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Abstract—

This paper presents a mathematical framework for mod-
eling arithmetic operators and other RTL design modules as
discrete word-level functions and proposes a polynomial rep-
resentation of those functions. The proposed representation
attempts to bridge the gap between bit-level BDD represen-
tations and word-level representations, such as *BMDs and
TEDs.

I. INTRODUCTION

The increase in size and functional complexity of digital
designs necessitates the development of robust, automated
verification tools at higher (behavioral or register-transfer)
levels of abstraction. Binary Decision Diagrams (BDDs)
[1] [2], Binary Moment Diagrams (*BMDs), [3], and their
derivatives [4] [5], [6] [7], [8], [9], [10], [11], [12], etc. play
an important role as canonical representations of Boolean
and arithmetic functions and have significantly contributed
to the success of verification tools. However, a major lim-
itation of these representations is that they require that
the inputs, outputs, or both, be represented in terms as
Boolean functions, in terms of bits. As a result, these rep-
resentations are often characterized by prohibitively large
size or require excessive computation times. Specifically,
BDDs represent logic functions that map Boolean inputs
into Boolean outputs and employ binary Shannon decom-
position with respect to the function variables. Binary Mo-
ment Diagrams (*BMD [3] and K*BMDs [5]), represent
mapping of Boolean inputs into integer-valued functions.
They depart from point-wise, binary decomposition, and
perform a decomposition of an arithmetic function based
on its moments (constant and first moment).

A recently developed Taylor Expansion Diagrams (TED)
[13] [14] represent arithmetic functions that map integer
inputs into integer functions, thus raising the level of ab-
straction from bits to bit-vectors and words. TEDs are
based on a more general, non-binary decomposition of an
arithmetic function using Taylor Series Expansion w.r.t its
support variables. This representation naturally applies to
all functions that can be modeled as polynomials. Further-
more, it is not limited to algebraic expressions or designs
characterized by continuous-function representation, such

as data-flows or datapath designs. It can be used whenever
a function (continuous or discrete) can be represented or
approximated by means of a finite polynomial.

Polynomial methods [15], [16] have been used as an ef-
ficient technique for representing both arithmetic specifi-
cations and bit-level descriptions of implementations. In
[15], polynomial representation has been used to perform
component matching by expressing a specification (given
for example as a transfer function, or rational polynomial,
in MATLAB) and an implementation, as word-level poly-
nomials. The problem of generating a word level polyno-
mial reduces to determining the order of the polynomial.
Specifically, [15] shows that any combinational circuit can
be uniquely represented by a minimum order polynomial
and describes the method for finding the order. Since the
resulting polynomial representation is canonical for a fixed
word width, two designs can be compared by comparing
coefficients of their polynomial representations.

Polynomial methods and symbolic algebra have also been
used to perform arithmetic-level decomposition. In this
case, an arithmetic function represented by a multi-variate
polynomial is decomposed into polynomials representing
the building blocks in the target library [17]. In effect,
it performs simplification modulo set of polynomials, us-
ing Groebner basis. In summary, it can be argued that
polynomials can serve as a convenient means to represent
arithmetic functions for the purpose of high level synthesis
and verification.

A. Problem Statement

The goal of this paper is to show how to derive poly-
nomial representation of arithmetic functions typically en-
countered in RTL designs. The challenge is to derive a
compact polynomial representation for an arbitrary func-
tion, including continuous arithmetic functions as well as as
discrete logic. This work addresses specifically the follow-
ing problems: 1) how to represent an arbitrary function as
a polynomial, and 2) how to efficiently generate and store
the polynomial representation.

When deriving a word-level representation one should
keep in mind its application to realistic RTL designs. While



BMDs and TEDs have already raised a level of abstraction
of design representations by operating on word-level, these
representations are not practical in cases when partial ex-
traction of word-level signals are needed. For example, the
fact that a multiplier can be represented by *BMD or TED
as an arithmetic operator with a single word-level output
is not particularly useful in a design where partial expan-
sion of the output vector is required. Such an expansion
(informally referred to as bit nibbling) is often necessary to
derive a few bits (a bit subvector) from the output vector
as input to the other part of the design. The same argu-
ment applies to the adder/subtract units where the carry
out (or sign) bit should be treated separately from the sum
output.

To further motivate our work in the context of realistic
RTL designs consider the following design shown in Fig. 1.
It has been demonstrated in [13] that TED can be used to
represent the output of such a design in the case when bit
nibbling occurs at the primary inputs only. In this case the
inputs are broken into smaller, word-level variables, and the
word-level, integer-valued outputs of the subsequent func-
tions can be readily represented as continuous arithmetic
function (polynomials) in terms of those inputs. As long
as all the intermediate functions are integer-valued, and
need not to be broken into subvectors, there is no problem.
However, often a group of bits of a local function block (in-
termediate word-level signal) needs to fan out to another
portion of the design and hence must be broken into several
subvectors. In this case we are faced with the problem of
representing a multiple output function. Such a function, in
general, is not continuous but discrete, and as such cannot
be easily represented analytically. This discrete nature of
the arithmetic operators is the major problem with all the
known word-level representations, as they do not provide
enough granularity at the function output.
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Fig. 1. An example of an RTL design with partial (bit-level) fanout

The representation proposed in this paper attempts to
fix this problem, by modeling a discrete multiple-output
function as finite, word-level polynomials.

II. CHARACTERISTIC POLYNOMIALS

The idea of representing an arbitrary discrete function as
a multivariate polynomial is illustrated in Fig. 2 with the
help of a simple 2 x 2 multiplier. The multiplier has two
2-bit inputs A, B and a 4-bit output M. In principle, the
output M can be represented as a continuous function of its
inputs, that is M = A - B, where, 0 < A, B < 3. However,

if access to a subset of bits of the output is needed, it is
difficult to express that portion as a continuous function. In
our case the output M is divided into outputs M; and Mo,
so that M = 4M; + My. Each of these outputs can then be
treated as a four-valued discrete function of two four-valued
inputs A, B. The figure shows a “truth table” defining
these discrete functions representing the 2 x 2 multiplier.
All variables in the table are modulo 4.
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Fig. 2. A 2 x 2 multiplier as a discrete function: {M; Mo} = A - B;
a) block diagram; b) truth table in radiz-4 number system; c)
truth table in GF(4) system; d) characteristic polynomial repre-
sentation (TED); e) equivalent bit-level BDD representation

We shall now attempt to interpolate each of the discrete
outputs as a continuous, finite polynomial. First we define
a characteristic polynomial of a function.

Definition 1: A polynomial correctly interpolates the
discrete function, if the value of the polynomial evaluated
at all the discrete points for which the function is defined
matches exactly the value of the function. We refer to such
a polynomial as a characteristic polynomial of the function.

The challenge is to derive and efficiently store a charac-
teristic polynomial for a given discrete function. Our ap-
proach to generate a continuous polynomial representation
is based on Galois representation of switching functions,
proposed in [18].

Assume for simplicity that the function is given as a
truth table, such as the one shown in Fig. 2(b). The en-
tries of the table are expressed in radiz-n number system,
where N = 2%, and k is the number of bits representing
the number. Alternatively, the entries can be interpreted



as the elements of Galois Field of size n, GF(N). That
is, the numbers (0, 1, 2, ..., n — 1) are represented as
(0,1,a,a?,...,a’N %), where « is the primitive element in
the field GF(N). In case of 2-bit variables, the elements
(0,1, ,@?) are in GF(4) number system. It is customary
in this case to use the notation o? = 3.

Let us now derive the polynomial equation for M; and
Mg using the truth table shown in Fig. 2(c), obtained
by replacing the radix-4 numbers with elements of GF'(4).
The derivation of the polynomial representation relies on
GF number system rather than on radix (modular) system.
The desired polynomial expression is obtained by summing
up the product terms of multi-valued literals corresponding
to the nonzero outputs. The k" literal of variable X, or
Xk, is defined as 1 if X = k, and 0 otherwise. In Galois
field GF(N) a literal X* is represented as

Xf=(1-X -0V, (1)
where k¥ € GF(N). A product of all literals in a given
row of the table gives a multi-valued product term. Each
product term evaluates to 1 for one and exactly one com-
bination of input values. In this sense, this is an extension
of classical Boolean logic, whose variables are elements of
GF(2). The desired polynomial representation for a given
function can then be obtained by summing up all the prod-
uct terms corresponding to non-zero outputs, multiplied by
the respective coefficients of the given output.

For output M; in Fig. 2(c) we have:

M, = A°B® + A°BP + APB® 4+ a AP BP (2)
or equivalently
M= (1-(A-0a)’)01-(B-a)’)+ 3)
1-(A-a))1-(B-8)°) +
1-(A=-p)°)1—(B-0a)’)+
a(l— (A= B)*)1 - (B - B)?)

A. Representing Characteristic Polynomials

The resulting polynomial, after simplification of the con-
stant terms (using rules of GF(4)) can be obtained as:

M1 = A*(BB*+aB?+B)+A?(aB*+aB)+A(B*+aB*+3B)
(4)

There are several methods that can be used to derive
characteristic polynomials of discrete functions. The evalu-
ation form representation stores discrete values of the poly-
nomial for all combinations of its inputs. This representa-
tion is particularly useful when function is given as a truth
table. Also, the time complexity of basic operations (ad-
dition and multiplication) for two functions represented in
this form is linear.

Another canonical representation, called the interpola-
tion form, represents the polynomial using the coeflicients
corresponding to all the combinations of the powers of the
input variables [19]. In general, this form is more computa-
tionally expensive than the evaluation form. However, we

use this form as it is compatible with the diagram repre-
sentation employed in our system.
In our 2 x 2 multiplier example, this would give:

M1 = [a10 a0a0 130 0000]

which is equivalent to equation 4.

In general, the number of coefficients that need to be
stored to identify a polynomial in GF(N), with m input
variables, each taking N = 2* values, is 2™¥. An ordered
array of such coeflicients uniquely represents the function.

Another alternative is to use Taylor Expansion Diagram
(TED) [13] to generate and store the polynomial in form
of a graph. TED is in fact a graphical variant of the inter-
polation form. The weights of the edges of TED represent
the non-zero coefficients of the characteristic polynomial of
the function. An example of TED for a 4 x 4 multiplier is
shown in Fig. 2(d).

An important advantage of using characteristic polyno-
mial to represent discrete function operators is that outputs
of such operators can be made independent of the inter-
mediate signals and variables, i.e., they can be expressed
in terms of primary (or arbitrary set of) inputs. We say
that those intermediate variables can be smoothed out, in
a manner similar to that in BDDs.

The following theorem states the canonicity of the char-
acteristic polynomial for an arbitrary discrete function.

Theorem 1: The Characteristic Polynomial representa-
tion of a discrete function is minimal and unique for a fixed
ordering of primary input variables.

Proof. The proof of canonicity follows directly from the
fact that the coefficient of the polynomial are unique. See
also the proof of the uniqueness of TED [13]. To prove
minimality, we must consider a suitable word-level repre-
sentation and show that for that representation the form is
minimal. Consider a TED, or equivalently, an interpolation
form representation. At a given decomposition level, asso-
ciated with one variable, all the children of the variable
are grouped according to the degree of the edge (degree
of derivative). Any simplification that takes place at the
edges involves only manipulation of constants (in the given
field) and can be done in constant time. m|

This result is basically a generalization of the well known
theorem that BDD of a Boolean function is unique for a
fixed variable ordering. This is not surprising since GF(2)
is a special case of GF(N), for N = 2.

Fig. 3 shows the characteristic polynomial representa-
tion for a comparator in GF(4): (a) its TED diagram rep-
resentation, and (b) the equivalent bit-wise BDD represen-
tation.

Characteristic polynomial representation for the Swum
and C,,; of a full adder can be obtained in similar fash-
ion. Larger, 2n-bit adders can be constructed from a set
of full adders in a ripple carry (RC) fashion. In fact, this
can be done for any function that exhibits this serial, iter-
ative dependence. Unfortunately, this is not the case for a
multiplier, which has hierarchical dependence.



Fig. 3. A 2-bit comparator; a) characteristic polynomial in GF(4);
b) bit-level BDD representation

B. Normalization and minimization of CP

Consider the result of a 4 x 4 multiplier in GF'(4), where
the 4-bit inputs and the 8-bit output are divided into 2-bit
vectors (4-valued variables).

Assume ordering of input variables: A;, Ag, By, Bg. The
coeflicient matrix shown in Figure 4 represents output M;
of the multiplier (here a stands for o and b for 3). Care-
ful examination of the matrix in Figure 4 reveals several
common patterns, which — after factoring out a constant
— correspond to the same expression in GF(4). Four of
these occurrences, shown in the figure as groups R1... R4,
share a common pattern L = [0000 01a0 0aB0 «l130]
which can be readily identified after factoring out a corre-
sponding constant in GF'(4). Namely, we have R1 = 8L,
R2=R3=1L,and R4=alL.

0000 000000000000
0000 000000000000
0000 000000000000
0000 000000000000

0000 0000 0000 bal0
(0000 0b1001a0 1bad| R1
©00001a0 0ab0alb0| R2
0000 0000 0000 0bbO

0000 0000 0000 1bao
©00001a0 0ab0 alb0)| R3
0000 0ab0 0b10ball| R4
0000 0000 0000 0ba0

0000 bla01lab0ball
0000 ablb blab a0a0
0000 labb ablalab0
0000 000000000000

Fig. 4. Characteristic polynomial for M1 output of the 4 x4 multiplier
in GF(4)

Specifically, the characteristic polynomial (CP) of
groups R1, R2, R3, R4 in the matrix corresponds to the
following expressions:

CP(R1) = A3A3-BL (5)
CP(R2) = A2A-L (6)
CP(R3) = AAZ-L (7)
where
L = B}(Bj + aBy) + aBy (B + aBy) + (9)

a(Bg + ﬂBg + aBy))

which in the matrix form is: L = [0000 01a0 0a80 alf0].

The process of identifying and normalizing such common
patterns (subfunctions) can be readily accomplished using
canonical graph based representations, such as TEDs [13].
This can be seen in the diagram for M, shown in Fig. 5
as a common node B1_23.

Fig. 5. TED representation of output M1 of the 4 x 4 multiplier in
GF(4)

The TED for the entire 4 x4 multiplier in GF'(4) is shown
in Fig. 6. It contains 86 nodes, compared to 135 nodes of
the minimized BDD.

C. RTL Design Representation

Equipped with the characteristic polynomials of all the
design blocks (adders/subtractors, multipliers, compara-
tors, multiplexers, etc.) we are now ready to complete
the design shown in Fig. 1. The generation of the char-
acteristic polynomial CP(F') for output F is performed
by generating C'P's of all the blocks in topological order,
starting at the primary inputs. The generation of CP's
for the outputs of the adder and subtractor is simple, since
all its input variables are primary inputs. This process
has been described in Section II. However, for all the
subsequent blocks, the occurrence of all symbolic variables
need to be replaced (substituted) with their characteristic
polynomials. The substitution of variables by their respec-
tive polynomials accomplishes variable smoothing (known
as existential quantification in BDDs), making the primary
output depend only on the primary input. This variable
smoothing can be readily accomplished using the interpo-
lation form, mentioned in Section II-A.

For example, in the characteristic polynomial of the com-
parator (c=X >Y) in GF(4):

CP(c) = X3(aY?+8Y +1)+ X?(aY*+8Y)+ X (Y +aY?)

we must replace all the occurrences of X and Y by their
characteristic polynomials, based on how the X, Y signals
were derived from other blocks. In our case (refer to Fig.

1),

CP(Y =s1) = A*(B* + aB) + A(aB*> + BB+ 1)+ B
and
CP(X = s3) = A*(B*> + aB) + A(aB? + 8B + 1) + 8 B*

Substituting these polynomials into CP(c) of the com-
parator will give the following characteristic polynomial for



Fig. 6. TED representation of the 4 X 4 multiplier in GF(4)

its output.
CP(c) = A (B> +aB)+ A(B*+B)+ B*+ B>+ B (10)

Note that the resulting expression relates the output of
the comparator to the primary inputs A, B, with the inter-
mediate signals (s1, s2) smoothed out.

III. CONCLUSIONS

The work presented in this paper is by no means com-
plete. We were intrigued by the idea of representing dis-
crete functions with their characteristic polynomials in
GF(N), where N is determined by the size of the subvec-
tor of the intermediate signals. We did some preliminary
comparisons of the proposed representations with BDDs for
selected functions. It seems that the proposed GF polyno-
mial representation is smaller in size of the representation
(the number of nodes) than BDD by only a (small) con-
stant. We suspect that the reason for such a small gain is
that we attempt to represent inherently integer functions
with the GF base, and such a representation cannot offer
much compression. More studies are needed to see if this
representation can lead to useful applications.
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