient data structure for those applications that can be modeled in

10

 sv18_o sv26_o

inp.1

 sv38_o

inp.2

 sv33_o

inp.3

 sv39_o

inp.4

2

 outp

inp.5

 sv2_o

inp.6

 sv13_o

inp.7 inp.8

sv2.1

T1

6

sv33.1

6

sv39.1

2

sv13.1

2

sv26.1

2

5 sv18

4

sv2.2

4

sv33.2

4

sv39.2

4

sv13.2

4

sv26.2

3

2

sv2.3

2

sv33.3

5

sv39.3

2

3

sv13.3

sv26.3

sv38

2

sv2.4

2

sv33.4

5

sv39.4

6

sv13.4

2

sv26.4

2

2

sv2.5

2

sv33.5

6

sv39.5

9

sv13.5

2

sv2.6

sv33.6

3

sv39.6

5

10

sv2.7

9

sv33.7

2

sv39.7

sv13.6

3

11

sv2.8

11

sv33.8

3

sv39.8

3

sv13.7

8

sv26.5

2

3

 inp

 sv2

 sv33

 sv39

 sv13

 sv26

 sv18

 sv38

Fig. 11. Elliptic Wave Filter: TED structure obtained automatically from VHDL description.

terms of polynomials, and in particular in high level design represen-
tations and verification. We also believe that TEDs can enhance the
effectiveness of symbolic methods offered by commercial tools, such
as Mathematica and Matlab, for the purpose of formal verification
and synthesis of digital systems design.

acknowledgments
The authors are indebted to Emmanuel Boutillon of LESTER,

Université de Bretagne Sud, Lorient, France, for his invaluable input
regarding the application of TEDs to algorithmic verification. The
authors also would like to thank Pierre Bomel of LESTER, for help
with the GAUT system, and Namrata Shekhar of University of Utah,
for performing BMD experiments.

References

[1] R. E. Bryant, “Graph Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. on Computers, vol. C-35, pp. 677–
691, August 1986.

[2] R. E. Bryant and Y-A. Chen, “Verification of Arithmetic Func-
tions with Binary Moment Diagrams,” in Proc. Design Automa-
tion Conference, 1995, pp. 535–541.

[3] Y. A. Chen and R. E. Bryant, “*PHDD: An Efficient Graph Rep-
resentation for Floating Point Verification,” in Proc. ICCAD,
1997.

[4] R. Drechsler, B. Becker, and S. Ruppertz, “The K*BMD: A
Verification Data Structure,” IEEE Design & Test, pp. 51–59,
1997.

[5] Priyank Kalla, An Infrastructure for RTL Validation and Ver-
ification, Ph.D. thesis, University of Massachusetts Amherst,
Dept. of ECE, Amherst, 2002.

[6] M. Ciesielski, P. Kalla, Z. Zeng, and B. Rouzeyre, “Taylor Ex-
pansion Diagrams: A Compact Canonical Representation with
Applications to Symbolic Verification,” in Design Automation
and Test in Europe, DATE-02, 2002, pp. 285–289.

[7] B. Taylor, Methodus Incrementorum Directa et Inversa, 1715.
[8] E. Kryrszig, Advanced Engineering Mathematics, John Wiley

and Sons, Inc., 1999.
[9] H. Enderton, A mathematical Introduction to Logic, Academic

Press New York, 1972.
[10] T. Bultan and et. al, “Verifying Systems with Integer Con-

straints and Boolean Predicates: a Composite Approach,” in
Proc. Int’l. Symp. on Software Testing and Analysis, 1998.

[11] S. Devadas, K. Keutzer, and A. Krishnakumar, “Design Verifica-
tion and Reachability Analysis using Algebraic Manipulation,”
in Proc. Intl. Conference on Computer Design, 1991.

[12] G. Ritter, “Formal Verification of Designs with Complex Con-
trol by Symbolic Simulation,” in Advanced Research Working
Conf. on Correct Hardware Design and Verification Methods
(CHARME), Springer Verlag LCNS, Ed., 1999.

[13] R. E. Shostak, “Deciding Combinations of Theories,” Journal
of ACM, vol. 31, no. 1, pp. 1–12, 1984.

[14] Aaron Stump, Clark W. Barrett, and David L. Dill, “CVC: A
Cooperating Validity Checker,” in 14th International Confer-
ence on Computer Aided Verification (CAV), Ed Brinksma and

Kim Guldstrand Larsen, Eds. 2002, vol. 2404 of Lecture Notes in
Computer Science, pp. 500–504, Springer-Verlag, Copenhagen,
Denmark.

[15] M. Chandrashekhar, J. P. Privitera, and J. W. Condradt, “Ap-
plication of term rewriting techniques to hardware design verifi-
cation,” in Proc. Design Automation Conf., 1987, pp. 277–282.

[16] Z. Zhou and W. Burleson, “Equivalence Checking of Datapaths
Based on Canonical Arithmetic Expressions,” in Proc. Design
Automation Conference, 1995.

[17] S. Vasudevan, “Automatic Verification of Arithmetic Circuits
in RTL using Term Rewriting Systems,” M.S. thesis, University
of Texas, Austin, 2003.

[18] J. Burch and D. Dill, Automatic Verification of Pipelined Mi-
croprocessor Control, Springer-Verlag, 1994.

[19] R. Bryant, S. German, and M. Velev, “Processor Verification us-
ing Efficient Reductions of the Logic of Uninterpreted Functions
to Propositional Logic,” ACM Trans. Computational Logic, vol.
2, no. 1, pp. 1–41, 2001.

[20] M. Velev and R. Bryant, “Effective use of Boolean Satisfiability
Procedures in the Formal Verification of Superscalar and VLIW
Microprocessors,” Journal of Symbolic Computation, vol. 35,
no. 2, pp. 73–106, 2003.

[21] R. Bryant, S. Lahiri, and S. Seshia, “Modeling and Verifying
Systems using a Logic of Counter Arithmetic with Lambda Ex-
pressions and Uninterpreted Functions,” CAV, 2002.

[22] M. Moskewicz, C. Madigan, L. Zhang Y. Zhao, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proc. of 38th
Design Automation Conf., June 2001, pp. 530–535.

[23] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust
Sat-Solver,” in Proc. Design Automation and Test in Europe,
DATE-02, 2002, pp. 142–149.

[24] C.-Y. Huang and K.-T. Cheng, “Using Word-Level ATPG and
Modular Arithmetic Constraint Solving Techniques for Assertion
Property Checking,” IEEE Trans. CAD, vol. 20, pp. 381–391,
2001.

[25] M. Iyer, “RACE: A word-level ATPG-based Constraints Solver
System for Smart Random Simulation,” in Internationall Test
Conf., ITC-03, 2003, pp. 299–308.

[26] R. Brinkmann and R. Drechsler, “RTL-Datapath Verification
using Integer Linear Programming,” in Proc. ASP-DAC, 2002.

[27] Z. Zeng, P. Kalla, and M. Ciesielski, “LPSAT: A unified ap-
proach to RTL satisfiability,” in Proc. DATE, March 2001, pp.
398–402.

[28] F. Fallah, S. Devadas, and K. Keutzer, “Functional Vector
Generation for HDL Models using Linear Programming and 3-
Satisfiability,” in Proc. Design Automation Conference, 1998,
pp. 528–533.

[29] K. S. Brace, R. Rudell, and R. E. Bryant, “Efficient Implemen-
tation of the BDD Package,” in DAC, 1990, pp. 40–45.

[30] O. Coudert and J.C. Madre, “A Unified Framework for the
Formal Verification of Sequential Circuits,” in Proc. ICCAD,
1990, pp. 126–129.

[31] H.J. Touati, H. Savoj, B. Lin, R.K. Brayton, and A. Sangiovanni-

11

Vincentelli, “Implicit State Enumeration of Finite State Ma-
chines using BDDs,” in Proc. ICCAD, 1990, pp. 130–133.

[32] E. A. Emerson, “Temporal and Modal Logic,” in Formal Mod-
els and Semantics, J. van Leeuwen, Ed., vol. B of Handbook of
Theoretical Computer Science, pp. 996–1072. Elsevier Science,
1990.

[33] K. L. McMillan, Symbolic Model Checking, Kluwer Academic
Publishers, 1993.

[34] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vencentelli,
F. Somenzi, A. Aziz, S-T. Cheng, S. Edwards, S. Khatri,
Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary,
G. Shiple, S. Swamy, and T. Villa, “VIS: A System for Veri-
fication and Synthesis,” in Computer Aided Verification, 1996.

[35] A. Narayan and et al., “Partitioned ROBDDs: A Compact
Canonical and Efficient Representation for Boolean Functions,”
in Proc. ICCAD, ’96.

[36] Y-T. Lai, M. Pedram, and S. B. Vrudhula, “FGILP: An ILP
Solver based on Function Graphs,” in ICCAD, 93, pp. 685–689.

[37] U. Kebschull, E. Schubert, and W. Rosentiel, “Multilevel Logic
Synthesis based on Functional Decision Diagrams,” in EDAC,
1992, pp. 43–47.

[38] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A.
Perkowski, “Efficient Representation and Manipulation of
Switching Functions based on Order Kronecker Function De-
cision Diagrams,” in DAC, 1994, pp. 415–419.

[39] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral Transforms for Large Boolean Functions with Appli-
cations to Technology Mapping,” in DAC, 93, pp. 54–60.

[40] I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi, “Algebraic Decision Diagrams and
their Applications,” in ICCAD, Nov. 93, pp. 188–191.

[41] S. Horeth and Drechsler, “Formal Verification of Word-Level
Specifications,” in DATE, 1999, pp. 52–58.

[42] Y-A. Chen and R. Bryant, “PHDD: An Efficient Graph Repre-
sentation for Floating Point Circuit Verification,” in IEEE Int.
Conference on Computer-Aided Design, 1997, pp. 2–7.

[43] G. Bioul and M. Davio, “Taylor Expansion of Boolean Functions
and of their Derivatives,” Philips Research Reports, vol. 27, no.
1, pp. 1–6, 1972.

[44] A. Thayse and M. Davio, “Boolean Differential Calculus and its
Application to Switching Theory,” IEEE Trans. on Comp., vol.
C-22, no. 4, pp. 409–420, 1973.

[45] J. Smith and G. DeMicheli, “Polynomial Methods for Compon-
tent Matching and Verification,” in International Conference on
Computer-Aided Design, ICCAD’98, 1998.

[46] J. Smith and G. DeMicheli, “Polynomial Methods for Allocating
Complex Compontents,” in Design Automation and Test In
Europe Conference, DATE’99, 1999.

[47] A. Peymandoust and G. DeMicheli, “Application of Symbolic
Computer Algebra in High-Level Data-Flow Synthesis,” IEEE
Trans. on Computer-Aided Design, vol. 22, no. 9, pp. 1154–1165,
Sept. 2003.

[48] Maple, ,” http://www.maplesoft.com.
[49] Mathematica, ,” http://www.wri.com.
[50] The MathWorks, “Matlab,” http://www.mathworks.com.
[51] F. Winkler, Polynomial Algorithms in Computer Algebra,

Springer, 1996.
[52] G. Fey, R. Drechsler, and M. Ciesielski, “Algorithms for Tay-

lor Expansion Diagrams,” in IEEE Intl. Symposium on Multi-
Valued Logic, ISMVL’04, 2004.

[53] F. Brown, Boolean Reasoning, Kluwer Academic Publishers,
1990.

[54] D. Pradhan, S. Askar, and M. Ciesielski, “Mathematical Frame-
work for Representing Discrete Functions as Word-level Polyno-
mials,” in IEEE Intl. High Level Design Validation and Test
Workshop, HLDVT-03, 2003, pp. 135–139.

[55] LESTER, Université de Bretagne Sud, “GAUT, Architectural
Synthesis Tool,” http://lester.univ-ubs.fr:8080, 2004.

[56] F. Somenzi, “Colorado Decision Diagram Package,” Computer
Programme, 1997.

[57] R. Rudell, “Dynamic Variable Ordering for Binary Decision
Diagrams,” in Proc. Intl. Conf. on Computer-Aided Design,
Nov. 1993, pp. 42–47.

[58] D. Gomez-Prado, Q. Ren, S. Askar, M. Ciesielski, and E. Boutil-
lon, “Variable Ordering for Taylor Expansion Diagrams,” in
IEEE Intl. High Level Design Validation and Test Workshop,
HLDVT-04, 2004, pp. 55–59.

[59] P. Jain, “Parameterized Motion Estimation Architecture For
Dynamically Varying Power and Compression Requirements,”
M.S. thesis, Dept. of Electrical and Computer Engineering, Uni-
versity of Massachusetts, 2002.

[60] M. Ciesielski, S. Askar, E. Boutillon, and J. Guillot, “Behavioral
Transformations for Hardware Synthesis and Code Optimization
based on Taylor Expansion Diagrams,” Dec. 2005, Patents pend-
ing, USSN 11/292,493 and PCT/US05/43860.

[61] J. Guillot, E. Boutillon, D. Gomez-Prado, S. Askar, Q. Ren, and
M. Ciesielski, “Efficient Factorization of DSP Transforms using
Taylor Expansion Diagrams,” in Design Automation and Test
in Europe, DATE-06, 2006.

[62] M. Ciesielski, S. Askar, D. Gomez-Prado, and Q. Ren, TED-
ify - Software for construction and optimization of TEDs, with
application to verification and synthesis of behavioral designs,
http://tango.ecs.umass.edu/TED/Doc/html.

