Optimizing Data Flow Graphs to Minimize Hardware Implement ation

D. Gomez-Prado, Q. Ren, M. Ciesielski J. Guillot, E. Boutillon
ECE Dept., University of Massachusetts LESTER, Université de Bretagne Sud
Ambherst, MA 01003, USA 56321 Lorient, France

{dgomezpr, gren, ciesig®ecs.umass.edu {jguillot, emmanuel.boutillop@univ-ubs.fr

Abstract - This paper describes an efficient graph-
based method to optimize data-flow expressions for bestising novelfactorization and decomposition algorithmas, t
hardware implementation. The method is based on fac-generate optimized data flow graphs (DFG), better suited
torization, common subexpression elimination (CSE) and for high-level synthesis. The optimization involves mini-
decomposition of a|gebraic expressions performed on amization of the Iatency and of the hardware cost of arith-
canonical representation, Taylor Expansion Diagram. The metic operations in the final, scheduled implementations,
method is generic, applicable to arbitrary algebraic ex- and not just the minimization of the number of arithmetic
pressions and does not require specific knowledge of theoperations, as done in all previous work. At the same time,
application domain. Experimental results show that the expressions with constant multiplications are replaced by
DFGs generated from such Optimized expressions are betShifterS and adders to further minimize the hardware cost.
ter suited for high level synthesis, and the final, scheduled The proposed method have been implemented in a soft-
implementations are characterized, on average, by 15.5%Wware tool, TDS, available online [5].
lower latency and 7.6% better area than those obtained ~ Experimental results show that the DFGs generated

using traditional CSE and algebraic decomposition. from the optimized expressions have smaller latency than
. those obtained using traditional algebraic techniquesy; th
1 Introduction also require, on average, less area than those provided by

. - __currently available methods and tools.
Many computations encountered in high-level design

specifications are represented as polynomial expressionsp previous Work
They are used in computer graphics designs and Digital
Signal Processing (DSP) applications, where designs are Research in the optimization of the initial design speci-
specified as algorithms written in C/C++. To deal with fications for hardware designs falls in several categories.
such abstract descriptions designers need efficient opti- HDL Compilers. Several attempts have been made to
mization tools to optimize the initial specification code, provide optimizing transformations in high-level synthe-
prior to architectural (high-level) synthesis. Unfortielg, sis, HDL compilers [6, 7], and logic synthesis [8]. These
conventional compilers do not provide sufficient support methods rely on the application of basic algebraic proper-
for this task. On the other hand, architectural optimizatio ties, applied by term rewriting rules to manipulate the alge
techniques, such as scheduling, resource allocation andbraic expressions. In general, they do not offer systematic
binding, employed by high-level synthesis tools, do not way to optimize the initial design specification or to derive
address the front-end, algorithmic optimization [1]. Tées optimum data flow graphs for high-level synthesis. While
tools rely on a representation that is derived by a direct high-level synthesis systems, such as Cyber [9] and Spark
translation of the original design specifications, leaving [10], apply methods of code optimization, they do not rely
possible modification of that specification to the designer. on any canonical representation that would guarantee even
As aresult, the scope of the ensuing architectural optimiza local optimality of the transformations.
tion is seriously limited. Domain Specific SystemsSeveral systems have been

This paper introduces a systematic method to performdeveloped for domain-specific applications, such as dis-
optimization of the initial design specification using a crete signal transforms. SPIRAL [11] generates opti-
canonical, graph-based representation, called Taylor Ex-mized implementation of linear signal processing trans-
pansion Diagram (TED) [2]. TEDs have already been ap- forms, such as DFT, DCT, DWT, etc. These signal trans-
plied to functional optimization, such as factorizatioman forms are characterized by highly structured form with
common subexpression elimination (CSE). However, so known efficient factorizations and radix-2 decomposition.
far their scope was limited to linear expressions, such asSPIRAL uses these properties to obtain solutions in a con-
linear DSP transforms and to the simplification of arith- cise form and applies dynamic programming to find the
metic expressions, without considering final scheduled im- best implementation. Those tools are very efficient in the
plementation [3, 4]. DSP domain but are not useful in the general case.

This paper describes how TEDs can be extended to han- Kernel-based Decomposition. Algebraic methods
dle the optimization ohonlinearpolynomial expressions, have been used in logic optimization to reduce the num-

ber of literals in Boolean logic expressions. Kernel-based in the TED for functionF = a?c + abc in Figure 1(a),
decomposition, employed by logic synthesis, has been re-nodea should be factored out, resulting in a more compact
cently adapted to optimize polynomial expressions of lin- form F = a(a + b)c, but in its current form, the TED in
ear DSP transforms and non-linear filters [12]. While this Fig. 1(a) does not allow for such a factorization.
method provides a systematic approach to polynomial op- Fortunately, TED can be readily transformed into a
timization, the polynomial representation is not canolica linear form that supports factorization. Conceptually, a
which seriously reduces the scope of optimization. linearized TED represents an expression in which each
In this paper we show how TEDs can be extended to variable z*, for k > 1, is transformed into a product
offer an alternative solution not only to the generic prob- z* = z; - 25 - - - 4, Wherez; = x;, Vi, j.
lem of the optimization of non-linear polynomials but also Consider a non-linear expression in Eq.(2). By replac-
to the efficient generation of DFGs, better suited for high- ing each occurrence af® by z; - 5 - - - 2, this expression

level synthesis. can be transformed into a linear form, shown in Eq.(3). A
. _) characteristic feature of this form (known as Horner form)
3 Polynomial Representation using TED is that it contains minimum number of multiplications, and

. i .. henceis suitable for synthesis.
TED is a graph-based representation for multi-variate

polynomials [2, 13] obtained from Taylor expansion: F(z)=fo+z-fi+ 22 ot afn)

1 _
f(x,y,...):f((),y,...)—l—mf'(o,y,...)+§x2f”(0,y,...)+... = fota(fi+a2(-for- +an fn)))
(1) By applying this rule, functionF = a?c + abc can

The expression is decomposed iteratively, one variable atye viewed as”
a time, in a predetermined order. The resulting decompo-a
sition is stored as a directed acyclic graph whose nodes
represent the terms of the expansion. Each Tedeis
labeled with the name of the decomposing variable. Each
edgeis labeled with a paif”p,w), where”p represents
the power of the variable andrepresents the edge weight.
The resulting reduced, normalized graph is canonical for a
fixed variable order.

An example of a TED for expressidn = a?c+a-b-c
is shown in Fig. 1(a). The two terms of the expression
a® - canda - b - ¢ can be traced as paths from the root to
terminal 1 ONE). The label(”2, 1) on the edge from node
a to nodec denotes quadratic tera? with weight=1. The
remaining edges are linear, each labeled with {).

= ajaqc + a1be, which reduces td =
1(a2 4+ b)c = a(a + b)c, see Figure 1(b).

TED linearization can be performed systematically by
iteratively splitting the high-order TED nodes until each
node has degree 1 and contains two children: one asso-
ciated with a multiplicative (solid) edge, and the other
with an additive (dotted) edge. The resulting linear TED
is also canonical. A linearized TED for the expression
F = a®c + abc is shown in Figure 1(b). In the remain-
der of this paper, we only consider linear TEDs. Although
' TED linearization has been known since the early TED

stages, it has been used for purposes other than functional

optimization. For example, a binary Taylor expansion dia-
gram, BTD, [14] was proposed as a means to improve the
efficiency of the internal TED data structure. Other, non-

N canonical TED-like forms have been used for the purpose
. of functional test generation for RTL designs [15].
G 4 TED Decomposition
G The principal goal of factorization is to minimize the
number of arithmetic operations (additions and multipli-
) cations) in the expression. An examplefattorization
11 is the transformation of the expressiéh= ac + bc into
AN F = (a + b)c, which reduces the number of multiplica-
tions from two to one. If a sub-expression appears more
(@) (b) than once in the ex i [-
pression, it can be extracted and re
Figure 1. TED representation fof = a2c+a-b-c; (a) placed by a new variable. This process is knowr@s-
Original, non-linear TED; (b) Linearized TED represent- mon subexpression eliminatig6 SE). A simplification of
ing factored formF = a(a + b)c. an expression by means of factorization or CSE is com-
monly referred to adecomposition
TED Linearization: It has been shown that the TED Decomposition operations can be performed directly on

structure allows for efficient factorization and decomposi the TED graph, taking advantage of its canonical represen-
tion of expressions modeled as linear multi-variate poly- tation. In fact, TED encodes the expression in a compact,

nomials [3, 4]. For example, a TED for expressibn= factored form. The goal of TED decomposition described
ab + ac, for variable orderingd;, b, c) naturally represents in this work is to find a factored form that will produce
the polynomial in its factored formy(b 4+ ¢). Unfortu- DFG with minimum hardware cost of the final, scheduled

nately, this efficiency is missing when considering opti- implementation. This is different than a straightforward
mization involving non-linear expressions. For example, minimization of the number of operations in the unsched-

uled DFG, which has been the subject of the known previ- TED, followed by disjunctive and conjunctive decompo-
ous work [3, 4, 12]. sition of the hierarchical TED. Disjunctive TED decom-

The TED decomposition method described here ex- position tries to identify additive edges, callgplit edges
tends the work of the original cut-based decomposition of whose removal decomposes the TED into two disjoint sub-
Askar [4], which was based on the identification and selec- graphs. Conjunctive decomposition tries to identify the
tion of admissible cut sequences. The cut-based methodlominators Dominator is a TED node with a property
was applicable only to TED graphs characterized by thethat all the paths from the root to terminal node 1 pass
presence of simple cuts: additive and multiplicative edgesthrough this node. By construction, such a node defines a
whose removal would separate the graph into two disjoint disjoint conjunctive decomposition. The resulting expres
subgraphs, and hence was limited only to the disjoint de-sion is simply a product of the subgraph above and below
composition. Many TEDs, such as the one shown in Figure the dominator node. For example, nadgein the TED in
2, do not have a disjoint decomposition property. Fig. 1(b) is a dominator, which decomposes the expres-
sion F' conjunctively intoF' = Fy - I, whereF; = a1
andFy = (az + b)e. Similarly, nodec is a dominator in
F and F;. If neither disjunctive nor conjunctive decom-
position exists in the graph, then the fundamental Taylor
series decomposition is applied to the graph, resulting in
non-disjoint decomposition.

The TED decomposition is illustrated with the example
in Figure 2 for function” = z-(z-u+q-r)+ (p-w+y)-r.
This TED does not have a single split-edge that would sep-
arate the graph disjunctively into two disjoint subgraphs;
neither does it have a dominator that would allow it to de-
compose it conjunctively into disjoint subgraphs (notd tha
r is not a dominator in this graph). Nevertheless, this func-
tion can be represented as a disjunction of two expressions
Fi+Fy,withFy =z (z-u+q-r)andFy = (p-w+y)-r,
sharing a common subgraph rooted at nedeSuch a
non-disjoint decomposition is accomplished in a system-
atic way on a TED as follows.

First, a series of nodes connected only by multiplicative
edges, representing a product term, is represented by an
irreducible TED and replaced with a single variable In
this example, the following irreducible TEDs are identified
and replaced by new variableB; = z - v andP, = p - w.

The resulting hierarchical TED is shown in Figure 2(b).

Next, the sum terms are identified in the TED and sub-
stituted by new variables. A sum term appears in the TED
graph as a set of variables, incident to the edges with a
common node, and linked together by one or more ad-
ditive edges. Such patterns can be readily identified by
traversing the graph in a bottom-up fashion and creating,
for each node, a list of nodes reachable fromby a mul-
tiplicative edge. The procedure starts at terminal node 1
and traverses all the nodes in the graph bottom-up, in a
reverse variable order. In our example, the set of nodes
reachable from terminal node 1 {&°;,r}. Since these

Figure 2. Complex TED decomposition foF = x -
(z-u+q-r)+ (p-w+y)-r: (a) Original TED; (b)

Simplified TED after product term substitutiong, = = - nodes are not linked by an additive edge, they do not form
wand P, = p - w; (c) Simplified TED after sum term a sum term in the expression. The list of nodes reachable
substitution,S1 = P + . from noder is {q, y, P>}, of which { P, y} are linked by

an additive edge. Hence, they correspond to a sum-term

The decomposition developed in this work applies to an (22 +). Such a term is substituted by a new variable
arbitrary TED graph (linearized, if necessary), with both 51 and represented as an irreducible TED. No other ir-
disjoint and non-disjoint decomposition. It applies a se- reducible TED subgraph can be extracted. The resulting
ries of transformations of sum term¥)(v;) and product hierarchical TED, with the sum ter(®, + y) replaced by
terms (Iv;), represented by simple TED patterns, iito VariableSi, is shown in Figure 2(c).
reducible TED subgraphsEach irreducible subgraph is This procedure is repeated iteratively until the top level
then replaced by a single node in a global, hierarchical TED is reduced to the simplest, irreducible form. The re-

sulting TED is then subjected to the final decomposition = DFG Generation: Once a TED has been decomposed,
using the fundamental Taylor expansion principle. The a structural Data Flow Graph (DFG) representation of the
graphis traversed in a topological order, starting at tie¢ ro expression is constructed from its Normal Factored Form.
node. At each visited nodethe expressioi¥’(v) is com- Each irreducible TED is first transformed into a simple
puted asF'(v) = Fy + v - Fi, whereF, is the function DFG using the basic property of the NFF: each additive
rooted at the first node reached frerby an additive edge, edge in the TED maps into an addition operation and each
andF; is the function rooted at the first node reached from multiplicative edge maps into a multiplication operation i

v by a multiplicative edge. the resulting DFG. All the DFGs are then composed to-
Using this procedure, the following expressions are de- gether to form the final DFG.

rived for the global TED in Figure 2(c) (Her&v) refers DFG construction for the expressidh= = - (z - u +

to a function of an irreducible TED rooted at nodg q-7)+ (p-w+y)-rfromits Normal Factored Form is
F = f(x) = f(S1)+z- f(P1), wheref(S1) = S1- f(r), shown in Figure 2(c). The five multiplications in this NFF
for)y =r f(P) = PL+ f(q), flq) = q-7, P = correspond to the three nontrivial multiplicative edges in
z-u, Py =p-w,andS; = (P2 +y). the top TED graph and two nontrivial multiplicative edges

L in the subgraphs foP; and P, (S; does not have non-

5 DFG Optimization trivial multiplications). Similarly, there are three atidhs

The recursive TED decomposition procedure describedc0rresponding to the three additive edges.
in the previous section produces a simplified algebraic ex- It should be emphasized, however, that unlike Nor-
pression in factored form. By imposing additional rules mal Factored Form the DFG representation is not unique.
regarding the ordering of variables in the expression, suchWhile the number of operators remains fixed, the DFG
a form can be made unique. We refer to such a form ascan be further restructured and balanced to minimize its
Normal Factored Form (NFF). latency. Traditional methods known from logic synthesis
can be used for this purpose [8].

Definition 1 The factored form expression associated These two steps, variable ordering and DFG balancing,
with a TED is called a Normal Factored Form (NFF) for are at the core of the optimization techniques employed
that TED if there is one-to-one mapping between the oper-jn this work. The actual delay of the operators and their
ations in the factored form and the TED, and if the order- arrival times are considered during such a restructuring in
ing of variables in the expression is compatible with that order to minimize the latency of the final implementation.

of the TED. Replacing Constant Multipliers by Shifters: It is

well known that multiplications by integers can be imple-
mented more efficiently in hardware by converting them
into a sequence of shifts and additions/subtractions.-Stan
dard techniques are available to perform such a transfor-
mation based on Canonical Signed Digit (CSD) represen-
the additive edgéas, b), and two multiplications associ- tation. However, these methods do not address common

ated with the dominator nodes andc. Furthermore, the subexpression elimination or shifter factorization.
ordering of variables in the expression is compatible with W& now present a systematic way to transform integer
that of the TED. An important feature of the NFF is thatit Multiplications into shifters using the TED structure. 3hi

The normal factored form for the TED in Figure 1(b) is
ay(az + b)c. Although several other factored forms can
be derived from this TED, such as(as + b)a4, etc., only
a1 (a2 + b)c satisfies the condition for NFF. Specifically,
there is exactly one additiofus + b), corresponding to

is unique for a TED with fixed variable order. is done by introducing a specibdft shift variable into a
TED is unique. can then be optimized using all the known TED simplifi-

The proof comes directly from the construction of the TED cation methods.
decomposition algorithm, described in Section 4, where First, each integer constafitis represented in CSD for-
each split edge defines a disjunctive decomposition and amatasC' = . (k; - 2*), wherek; € (—1,0,1). By intro-
dominator defines a conjunctive decomposition. ducing a new variablé to replace constant Z; can be

It should be emphasized that the NFF of the decom- represented as_,(k; - 2°) = > ;(k; - L*). The termL’
posed TED depends only on the structure of the initial in this expression can be interpretedeid$ shiftby 7 bits.
TED, which in turn depends on the ordering of its vari- The next step is to generate the TED with the shift vari-
ables. Hence, variable ordering plays a central role in ables, linearize it, and perform the TED decomposition.
deriving decompositions that will lead to efficient hard- Finally, in the DFG generated by the TED decomposition,
ware implementations. Several variable ordering algo- the terms involving shift variableg,*, are replaced by ac-
rithms have been developed, including static ordering andtual shifters (byk bits). The final DFG representation is
dynamic re-ordering schemes, similar to those in BDDs. minimal in terms of the hardware cost of its operators.
However, the significant difference between variable or- An example in Figure 3 illustrates this procedure for
dering for BDDs and for TEDs is that ordering for lin- the expressiorf’ = 7a + 6b. The original TED for this
earized TEDs is driven by the complexity of the NFF and expression is shown in Figure 3(a), and its DFG in Figure
the structure of the resulting DFGs, rather than by the num-3(b). The expression is then transformed into an expres-
ber of TED nodes. sion with a shift variabld.: F = (L3—1)a+(L*—LY)b =

L3(a + b) — (a + L - b), shown in Figure 3(c). The The results shown in the tables are reported for the fol-
nonlinear term,L3, is then linearized and the TED or- lowing delay parameters: multiplier=18ns, adder/sub=8ns
dered, as shown in Figure 3(d). The TED is then de- shifter=9ns; clock period=10ns. Table 1 compares the im-
composed into the DFG, shown in Figure 3(e). After re- plementation of a Savitzky-Golay (SG) filter using: 1) the
placing variabled.; by L, the DFG in Figure 3(f) is ob- original design; 2) the design produced by CSE decompo-
tained. Finally, all constant multiplications with input§ sition system of [12]; and 3) produced by TDS. The ta-
are replaced by-bit shifters, as shown in Figure 3(g). ble reports the number of arithmetic operations (adders,
The optimized expression corresponding to this DFG is multipliers, shifters, subtractors) for each DFG solution
F=((a+b) << 2-10) << 1—a, where << k" the actual number of resources used for a given latency;
refers to left shift byk bits This implementation requires and the implementation area using GAUT (datapath only)
only three adders/subtracters and two shifters, a consid-and Synopsys DC Compiler (datapath, steering and con-
erable gain compared to the two multiplications and one trol logic) synthesis tools. The results for circuits thahe

addition of the original expressiafi = 6a + 7. not be synthesized for a given latency are marked with -’
(overconstrained).
Desian Original CSE TDS
9 design solution solution
Area Area Area
H Y [_GAUT Lt x| GAUT x| GAUT
SynDC SynDC SynDC
DFG — 2,16,6,0 4,14,3,0 6,11,3,0
_ 439 348
L=120 — — 1,5,2,0 22,057 1,4,1,0 20,849
- _ 231 273
g L=130 - - 1510 22.057 2,3,1,0 18071
L _ 348 265
8 L=140 — — 14,10 19,052 1,3,1,0 18,160
— 348 265
L=150 — — 14,10 19,648 1,3,1,0 17.862
_ 356 265 182
L=160 1,4,2,0 20442 13,10 17428 1,2,1,0 14,795

Table 1. SG Filter implementations synthesized with
the GAUT and Synopsys DC.

The minimum latency for the DFG extracted from the
original SG design, without any modification, is 160 ns.
The DFG solution produced by both CSE and TDS has
minimum latency of 120 ns. However, the TDS implemen-
tation requires smaller area than both the original and CSE
synthesized solution, as measured by both synthesis tools.
In fact, all entries in the table show a tight correlation be-
tween the synthesis results of Synopsys DC and GAUT,
which allows us to limit the results of other experiments to
those produced by GAUT only.

) Table 2 presents a similar comparison for designs
Figure 3. Replacing constant multiplications by shift from different domains (filters, digital transforms, com-
operfitlons fqr expre§S|oF0 = 7a + 6b: (a)_Ongm_aI puter graphic algorithms, etc.), synthesized with GAUT.
TED; (b) _'n't'al.DFG.’ © TED_ after 'erdl.JC'ng ahift A closer look at the Quintic Spline design shows that the
yanab_leL, (d) Linearized TED; (€) DFG de”-ved frqm the CSE solution has smallest number of operations in its DFG
linearized TED; (f) DFG after combining variablés into i
L; (g) Final DFG after replacing multipliers by shifters. and the Iatency of 140 n.s. Th? DFG obtalned by TDS pro-

duced the implementation with 110 ns, i.e., 21% faster,

6 Experimental Results even though it had more DFG operations. And for the

minimum latency of 140 ns, obtained by CSE, it produced

The TED decomposition described in this paper was implementation with area 22% smaller than CSE. Similar
implemented as part of a prototype system TDS [5]. The behavior can be seen for all the remaining designs. In all
design, written in C, is first compiled by a high-level syn- cases the latency of DFGs produced by TDS was smaller;
thesis system, GAUT, [16] [17]. to produce an initial data and with the exception for Quartic Spline design, all of
flow netlist. TDS transforms this netlist into a set of TEDs them have also smaller hardware area for the minimum la-
and performs all the TED- and DFG-related optimizations tency produced by CSE.
including: variable ordering, TED linearization, factrat Table 3 summarizes the implementation results for
tion, decomposition, replacement of constant multiplica- these benchmarks. We can see that the implementations
tions by shifters, DFG construction, DFG balancing, etc. obtained by TDS have latency smaller on average by
The optimized DFG is passed back to GAUT, which pro- 15.5% and 27.2% w.r.t. the CSE and original design.And
duces synthesizable VHDL code for final logic synthesis. for the reference latency (defined as the minimum latency

obtained by the other two methods), the TDS implementa- other methods; and and for the minimum latency obtained
tions have, on average, 7.6% and 36.3% smaller area w.r.tby those methods, require on average less area.

the CSE and original design, respectively. Acknowledgments This work has been supported by
— Original CSE DS a grant from the National Science Foundation, award No.
esig design solution solution CCR-0702506.
L"’Etnesr;cy - x,<,—| Area |+.x,<,—| Area |+ x,<,—| Area
DFG — |9,12,9,14 10,10,4,5 9,10,12,7 References
g [=110 - = = — | 3241 447
S =130 — S NP N P R [1] S. Gupta, M. Reshadi, N. Savoiu, N. Dutt, R. Gupta, and
2 =110 - T 2311 310 | 2321 273 A. Nicolau, “Dynamic Common Sub-expression Elimina-
& [L[=150 = = 1311 | 311 | 22,21 | 273 tion during Scheduling in High-level Synthesis”, I8SS
8 [L=160 - — [2211 236 | 1,221 265 '02: Proceedings of the 15th international symposium on
L=170 - - [1211] 228 | 2211] 236 System Synthesidew York, NY, USA, 2002, pp. 261-266,
[=180 | 2511 | 476 | 12,11 228 | 22,11 236
DFG 8,12,0,2 10,6,7,8 7,13,0,9 ACM Press.
S ,__103 — - — - 2503 | 455 [2] M. Ciesielski, P. Kalla, and S. Askar, “Taylor Expansion
S [[=110 | 2402 | 364 | 2332 | 413 | 24,02 | 364 Diagrams: A Canonical Representation for Verification of
» | DFG— [31550 7,741 6,7,10,6 Data Flow Designs”,IEEE Trans. on Computersol. 55,
2z [[[=100 = - - - 2321 347 no. 9, pp. 1188-1201, Sept. 2006.
Sl =1 S R N o [3] J. Guillot, E. Boutillon, D. Gomez-Prado, S. Askar, Q.rRRe
2 =130 - - T211 210 | 1212 227 and M. Ciesielski, “Efficient Factorization of DSP Trans-
2 [=140 = = 1211 219 | 1,2,1,1| 219 forms using Taylor Expansion Diagrams”, esign Au-
g [=150 - - 1211 219 | 1,211 219 tomation and Test in Europe, DATE;(06.
L=160 - —_[1211] 219 | 1211] 219 [4] M. Ciesielski, S Askar, D. Gomez-Prado, J. Guillot, and
DLF:gi 51'23é12'00 265 Sl'llélélo 136 61'1141410 136 E. Boutillon, “Data-Flow Transformations using Taylor Ex-
=10 =T — — 1510 460 pansion Diagrams”, iDesign Automation and Test in Eu-
2 =120 = = = = {2420 422 rope, 2007, pp. 455-460.
<Z>' '[fﬁ’g - S S A %‘3‘&8 g;z [5] University of Massachusetts, Amherst, “TDS
£ =1%o - - TaL0T 204 T30 2o - '_I'ED-based behavioral transformation system”,
3 =10 — — T310 211 | 13101 294 http://www.ecs.umass.edu/ece/labs/visicad/tds.html
[=170 - - 12,10 | 211 | 1,310 294 [6] M. Potkonjak and J. Rabaey, “Optimizing Resource Uti-
[=180 [1510 460 [1210 211 [1,210 211 lization Using Transformations”, ifEEE Transactions on
R I?_E?O_d 4,21,2,0 511,4,0 5éles3iAbO - Computer Aided Desigri994.
£ =110 = = = —T510T 460 [7] S. Gupta, N. Savoiu, N.D. Dutt, R.K. Gupta, and A. Nico-
@ =120 = - - - 2,410 385 lau, “Using Global Code Motion to Improve the Quality of
£ [=130 - - 1310 294 | 1,410 377 Results in High Level SynthesislEEE Trans. on CADpp.
3 [0 = — [1310 294 | 1,310 294 302-311, 2004.
[=150 = — [1210 211 | 1,310 294 o . N - .
(=160 | 1500 423 | 1210 211 [1310 294 [8] (gdige'l\\/l/l(l%reelllv,vﬂmtgiss and Optimization of Digital Cir-
DFG — |11,12,00 11,0,8,9 9,2,4,6 s
% [[=r0_[4700 613 - - [4244 406 [9] K. WakabayashiCyber: High Level Synthesis System from
o |Lt=80 | 4600] 530 - - | 4222] 302 Software into ASICpp. 127-151, Kluwer Academic Pub-
> L=90 3,4,0,0 356 - - 2,222 286 |iSheI’S 1991
[=100 | 3,4,0,0| 356 | 2,042 | 208 | 2,1,2,2 | 203 ' ‘
[10] S. Gupta, R.K. Gupta, N.D. Dutt, and A. NicolaBPARK:
Table 2. Comparison of minimum achivable latency and A Parallelizing Approach to the High-Level Synthesis of

Digital Circuits, Kluwer Academic Publishers, 2004.

area for different designs. The area reported is for GAUT. N
[11] M. Puschel, J.M.F. Moura, J. Johnson, D. Padua, M.&&lo

TDS Vs B.W. Singer, J. Xiong, F. Franchetti, A. Gaci¢, Y. Voro-

Design Original CSE nenko, K. Chen, R.W. Johnson, and N. Rizzolo, “SPIRAL:

Latency (%) Area (%)| Latency (%) Area (%) Code Generation for DSP Transform#&toceedings of the
SG Filter 25.00 27.62 0.00 20.73 IEEE, vol. 93, no. 2, 2005.
Cosi 38.88 50.42 8.33 9.45 . N
Cﬁf(',';?e 9.09 0.00 9.09 11.86 [12] A.Hosangadi, F. Fallah, and R. Kastner, “OptimizindyPo
Chebyshev 41.17 48.68 16.66 15.23 nomial Expressions by Algebraic Factorization and Com-
Quintic 38.88 54.13 21.42 22.02 mon Subexpression Elimination”, IEEE Transactions on
Quartic 37.50 30.50 23.07 -28.23 CAD, Oct 2005, vol. 25, pp. 2012-2022.
VCI 4x4 0.00 42.98 30.00 2.40 L .
Avera;e 755 3633 1551 =64 [13] D. Gomez-Prado, Q. Ren, S. Askar, M. Ciesielski, and

E. Boutillon, “Variable Ordering for Taylor Expansion Di-
agrams”, inlEEE Intl. High Level Design Validation and

Table 3. Percentage improvement of TS s Original Test Workshop, HLDVT-02004, pp. 55-59.

an . on achievable latency; and area at the minimum [14] A. Hooshmand, S. Shamshiri, M. Alisafaee, B. Alizadeh,

achievable latency. P. Lotfi-Kamran, M. Naderi, and Z. Navabi, “Binary Taylor
_) Diagrams: an Efficient Implementation of Taylor Expan-

Conclusions: As shown by our results, a simple- sion Diagrams”, inSCAS (1) 2005, pp. 424-427, IEEE.

minded minimization of thenumberof arithmetic oper- [15] Bijan Alizadeh, “Word level Functional Coverage Compu
ations in an algebraic expression, advocated in previous }Etl'zoé‘ , INASP-DAG Fumiyasu Hirose, Ed. 2006, pp. 7-12,
work, does not nec_e_ssarlly translate_ into a minimum hard- [16] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and
ware cost or a minimum latency in a scheduled DFG, E. Martin, High Level Synthesis from Algorithm to Digital
and hence it does not guarantee a good hardware imple- Circuits, Springer, 2008.

mentation. In contrast, the optimization method presented[17] Université de Bretagne Sud, Lab-STICC, “GAUT, Archi-
here is better suited for hardware implementations. It can Lebcsn#m?tgﬁ}sgo%% »http://nttp://www-labsticoiu-
discover solutions that have lower latency, unmatched by ' gauth '

