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Abstract—This paper presents a novel technique to evaluate
the noncontrollability measures of state registers for partial scan
design. Our model uses implicit techniques for finite state machine
(FSM) traversal to identify noncontrollable state registers. By
implicitly enumerating the states of a machine, we accurately
evaluate the noncontrollability of flip–flops by determining exactly
what values can or cannot be stored or are difficult to store in
the state registers. By doing so, we not only target the untestable
faults due to state unreachability of the machine but also the
difficult-to-test faults caused by difficult-to-control flip–flops.
The values observed in the flip–flops during the implicit FSM
traversal are used to evaluate flip–flop controllability measures
to support the testability analysis. This technique is programmed
as an algorithm called SIMPSON and the authors analyze its
effectiveness by carrying out extensive experiments over a large
set of MCNC and ISCAS benchmarks. For large circuits, im-
plicit state enumeration becomes infeasible because of computer
memory and time limitations. To overcome these limitations,
we propose the use of approximate reachability analysis of the
circuit to estimate the noncontrollability of state registers. By
partitioning a large FSM into smaller sub-FSMs, and implicitly
traversing the individual submachines, the reachable state set
can be overapproximated as a product of smaller subsets. The
values observed in the flip–flops of the submachines during the
approximate FSM traversal facilitates the estimation of their
noncontrollability measures. An algorithm called SAMSON is
proposed for this purpose and its effectiveness is illustrated over
some of the larger circuits in the ISCAS benchmark suite. The
results demonstrate the superiority of the authors’ method over
conventional state-of-the-art scan register selection techniques in
terms of higher fault coverage achieved by selecting fewer, or an
equal number, of partial scan registers.

Index Terms—Implicit state enumeration, partial scan, reacha-
bility analysis, sequential circuit testing.

I. INTRODUCTION

OVER the years, attempts to automate test generation
for sequential circuits have been pursued extensively.

Though these attempts have met with varying levels of success,
automatic test generation (ATG) has generally had difficulties
with large sequential circuits, because of which variousdesign
for testabilitytechniques have become common practice in in-
dustry. Thefull scantechnique has been developed to simplify
the problem of testing a sequential circuit by converting it into
a combinational one. This enables the application of combi-
national test generation algorithms, such as the D-algorithm
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[1], PODEM [2], and FAN [3], on such circuits. Although the
testing problem is simplified, the area and performance of the
circuit are adversely affected due to the necessary circuit mod-
ifications required to accommodate the complete scan chain.
This also results in unacceptable lengths of the resulting tests
due to extensive serial shifting of test patterns and responses.

Partial scan, on the other hand, provides a tradeoff between
the ease of testing and the costs associated with scan design.
However, the key problem in partial scan design is the selection
of scan registers. A great deal of research has been devoted to
define the criteria to guide the selection of the scan memory
elements. These techniques can be categorized according to:
1) testability analysis [4]; 2) test pattern generation [5], [6]; 3)
structural analysis [7]–[9]; 4) fault oriented [10] and cost anal-
ysis-based approach [11]; and 5) other miscellaneous methods
[12]–[14], etc. All of the above-mentioned techniques have met
with some measure of success but have their respective limita-
tions.

Partial scan methods based ontestability analysis, use
controllability, observability [15], and sequential depth as
measures of circuit testability. Flip–flops with poor controlla-
bility measures are selected for scan. Trishler [4] describes a
method whereby flip–flops which are not easily controllable
are included in the incomplete scan path.Limitations : the ef-
fectiveness of this method, evaluated in terms of scan overhead,
fault coverage, etc., depends entirely on testability analysis
which, depending on the heuristics, may not accurately model
the problems faced during test generation [16]. The correlations
between testability measures and test generation costs have not
been well established.

In partial scan methods based onstructural analysis[7], [17],
the sequential circuit is transformed into a directed graph, whose
vertices represent flip–flops, primary inputs, and outputs, and
whose arcs represent the combinational paths. Heuristics are
used to select a minimal set of flip–flops that eliminate the cy-
cles in the graph. The premise behind this approach is the as-
sessment that flip–flops in a loop are hard to control and ob-
serve.Limitations : such techniques operate solely on the net-
work topology and do not explicitly analyze the behavior of the
sequential circuit. Thus, there is no guarantee that the selected
scan elements are the most noncontrollable, which may lead to
the selection of scan registers which do not provide sufficiently
high fault coverage [18]. Recently, Xianget al. [19] suggested
that breaking all the cycles in the graph may not be necessary,
since some of the cycles do not influence the complexity of test
generation. They presented algorithms that exploit the circuit
state information to identify those cycles in the graph that com-
plicate test generation significantly. Corresponding flip–flops
that break only these cycles were selected for partial scan.
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In the partial scan methods based ontest generation[5],
[6], tests are first generated for a large number of faults. Then,
for each undetectable (or aborted) fault, a set of flip–flops
is found, such that making those flip–flops observable and
controllable makes the fault detectable. The incomplete scan
path then utilizes a minimal subset of memory elements which
influenced the easy detection of as many faults as possible.
Recently, Sharmaet al. [20] proposed a technique that uses
a test generator to perform multihop reachability in order
to identify the hard-to-reach states of the circuit. Targeting
these hard-to-reach states using scan allows the detection of
hard-to-detect faults.Limitations: such techniques incorporate
the cost of test generation as well as the cost of calculating
minimal sets of registers to scan and are thus time and compute
intensive. Also, these techniques rely heavily on test generators.
Use of an unsophisticated test generator that aborts too many
faults may result in some unnecessary scan registers. Thefault
orientedpartial scan design approach [10] is also test generator
dependent. Structural analysis of the circuit is enhanced by
focusing on the untestable and aborted faults. Thus, it also
suffers from the above drawbacks.

Considering the fact that the above techniques do not incor-
porate the cost of scan design in selecting scan flip–flops, an op-
timization-based approach was presented by Chikermaneet al.
[9] that formulates the partial scan register selection technique
as anoptimization problem. As the use of scan flip–flops results
in layout and delay overheads, it is important to choose a set of
flip–flops which give the best improvement in testability while
keeping the cost of scan design bounded. Based on this idea, a
tool called OPUS [9] was developed which is actively used in
both academia and industry. However, the testability criteria for
selection of scan flip–flops is based on testability heuristics such
as the SCOAP controllability/observability measures [15] or on
structural parameters of the circuit such as the number of cy-
cles/loops in the circuit, the length of directed cycles, etc. Thus,
this approach also suffers from the limitations outlined above.

There are a few other miscellaneous partial scan approaches
based on empirical models [13] or some other heuristic esti-
mates of flip–flop noncontrollability [12], etc., which also suffer
from one or more drawbacks outlined above.

In this paper, we present a new approach to the partial scan
problem that thoroughly analyzes the behavior of the sequen-
tial circuit and its state encoding to evaluate the noncontrolla-
bility measures of the state registers. To analyze the behavior
of the underlying finite state machine (FSM) of the sequential
circuit over the complete state space, we useimplicit techniques
for FSM traversal. Using implicit state enumeration, we implic-
itly exercise all the state transitions and visit all the states in
the reachable state set of the machine. State information thus
obtained is used to identify the noncontrollable state registers.
We present algorithms to select noncontrollable state registers
for scan using implicit state enumeration and present the results
which illustrate the effectiveness of our technique over a large
set of benchmarks.

The paper is organized as follows. Section II highlights
the contribution of this paper and indicates how and why our
approach is different from other partial scan approaches. Sec-
tion III reviews basic terms and definitions related to implicit

state enumeration techniques and sequential circuit testing.
Section IV describes the motivation behind this work. Section V
describes techniques to identify noncontrollable registers for
partial scan using implicit FSM traversal. In Section VI an
algorithm, SIMPSON, is proposed and the results are presented
and analyzed. Limitations of the SIMPSON algorithm are
discussed and, subsequently, extensions to the algorithm are
presented. In Section VII, we review state space decomposition
and approximate FSM traversal techniques. Section VIII de-
scribes how we can exploit approximate implicit FSM traversal
techniques to evaluate the noncontrollability measures of the
flip–flops for partial scan design. An algorithm, SAMSON,
is presented and its effectiveness is analyzed over the larger
circuits of the ISCAS’89 benchmark suite. Section IX points
out possible future research directions and concludes the paper.

II. CONTRIBUTION OF THIS RESEARCH

In this paper, we present a comprehensive approach to ana-
lyze the sequential behavior of a circuit to accurately evaluate
the noncontrollability of flip–flops in order to make a judicious
choice of scan registers. It is well understood that testability of
a sequential circuit is inherently captured by its state transition
behavior and its encoding [18], [19], [21]. In order to accurately
assess the noncontrollability measures of the flip–flops, we need
to thoroughly analyze the behavior and the encoding of the un-
derlying FSM of the circuit. Implicit state enumeration is a tech-
nique that can be exploited to analyze the behavior of the se-
quential circuit for testing purposes.

Our model to evaluate the controllability measures of
flip–flops is based on a systematic behavioral analysis of
the underlying FSM of a sequential circuit. By implicitly
enumerating the states of a machine, we accurately evaluate the
noncontrollability of flip–flops by determiningexactly what
values can or cannot be stored or are difficult to store in the
state registers. By doing so, we not only target the untestable
faults due to state unreachability of the machine but also the
difficult-to-test faults caused by difficult-to-control flip–flops.
The values observed in the flip–flops during the implicit FSM
traversal (i.e., the states of the flip–flops) are used to evaluate
flip–flop controllability measures to support the testability
analysis. This technique is programmed as an algorithm called
SIMPSON and we analyze its effectiveness by carrying out ex-
tensive experiments. The experimental results clearly reflect the
accuracy of the proposed flip–flop controllability measures and
demonstrate the superiority of our approach over conventional
state-of-the-art partial scan design approaches. Specifically, as
compared to the techniques that use structural parameters of
the circuit [7], [17] and/or SCOAP controllability/observability
heuristics [15] to select scan registers, our technique results in
fewer scan registers and provides higher fault coverage.

However, implicit state enumeration of sequential circuits
with a large number of state registers is often infeasible. The
underlying state space of a sequential circuit is potentially
exponential in the number of state registers. For circuits with a
large number of flip–flops, not only does it take an unaccept-
able amount of time to traverse the entire reachable state space,
but storage and processing of the set of reachable states also
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becomes infeasible.Approximate reachability analysistech-
niques have been proposed in literature [22], [23] to overcome
the space and time overhead associated with exact implicit
FSM traversal methods. These techniques partition a large
FSM into smaller sub-FSMs and perform reachability analysis
on these smaller submachines. As a result, the reachable states
are approximated by an upper bound; the overestimate of the
reachable states is computed as a product of smaller subsets.

We exploit the power of approximate reachability analysis
techniques to analyze the state space of circuits that contain a
large number of flip–flops. Using intelligent techniques to par-
tition a large machine into smaller ones, and then performing
approximate implicit FSM traversal, we are able toestimate
the noncontrollability metrics of flip–flops for partial scan de-
sign. We present an algorithm SAMSON for this purpose and
demonstrate its effectiveness on some of the larger circuits in
the ISCAS’89 benchmark suite. Even though approximate FSM
traversal results in some “loss of information” of state machine
reachability, we demonstrate by experiments that this loss of in-
formation does not significantly affect the proposed flip–flop
testability analysis criteria. Using the SAMSON algorithm, we
were able to select partial scan flip–flops for large sequential
machines and provide high fault coverage. Specifically, as com-
pared to the scan techniques based on structural analysis [9],
[10] and/or SCOAP testability heuristics [15], the same number
of scan flip–flops selected by SAMSON provides higher fault
coverage.

III. PRELIMINARIES

In this section, we review basic terms and definitions related
to Boolean functions, finite state machines, sequential circuits,
and sequential circuit testing, and summarize the breadth-first
traversal techniques for implicit state enumeration as used in
this paper.

A. Boolean Functions and Boolean Function Vectors

An -input and -output Boolean function is a mapping
from an -dimensional Boolean space to an-dimensional
Boolean space, , where . is the
domain and the codomain of . If , then is a
multiple output function; it can be represented as a vector of
single output Boolean functions calledBoolean function vector
(BFV).

Thesupportof a Boolean function is the set of variables it de-
pends upon. Aliteral represents a variable or its complement. A
conjunction of a set of literals is called acube, and it represents
a point, or a set of points, in the Boolean space. If a cube has
literals of all variables in the support of the function, the cube is
amintermand it represents a point in the domain of the Boolean
function.

B. Sequential Circuits and Finite State Machines

We consider synchronous sequential circuits composed
of combinational logic gates and flip–flops, where all the
flip–flops are synchronized by the same clock. We assume
that the circuit has a known initial state and can always be

driven to that initial state either by explicit reset circuitry or by
application of a synchronizing sequence.

Associated with a sequential circuit is its underlying FSM
which inherently captures the behavior of the circuit. In math-
ematical terms, a completely specified, deterministic finite
state machine of Mealy type is a six-tuple ,
where

1) is the input alphabet, i.e., , a finite, nonempty set of
input values;

2) is the output alphabet;
3) is the finite set of states;
4) is the set of initial states;
5) is the next state transition function;
6) is the output function.

The behavior of an FSM can be represented by astate transition
graph (STG) that depicts the transitions that the machine can
make between its states under the application of some input and
the output that it generates. The STG of an FSM is a directed
graph , where is the set of vertices and is the
set of directed edges such that , , ,

, if . Associated with every edge
of an STG is a label , where and .

Note that and are multioutput Boolean functions and
are represented by BFVs. These BFVs implicitly define all the
state transitions of the given FSM. The states of the machine that
can be reached from the initial state by application of any input
sequence are termed asreachableor valid states. A state that
cannot be reached from a reset state is called anunreachableor
invalid state.

C. Cofactors and Quantification

Given an -variable Boolean function ,
the positive cofactorof with respect to is

. Similarly,
stands for the corre-

sponding negative cofactor. Given an -variable Boolean
function , the existential abstractionof
with respect to is

(1)

Given the existential ab-
straction with respect to a set of variables is defined as

(2)

D. Sets and Characteristic Functions

Given a Boolean space , a set of minterms in can be rep-
resented by acharacteristic functionof , which satisfies
the property: , for all . In other
words, a minterm of which evaluates to 1 (i.e., an on-set
minterm) is an element of . The characteristic function of the
universe is tautology and that of a null set is0. ROBDDs [24],
[25] are often exploited as implicit set representations in order
to represent their characteristic functions. In the context of im-
plicit state enumeration, the sets of reachable and unreachable
states of a machine are represented by their respective character-
istic functions. Henceforth, we will use the term sets and their
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Fig. 1.

characteristic functions interchangeably, without diluting their
meaning.

E. Symbolic Image Computation

Definition III.1: Given a BFV , and a domain
subset , theimageof under is defined by

IMAGE (3)

If , the image of under is also called the range of
.
Let , be the th encoded next state

transition function of a given encoded FSM. Letand be the
coding vectors for the states and inputs, respectively. Letbe
the total number of state encoding bits (number of registers).
A symbolic state set is mapped by into a state
set in the range of the functional vector. The set of such
codomain points represents theimageof under the transition
function . Fig. 1 depicts the image of the domain subset
under the transition function . In the symbolic approach, the
image is computed usingtransition relations.

Definition III.2: Given a deterministic transition function
, where represents the present state variables,

represents the input variables, andthe next state variables, the
correspondingtransition relation is defined by

(4)

Note that takes the same values that are evaluated by theth
encoded transition function . In the binary case, the symbol
“ ” stands for theXNOR operation.

Given the above definitions, we can easily compute the image
of a domain subset (say, initial state of the FSM) under
(say, the transition function of the FSM) as

IMAGE (5)

In other words, the image of a set of initial states under the tran-
sition function of an FSM proceeds as follows. First, we com-
pute the transition relation from the circuit equations.
Then we compute its conjunction with the characteristic func-
tion of the set of initial states . Then, we existentially ab-
stract all the input and the present state variables to ob-
tain the image . This image, , is the set of next states
that are directly reachable from the set of initial states in one
transition.

Fig. 2.

F. Implicit State Enumeration Using Symbolic Image
Computations

Traversing an FSM means executing symbolically all its tran-
sitions. If a state transition diagram is available, an explicit tra-
versal means following all directed paths whose tail is the ini-
tial state, thus detecting all reachable states. If the FSM is de-
scribed by a synchronous logic network, a traversal means de-
termining all possible value assignments to state variables that
can be achieved, starting from the assignment corresponding to
the reset state. In this case, reachable and unreachable state sets
are representedimplicitly by functions over the state variables.

The technique to implicitly compute the set of reachable and
unreachable states of an FSM, as originally presented in [26],
has been improved over the years [22], [23], [27], which has
dramatically extended the realm of problems for which reacha-
bility analysis can be carried out. These approaches are based on
a breadth-first traversal (BFS) of the entire state machine. The
key ideas of the method are the use of symbolic image com-
putations to perform the BFS traversal and the use of BDDs as
implicit set representations to store and process the set of reach-
able and unreachable states. In what follows, we briefly describe
how states are implicitly enumerated during BFS traversal using
symbolic image computations.

Fig. 2 describes the BFS traversal procedure to enumerate the
reachable states of an FSM using symbolic image computations.
Initially, from , is the characteristic function of the initial
state set. represents the states reached in theth iteration of
BFS traversal. It is evaluated by computing the symbolic image
of the domain subset from under the transition function
of the FSM. The characteristic functionreachedrepresents the
set of states that have been reached so far from the initial states.
Some states in may have been reached in previous iterations,
so a set difference operation withreachedis required to compute
new , the new states reached in this iteration for the first time. If
no newstates are reached in any iteration, the procedure termi-
nates andreachedis guaranteed to contain all reachable states
of the machine.

G. Sequential Circuit Testing Terminology

A gate has an input/outputstuck-at-1 (stuck-at-0)fault if the
logical value associated with the input/output is 1(0), indepen-
dent of the values at the primary inputs. A faultis said to be
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Fig. 3.

TABLE I

detectableif there exists an input sequencesuch that for every
pair of initial states and of the fault-free and faulty circuits,
respectively, the responseof the fault-free circuit to is dif-
ferent from the response of the faulty circuit at some time
unit [28]; otherwise, it isundetectable.

In general, the problem of sequential circuit test generation
involves finding primary input sequences which can excite a
fault and propagate its effect to the primary outputs. Thus, to
detect a single stuck-at fault, first thefault excitation statehas
to determined, the circuit has to be driven to the fault excita-
tion state, and finally the fault effect has to be propagated to the
primary outputs [29]. The process of finding an input sequence
which takes the machine from the reset state (or an unknown
initial state) to the fault excitation state is calledstate justifica-
tion and such a sequence is called ajustification sequence. An
assignment to primary input and present state lines that propa-
gates the effect of a fault at either the primary outputs or next
state lines is called theexcitation vectorfor the fault. Note that
the present state part of the excitation vector is the excitation
state for the fault. For an excitation vector to be valid, the exci-
tation state for the vector should contain at least one reachable
state.

IV. M OTIVATION

Let us now motivate the importance of analyzing the circuit
state information in order to identify noncontrollable state regis-
ters for partial scan design. Consider the circuit shown in Fig. 3.
Using the sequential circuit test generator HITEC [30], the cir-
cuit was found to be 77% testable. The untestable faults are de-
picted in the figure (marked by and ). In order to improve
upon the fault coverage for this circuit, we decided to use a par-
tial scan. The program OPUS [9] was used to select partial scan
registers. OPUS selected registerfor partial scan, resulting in
84% fault coverage (refer to Table I). The faults marked by
became testable as a result of makingcontrollable; however,
the faults marked by could still not be tested.

(a) (b)

Fig. 4.

Scanning register gave the same results (84% fault
coverage). However, by selecting for scan, we were able to
achieve 100% fault coverage. The above observation leads us
to the following question: How do we know that registeris
the best register to scan? To answer this question, let us analyze
the state transition behavior and the encoding of the underlying
FSM of this circuit shown in Fig. 4. We can see from the STG
that once the machine is in one of the states determined by
the set , it cannot make a transition to
any of the states in the set . Once the machine
enters the set , it remains within , and there is no path in the
STG from to . Thus, for the encoding in Fig. 4(b), it is not
possible to change the value of from 0 to 1. Clearly, this sort
of a behavior of the underlying FSM of this sequential circuit
manifests itself in terms of the noncontrollability of register.
This, in turn, causes the untestable faults in the circuit.

The reason that OPUS failed to identifyas the best register
to scan is that its algorithm is based predominantly on thestruc-
tural analysisof the sequential circuit. No information about
sequential behavior of the circuit (state transitions and the en-
coding) is used for the selection of scan registers. It becomes
clear, however, that the state transition information and the en-
coding of a sequential circuit are important factors in deter-
mining the noncontrollability of state registers. Thus, in order
to select partial scan registers, there is a need for techniques that
analyze the behavior of a sequential circuit overmultiple clock
cycles. Over and above, such techniques have to be computa-
tionally efficient in memory and time requirements. Implicit
state enumeration is an efficient technique that can be exploited
to analyze the behavior of the sequential circuit for testing pur-
poses.

Motivated by the above observation, we investigated how im-
plicit state enumeration could be used to assess flip–flop con-
trollability measures. Specifically, we can use this analysis to: 1)
identify noncontrollable flip–flops; 2) identify difficult-to-con-
trol flip–flops; and 3) exploit the information about the unreach-
able (or illegal) states, in order to select the best possible set of
scan flip–flops in a systematic and nongreedy fashion.

V. IDENTIFYING PARTIAL SCAN REGISTERSUSING IMPLICIT

STATE ENUMERATION

There have been a few attempts to use implicit state enumer-
ation to analyze the circuit behavior and exploit it for testing
purposes. Choet al. [31] used implicit state enumeration for
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test generation and redundancy identification. They used im-
plicit state enumeration to perform reachability analysis and
used this information during thestate justificationandstate dif-
ferentiationphases of test generation. Longet al. [32] also pro-
posed a BDD-based method to enumerate the unreachable states
and used this information to identify the sequentially untestable
faults. However, none of the above works targeted the partial
scan problem.

In this section, we present a new testability analysis frame-
work that uses implicit state enumeration to analyze the circuit
behavior in order to evaluate noncontrollability of flip–flops.
By carrying out reachability analysis on the circuit, not only do
we manage to enumerate the reachable and unreachable states
but also pin-point the noncontrollable and difficult-to-control
flip–flops. We use this flip–flop controllability information to
correctly target the registers to be scanned for partial scan de-
sign.

A. Noncontrollable Registers: Missing Transitions

We shall now explain, by means of an example, how non-
controllable flip–flops can be identified by implicitly traversing
the underlying state machine of a circuit. Consider again the ex-
ample circuit and its STG shown in Figs. 3 and 4, respectively.
Following are the next state equations (or next state transition
functions) of the example circuit:

(6)

(7)

(8)

From these encoded next state transition functions, the corre-
sponding transition relations can be readily derived as follows:

(9)

The given initial state of this circuit is
. The characteristic function of the set representing

the initial state can is represented as

(10)

The set of states directly reachable from the initial state
under the transition function can be computed as

IMAGE

Substituting the value of obtained from (9) and the
value of obtained from (10), and quantifying with respect
to (w.r.t.) input and present
state variables, we get

(11)

This implies that the forward image of the state
under the given transition function of the FSM (or equivalently,

the set of states reachable in one step from the initial state) is
. This can be verified by the STG and

the encoding of the circuit shown in Fig. 4. The above reacha-
bility computations when performed iteratively lead us to the
following state traversal:

That is, from , the directly reachable states in one step are
and . From and , the directly reachable state in one

step is , and finally and , at which point the entire reach-
able state space has been explored. Let us now examine the FSM
traversal trace for register

Notice that register can change its value from 1 to 0; i.e.,
it is possible to get a falling transition at the output
of . However, a rising transition is missing. In other
words, once gets the value 0, it can never obtain the value
1. Thus, register is unsettableto logic value 1 from logic
value 0. If certain registers cannot make some transition, then
it may not be possible for a test generator to justify the values
in the registers during its state justification phase. This, in turn,
may render some faults sequentially untestable. Such registers
are surely good candidates for scan (verify from Table I that
scanning register leads to a fully testable circuit). Thus, while
implicitly enumerating all the states in the set of reachable states
of a machine, by observing the values in all the flip–flops we
can identify those registers that do not make some transition and
select them for partial scan.

B. Difficult-to-Set Flip–Flops

Hartantoet al. [33] had suggested that identifying the states
that are difficult to traverse by the test generation tools can sig-
nificantly speed up test generation for sequential circuits. They
proposed a method to identify those flip–flops which were dif-
ficult to control. They defined the difficult-to-set flip–flops as
follows.

Definition V.1: A state element in a sequential machine
is difficult-to-setto a value if a test generator, under a speci-
fied time and backtrace limit, does not find an input sequence
that can bring the machine from its fully unspecified initial
state (consisting of all unknown values in the flip–flops and cor-
responding to the entire state space) to a state where the value
of is .

It was indicated that the method to identify difficult-to-set
flip–flops was dependent on the test generator used. To identify
these difficult-to-set flip–flops they had to modify the circuit
by creating a primary output at each flip–flop. A deterministic
test pattern generator was then used to test for stuck-at-0 and
stuck-at-1 faults at these lines transformed into primary outputs.
The difficult-to-set flip–flops were identified by observing the
values at the output of each flip–flop.

We present a method to identify such difficult-to-set
flip–flops that does not require any circuit modifications.
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Also, our model to identify difficult-to-set flip–flops does not
depend on any test generator. While implicitly enumerating the
reachable states of a circuit, for each register we evaluate the
largest number of states successively traversed in a sequence,
for which the flip–flops do not change their values. In other
words, for each register, we record the length of the longest
sequence of 0s and 1s (whichever is greater), which indicates
the difficulty in setting a flip–flop to a particular value. To
find such difficult-to-set flip–flops, we define a term,degree of
unsettability, of a flip–flop.

Definition V.2: The degree of unsettabilityof a flip–flop is
defined as the length of the longest sequence of states in the
implicit traversal trace of an FSM, for which a flip–flop does
not change its value.

Scanning such difficult-to-set flip–flops, identified by their
degree of unsettability, would help in detecting the diffi-
cult-to-test faults. The reason for this can be explained as
follows. If a test generator has to justify a value in a register,
say a value 1, and it encounters a backtrace path of a long
sequence of 0s, then it may have to backtrace many time frames
in search for a value 1. In doing so, it may abort such faults and
classify them as difficult-to-test, which may lead to reduced
fault coverage.

C. Sequentially Untestable Faults: Targeting the Illegal States

Knowledge of state space is known to be quite useful in
causing early backtracks in test generation. Test generators
often spend a significant amount of time on undetectable faults
as they eventually have to backtrack a large subset of the state
space in order to prove that the values in the registers cannot be
justified due to the unreachable states. A powerful technique for
proving the undetectability of the faults is the identification of
illegal states. Formal methods [26], [27], [31] and other recent
approaches based on BDDs [32] are widely used to identify
illegal states. After computing the reachability information
using implicit state enumeration on an FSM, all the reachable
states are stored implicitly in a BDD. Complementing this
BDD results in the set of all the unreachable states.

We use the information on the unreachable states to target the
selection of scan flip–flops. Fig. 5 enumerates all the unreach-
able states of an MCNC benchmark example. All these states
are stored implicitly using a BDD which represents the charac-
teristic function of this set of unreachable states.

It is clear from the list of all the unreachable states that reg-
ister would be a good candidate for scan. This is because
in all the unreachable states, takes the value 1. Hence, in the
reachable state set, it would be difficult to setto 1. Let us de-
note the characteristic function of the set of unreachable states
by . In this case, is unatein variable . Now the
problem of identifying the noncontrollable registers from the il-
legal state set could be transformed into one of identifying that
state variable over which is unate.

However, no claims can be made about the unateness of the
characteristic functions of the unreachable state set of an FSM
in general. Some functions may not be unate in any of the vari-
ables in their support set, whereas some may be unate in all the
variables in their support. Hence, it is necessary to define (with
some abuse of terminology) thedegree of unatenessfor each

Fig. 5.

state variable in order to measure the noncontrollability of the
registers.

Definition V.3: Let represent the characteristic func-
tion of the set of all the illegal states of an FSM. Let be a
variable in the support of . The absolute value of the dif-
ference between the number of zeros and ones that a variable

can take in the domain of is defined as thedegree of
unatenessof variable .

Using the above measure of noncontrollability, we can select
the register for partial scan that has the highest degree of unate-
ness. However, two or more registers may have the same mea-
sure of the degree of unateness (as is the case with registers
and in Fig. 5). For this reason, we need to simultaneously
take into account their degree of unsettability in order to differ-
entiate between their relative noncontrollability measures.

D. Overall Noncontrollability Measures of Flip–Flops

From the above-mentioned techniques, we can now define the
overall noncontrollability measure of each flip–flop of the
circuit as follows:

Noncontrollability degreeof unsettability

degreeof unateness (12)

In other words, the overall noncontrollability measure of
flip–flops is the sum of their respective degrees of unsettability
and unateness. The addition (sum) of the unsettability and the
unateness measures properly addresses the issues of both state
machine reachability and unreachability. If all the states of the
circuit are reachable, i.e., the unreachable state set is empty,
the degree of unateness is zero, and the degree of unsettability
dictates the noncontrollability measure. In contrast, for a
machine that has a much higher number of illegal states than
legal states, chances are that the degree of unateness would
bias the noncontrollability measure in its favor. The “middle
ground” would be achieved when the machine has comparable
reachable and unreachable state set size, in which case both
unsettability and unateness measures would evenly contribute
to the noncontrollability measure of the flip–flops.

VI. THE SIMPSON ALGORITHM

Based on the flip–flop controllability analysis techniques out-
lined above, we present an algorithm, Scan register selection
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Fig. 6.

using IMPlicit State enumeratiON (SIMPSON), that uses im-
plicit state enumeration to analyze the behavior of the sequen-
tial circuit in order to select the noncontrollable state registers
for partial scan.

The algorithm SIMPSON, shown in Fig. 6, proceeds as
follows. Using symbolic image computation, the FSM is
traversed implicitly. During each reachability step of the FSM
traversal, both rising and falling transitions on each register
are recorded. Also, during the FSM traversal thedegree of
unsettability (length of the longest sequence of 0s or 1s,
whichever is greater) for each memory element is recorded.
After the completion of FSM traversal, if a register is found to
be missing either a rising or falling transition, it is selected for
scan. Furthermore, from the implicitly enumerated reachable
states, the unreachable states of the circuit are computed. From
this set of unreachable states, thedegree of unatenessof each
state variable is computed. Subsequently, the overall noncon-
trollability measure for each flip–flop (sum of their unateness
and unsettability measures) is computed. The state variables
are then sorted in terms of the decreasing order of their degree
of noncontrollability. The algorithm lists the memory elements
of a sequential circuit in decreasing order of the degree of
their noncontrollability with the most noncontrollable memory
element at the top of the list.

The above algorithm was programmed within the VIS [34]
tool-set. VIS provides a robust platform for performing reacha-
bility analysis using symbolic image computations. The sets of
states and transition relations of the FSM are stored in memory
using ROBDDs. The CUDD [35] package was used for storage
and manipulation of sets of states, Boolean functions, and re-
lations. Using SIMPSON, extensive experiments on a set of
MCNC and ISCAS’89 benchmarks were carried out on a Sun
UltraSparc5 workstation with 320 MBytes of RAM.

Let us first demonstrate how the flip–flop noncontrollability
measures computed by SIMPSON distinguish between the
relative noncontrollabilities of the flip–flops of a circuit.
Consider the following testability statistics corresponding to
the ISCAS’89 benchmark circuit . This circuit has a total
number of five flip–flops. Its nonscan fault coverage is 93.4%
(813 detected faults/870 total faults). Its full-scan fault coverage
is 98.39% (856 detected faults/870 total faults). Table II lists
the flip–flops ordered by SIMPSON according to the degree
of their noncontrollabilities. The respective ATPG statistics
obtained by scanning each of these latches individually are
also reported. Flip–flop G38 has the highest noncontrollability
measure. By scanning this latch and generating tests using the
ATPG tool HITEC [30], 98.39% fault coverage was achieved.
The flip–flop G41 is next most noncontrollable flip–flop.
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TABLE II

Scanning this flip–flop allows us to achieve 97.47% fault
coverage. This fault coverage is less than that achieved by
scanning the most noncontrollable flip–flop G38, but more
than that achieved by scanning the ones down the order. From
the table it is clear that the estimated noncontrollabilities are
in accordance with their observed test generation and fault
coverage statistics.

Let us now observe the experimental results carried out using
SIMPSON over a large number of the ISCAS’89 benchmark
circuits and analyze how they compare with the ones obtained
by using contemporary partial scan approaches. The results de-
picted in Table III are compared with both the structural analysis
(cycle breaking) and the SCOAP testability analysis approaches
used by OPUS.

A. Analyzing the Results

Results depicted in Table III require some explanation. Three
different techniques were used to select partial scan registers.
First, using the structural analysis/cycle breaking option of
OPUS, partial scan registers were selected. The structural
analysis option of OPUS automatically selects the minimum
number of scan flip–flops required to break all cycles/loops
in the design. After scanning the selected registers, tests for
the circuits were generated using the sequential circuit test
generator HITEC [30], and the fault coverage achieved was
recorded. Next, the SCOAP testability analysis option of
OPUS was used to select partial scan registers. The SCOAP
testability option of OPUS does not automatically select the
number of registers to scan for high fault coverage. It lists all
the flip–flops of the circuit sorted according to their SCOAP
controllability/observability measures. For our experiments
with the SCOAP testability option of OPUS, we selected the
same number of registers to scan as suggested by its cycle
breaking option. The selected registers were scanned, the
test vectors generated, and the fault coverage was recorded.
Finally, SIMPSON was used to select partial scan registers.
The testability statistics presented for SIMPSON in Table III
show theminimumnumber of scan registers required to achieve
higher or equally highfault coverage as that obtained by
using OPUS. The results are very encouraging. For almost all
examples, SIMPSON suggests a better set of registers to scan
than OPUS; by selecting fewer registers for scan, higher fault
coverage is achieved.

Let us first compare the results obtained by using the “cycle
breaking” option of OPUS with those obtained by using
SIMPSON. For benchmarksfalse, s1488, s344,and s820,
OPUS and SIMPSON select the same number of registers
for scan. However, SIMPSON selects different registers than
OPUS and provides higher fault coverage. For benchmark
s1494, OPUS and SIMPSON select the same registers for
scan and hence their testability statistics are identical. For

benchmarks838, VIS was unable to completely traverse the
FSM in acceptable time. The BFS traversal did not converge
because the reachable state set of this machine is very large.
Also, since the size of the image computed at each iteration
is relatively small, it requires too many iterations of image
computation to converge to a fix point. For benchmark ,
VIS could not complete the traversal because of memory
limitations. The set of reachable states was too large to be
compactly represented by a monolithic BDD. In all other cases
SIMPSON selects fewer registers for scan than OPUS and
provides higher fault coverage. For none of these benchmarks
does SIMPSON produce worse results than OPUS.

Let us now compare the results obtained by using the
“SCOAP testability analysis” option of OPUS with those
obtained by using SIMPSON. For benchmarkss1488ands344,
OPUS and SIMPSON select the same registers for scan and
hence their testability statistics are identical. For benchmark
s820 and s1494, OPUS and SIMPSON select the same number
of registers for scan. However, SIMPSON selects a different
register than OPUS and provides higher fault coverage. For all
other benchmarks, SIMPSON selects fewer registers for scan
than OPUS and still provides higher fault coverage. Thus, it
can be concluded from the results that the testability analysis
techniques used by SIMPSON to select noncontrollable state
registers for partial scan are not only very accurate but also
superior to the conventional state-of-the-art techniques used by
OPUS.

Notice that the SIMPSON algorithm is not designed to an-
swer the question: “How many flip–flops should be selected for
partial scan?” It only provides an ordered list of flip–flops based
on their noncontrollability measures. Selecting flip–flops for
scan affects the circuit adversely with respect to area and timing
characteristics. Test engineers often have to provide scan-based
design-for-test solutions within the area/timing constraints im-
posed on the designs. With the above issue in mind, the deci-
sion on the number of flip–flops to select for partial scan is left
as a prerogative of the designer. With the above experiments,
we only wish to demonstrate the accuracy of the noncontrolla-
bility estimates used by SIMPSON to differentiate between the
flip–flops for scan design.

B. Extension to SIMPSON: Incorporating Latch Correlations

The approach used by SIMPSON is still quite greedy. It
does not take into account interdependencies and correlations
among state registers. By scanning a register, it may become
possible to indirectly control other registers. Scanning such
indirectly controllable registers would be unnecessary. Thus,
a straightforward extension to SIMPSON would be the incor-
poration of a technique that analyzes latch dependencies and
correlations. Choet al. [22] suggested a model to evaluate
latch dependencies, latch affinities, and latch correlations. They
used it to decompose the complete state space of a huge FSM
into interacting FSMs so that implicit state enumeration could
now be carried out on decomposed FSMs, each of a relatively
smaller size. Such a model could be readily incorporated within
SIMPSON. While selecting a set of scan registers, correlations
of all the registers with respect to a preselected scan element
could be analyzed to select the next best candidate for partial
scan.
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TABLE III

However, the model to evaluate latch dependencies and cor-
relations proposed by Choet al. in [22] is based predominantly
on the structure and topology of the circuit. Such structural
models for analysis of latch correlations have a drawback as
they cannot take into accountfalse dependenciesamong the
state registers (e.g., function does not depend on
). The issue of combinational false dependencies can still be

resolved efficiently; however, the presence of sequential false
dependencies among registers, such as register-to-register mul-
ticycle false paths, significantly complicate the analysis [18].
Techniques that could efficiently analyze “functional” depen-
dencies and correlations among the state registers of a circuit
need to be developed.

Fortunately, by using SIMPSON iteratively, we can indirectly
take into account correlations among state registers as follows.
By scanning a register, some of the previously unreachable
states become reachable and the size of the unreachable state
set should shrink. As the state space of the underlying FSM
of a circuit changes, so do the controllability measures of the
flip–flops. Thus, after selecting a register for scan (modifying
the circuit by converting the flip–flop into a primary input
and output) we could recompute the set of reachable and un-
reachable states and apply the algorithm again on the modified
circuit. In this way, we can use SIMPSON iteratively while
selecting the single most noncontrollable memory element for
scan during each iteration. This would help us in avoiding those
registers that can be indirectly controlled by scanning other
registers in a more systematic and nongreedy fashion. Table IV
presents the results of using the above extension to SIMPSON.

Interestingly, for most benchmarks (s510, s344, s349, s641,
s713, and s382) iterative application of SIMPSON results in se-

TABLE IV

lection of the same registers for scan as selected by its one-pass
application, hence the identical fault coverage and testability
overhead statistics. As no knowledge about the degree of cor-
relation among the registers for these benchmarks is available,
it is difficult to explain precisely why the greedy one-pass ap-
proach of SIMPSON performs just as well as the iterative ap-
proach. One possible reason could be that the selected scan reg-
isters do not have a high degree of correlation among them. For
the benchmarks1488, the iterative application of SIMPSON re-
sults in fewer scan registers with equally high fault coverage.
For all other benchmarks (s400, s444, and s1494), higher fault
coverage is achieved with the same number of scan registers by
using SIMPSON iteratively. Iterative application of SIMPSON
never produces worse results than those obtained by its one-pass
counterpart.

C. Limitations of Simpson

SIMPSON, however, suffers from all the drawbacks associ-
ated with implicit state enumeration techniques using BDDs.
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For very large circuits, BDDs are known to suffer from the state
explosion problem since they have worst case memory require-
ments exponential in the size of the support set. This makes them
impractical to represent large sets of reachable and unreachable
states. Also, the CPU time used by SIMPSON can be a limiting
factor in evaluating the scan flip–flops for very large circuits. As
it can be observed from Table III, the processing time used by
OPUS is a small fraction of that used by SIMPSON. The larger
CPU time requirements for SIMPSON can be attributed to the
iterative reachability computations performed while state enu-
meration. Use of dynamic variable ordering methods to limit the
increase in the size of BDDs can further enhance the computa-
tion time.

As it becomes infeasible to represent and manipulate the set
of all the reachable and unreachable states for very large circuits
using BDDs, approximate reachability analysis [22], [23] can be
carried out to analyze the behavior of the underlying sequential
machine. Approximate reachability analysis avoids the BDD ex-
plosion problem because it allows us to represent a superset of
reachable states of the machine as the product of smaller sub-
sets, such that BDDs of their characteristic functions can be built
and processed easily. Approximate reachability analysis trades
off accuracy for space efficiency. The remainder of the paper
analyzes how we can use approximate FSM traversal in order to
estimate the noncontrollability of flip–flops and target them for
partial scan design.

VII. A PPROXIMATE REACHABILITY ANALYSIS

In Section VI, we observed the practical limitations of the
exact FSM traversal techniques to implicitly enumerate the
states of a sequential circuit. We now review approximate
reachability analysis techniques to estimate the upper bound on
the set of reachable states of an FSM. Choet al. [23] presented
techniques to decompose the state space of a large machine into
smaller submachines and then perform reachability analysis
on the resulting component machines to overapproximate the
overall reachable state set. In what follows, we first describe
the basic theory behind state space decomposition and then
describe the approximate FSM traversal technique used in the
context of this paper. For a detailed analysis of state space
decomposition and approximate FSM traversal, the reader is
referred to [22] and [23].

A. State-Space Decomposition

Let be the set of state variables of an FSM,, associated
with a circuit . A state variable partition of is a partition of

. A state variable partition induces astate space decomposi-
tion (SSD). Let be a state variable partition
that partitions into components. Each component rep-
resents a Boolean subspace consisting of the coordinate vectors
corresponding to the state variables in.

Let be a set of states of the circuit. Given a state variable
partition , theprojectionof on is defined
by

(13)

Let be the transition function BFV for the original ma-
chine. The state variable partition further
induces a partition on the following.

1) A partition on as ; this is called a BFV
partition. In other words, each block,, of the state vari-
able partition identifies a set of next state function com-
ponents . Each component can be seen as the next
state BFV of a sub-FSM of the original machine.

2) A partition on the original machine as ,
where each is a sub-FSM given by

, where ,
is the total number number of state variables,is the

number of state variables in partition, , is
the transition function BFV of , and is the identity
function from to itself.

The set constitutes the SSD FSM network ob-
tained from partitioning the original machine. The primary in-
puts of are shared by the s and the communication be-
tween s is through the state variables in. The state variables
local to a sub-FSM , i.e., those that appear in partition, are
called local state variables. State variables not in partition ,
but appearing in the support of , are termed aspseudopri-
mary inputsof the submachine . Note that SSD is intended
solely for reachability analysis purposes and, therefore, the cor-
responding partitioning of the output function BFV,, of the
original FSM, , is intentionally left out [23].

B. Machine Partitioning for SSD

The accuracy and efficiency of the approximate traversal ap-
proach strongly depends upon the latch set partitioned into sub-
sets to obtain state space decomposition. Using intelligent ways
to partition the machine the accuracy of approximate reacha-
bility analysis can be significantly improved. Choet al. [22]
showed that this can be achieved by taking into account the
circuit structure while performing state space decomposition.
The information provided by evaluating the mutual relation-
ships among groups of latches can be efficiently exploited for
this purpose. They proposed to evaluate latchconnectivity, cor-
relation, and affinity measures to identify latches that can be
grouped together to create machine partitions.

Connectivity, , measures the mutual dependency between
two state registers , . In other words, it indicates whether or
not the next state function of state variablehas state variable

in its support. While connectivity accurately models the de-
gree of dependency among state variables, it does not consider
the overall relationship between pairs of state variables induced
by shared primary inputs, structure of the next state logic, and
so on. To this end, they proposed another measure called latch
correlation, , that facilitates the systematic evaluation of the
functional relationship between two latches, . State vari-
ables with a high degree of correlation need to be grouped to-
gether so that the resulting transition function BFVs have a small
image, or at least a small image when constrained. This results
in sub-FSMs whose approximate traversal provides a smaller,
more accurate, reachable state set.

Connectivity and correlation are distinct measures of struc-
tural relationship between state variables. It is important to take
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Fig. 7.

into account both connectivity and correlation simultaneously.
For this reason they defined latchaffinity, , as a weighted av-
erage of latch connectivity and correlation measures

(14)

where . From the computed affinities among all pairs
of state variables of the circuit, a state variable affinity graph
is created. An initial partition is created by grouping together
the elements of the strongly connected components (SCCs) of
the state variable affinity graph. Larger components are then
broken and smaller ones are aggregated using seed/clustering
techniques to partition the overall machine [22].

Fig. 7(a) depicts how the identification of SCCs of a hypo-
thetical state variable affinity graph corresponds to machine
partitioning. In the figure, the nodes labeled represent
the flip–flops of the circuit. By grouping together the flip–flops
of an SCC, a state variable partition is
created. The state variable partition further induces a corre-
sponding partition on the original transition function BFVs
as . Sub-FSMs s can now be associated with
each partition. FSM traversal can then be performed on each of
these sub-FSMs to approximate the reachable state set.

Fig. 7(b) depicts the FSM dependency graph derived by col-
lapsing together all the nodes of each SCC of the affinity graph.
Formally, anFSM dependency graphis a directed graph,

, where is the set of sub-FSMs and
is a set of directed edges such that if a local state variable of
is a pseudoprimary input of then, . This

graph is used to compute a topological order of the sub-FSMs
which, in turn, defines the order in which these submachines
are traversed during approximate FSM traversal.

is one such order.

C. Approximate FSM Traversal

Once the state variable set of a large FSM is partitioned, it cre-
ates multiple Boolean subspaces of the original state space. Each

subspace implicitly defines a sub-FSM which is a part of the
original machine. Each of these sub-FSMs can be traversed im-
plicitly using the procedure BFS_TRAVERSAL as described in
Fig. 2 to compute the set of reachable states in its corresponding
subspace. The state variables belonging to other submachines,
but appearing in the support of the submachine being traversed,
may be treated as pseudoprimary inputs. Once all the sub-FSMs
have been traversed, the overall reachable states of the orig-
inal FSM can be approximated by computing the product of the
reachable states of the sub-FSMs. This is an overapproxima-
tion (upper bound) of the reachable states of the original FSM.
The overall problem is thus reduced to multiple application of
the exact traversal procedure to subproblems of affordable size,
whose solutions can be found efficiently.

However, the adverse effect of partitioning/decomposition is
the loss of precision in the computation of reachable and un-
reachable states. This is because when a submachine is sepa-
rated from the other components of the system, it acquires addi-
tional degrees of freedom in its behavior. An important aspect of
approximate FSM traversal is to how to minimize the loss of pre-
cision in the computation of reachable states while completing
the approximate traversal in acceptable time and memory limits.

The approximation of the reachable states can be consider-
ably improved if the interaction between the sub-FSMs is prop-
erly modeled. This is a crucial issue as it helps reduce the de-
grees of freedom introduced by state-space decomposition. In
[23], two generic approximate FSM traversal methods were pre-
sented that differ in the way the interaction between FSM is
modeled during BFS traversal. These methods are listed below.

• Machine-by-Machine Traversal:Machine by machine
(MBM) traversal, as the name suggests, processes the
sub-FSMs one at a time during one least fixed point
computation. The sub-FSMs are processed serially and
iteratively, until a fixed point in the computation of
overapproximated reached state set is obtained.

• Frame-by-Frame Traversal:Frame by frame (FBF) tra-
versal handles the sub-FSMs in parallel, and the overall
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Fig. 8.

traversal is aone-sweepoperation. Each sub-FSM is
started in its initial state and the image of that set is
computed. As a result, all machines move one time frame
ahead. Then another coordinated image computation
is performed, one per each sub-FSM, and so on. The
algorithm terminates when the computed reached state
set converges. Two variants of the FBF traversal methods
were proposed:reached frame by frame(RFBF) andto
frame by frame(TFBF). The two variants differ in the
way the convergence check is performed.

For the purpose of our work, we use thereached frame by
frame(RFBF) technique to estimate the noncontrollability mea-
sures of the flip–flops of the circuit. The reasons for choosing
the RFBF approximate reachability technique over the others
are as follows. While the MBM technique converges faster than
the other two, the overapproximated reachable state set com-
puted is farther away in precision from the exact reached state
set as compared with RFBF and TFBF traversal. This results
in a significant loss of information of the reachable states. On
the other hand, TFBF computes the upper bound on the reach-
able state set closest to the exact reachable set. However, as a
more accurate upper bound is estimated, tighter constraints are
required to model the interaction between sub-FSMs. Because
of a tighter constraint set, TFBF requires more image computa-
tions to converge; this results in longer CPU times to complete
the traversal. The RFBF traversal technique is an accuracy–time
tradeoff between MBM and TFBF and is hence used for the pur-
pose of evaluating noncontrollability measures of flip–flops.

The RFBF traversal algorithm, taken from [23], is reproduced
in Fig. 8. The subscripts denote decomposed machines and su-
perscripts denote the current reachability iteration. The algo-
rithm proceeds as follows. It takes as input the SSD FSM net-
work, i.e., the sub-FSMs s, and the corresponding decom-
posed set of initial states , where , thepro-
jectionof the initial states for the given partition. The current
reachedstate set is used to impose constraints on the pseudopri-

mary inputs of the sub-FSMs being traversed (the SSD_CON-
STRAIN operation in the algorithm). This is performed in order
to reduce the information loss due to machine decomposition.
Suppose is the sub-FSM being traversed and be its fanin
FSM as computed by the FSM dependency graph. The local
state variables of that are not pseudoprimary inputs of
are existentially quantified from the reachedset. This quan-
tified reached set is imposed as a constraint on of .
The procedure is applied for all fanin sub-FSMs of . The
bdd_constrainoperator, as defined byCoudert et al.[26], is
used for this purpose. RFBF converges when reachedfor all

s converges. It has been shown [23] that the algorithm is
guaranteed to converge to a fix point and the set of reachable
states thus computed is an overapproximation of the exact reach-
able states.

VIII. T HE SAMSON ALGORITHM

Based on the approximate FSM traversal algorithm RFBF
described in the previous section, and the flip–flop noncon-
trollability measures presented in Section V, we present an al-
gorithm Scan register selection using ApproxiMate State enu-
meratiON (SAMSON) to evaluate the noncontrollability mea-
sures of flip–flops of a circuit. SAMSON, described in Fig. 9,
takes as input a large sequential circuit, partitions it into sub-
FSMs, and performs approximate reachability analysis using
symbolic image computations on individual sub-FSMs (RFBF
traversal procedure). During each image computation step for
a sub-FSM, we record thedegree of unsettabilityfor eachlocal
state variable. Once the traversal terminates for all submachines,

s contain the reachable states of sub-FSMs s.
The upper bound on the overall reached state set is then com-
puted as a cartesian product of all ; this is stored in
over_approx_reached. Complement of this overapproximated
reached state set results in an underapproximation of the overall
unreachable state set. From this underapproximated set of un-
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TABLE V

reachable states, we compute thedegree of unatenessfor each
state variable of the original machine. The overall noncontrolla-
bility of all flip–flops can then be evaluated by adding their re-
spective degrees of unsettability and unateness. The flip–flops
of the entire circuit are then sorted in decreasing order of their
noncontrollabilities.

Note that unlike SIMPSON, SAMSON does not examine
missing rising and falling transitions for any flip–flop. Since the
traversal is performed on partitioned sub-FSMs individually, a
missing transition on a local state variable does not guarantee
the same behavior in the overall machine. We have noted
experimentally that by scanning such flip–flops, which corre-
spond to missing rising or falling transitions in their respective
sub-FSM traversal trace does not necessarily contribute to the
improvement in the overall fault coverage.

SAMSON was programmed within the VIS toolset and exper-
iments were carried out using the ISCAS’89 benchmark circuits
that contained a larger number of flip–flops (FFs30). The re-
sults depicted in Table V are compared with OPUS using both
the structural analysis/cycle breaking and the SCOAP testability
analysis options.

A. Analyzing the Results

Our experimental setup requires some explanation. First, the
structural analysis/cycle breaking option of OPUS was used to
select the partial scan registers. OPUS automatically selects the
minimum number of scan registers required to break all the
loops in the design. After scanning the required registers, the
ATPG tool HITEC was used to generate tests and the observed
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fault coverage was recorded. Next, the SCOAP testability op-
tion was used to select partial scan registers. SCOAP testability
option does not automatically select the number of registers to
be scanned. It only evaluates and orders the state registers in
terms of their SCOAP controllability/observability measures.
For our experiment with the SCOAP option of OPUS, we used
the same number of scan registers as suggested by the cycle
breaking option of OPUS. After scanning the required registers,
tests were generated and the testability statistics were recorded.
Finally, we used the SAMSON algorithm to order the registers
in terms of their noncontrollability measures. The number of
registers scanned was again kept the same as suggested by the
cycle-breaking option of OPUS in order to make a fair com-
parison. The requisite number of registers was scanned and test
generation was carried out.

Machine partitioning is an important issue with SAMSON, as
the nature and size of the partitioned machine affects the preci-
sion of the approximation of reachable states. While it is true
that by creating smaller partitions the approximate FSM tra-
versal would converge quickly, it would, however, result in a sig-
nificant loss of precision on reachable states. The larger the size
(in the number of state variables) of partitioned sub-FSMs, the
fewer the number of partitions and more accurate the approxi-
mation. However, image computations on large partitions would
require excessive CPU time and memory and would make the
entire process infeasible. From our previous experiments with
exact reachability analysis, we had observed that exact FSM
traversal techniques cannot efficiently handle circuits that con-
tain more than 30 flip–flops (approximately). For this reason,
we imposed a restriction on the machine partitioning algorithms
so as to includeno more than 30 flip–flopsin each partitioned
sub-FSM.

The results obtained by SAMSON compare favorably with
those obtained by OPUS. For all benchmark circuits other than

, the scan registers selected by SAMSON provide higher
fault coverage than those selected by both options of OPUS. The
CPU times for SAMSON, while longer than those for OPUS,
are certainly not impractical. The CPU times for SAMSON can
be attributed to the time required for: 1) machine partitioning;
2) iterative image computations; 3) the constraining of parti-
tioned transition relations; and 4) computing the noncontrolla-
bility measures for all the flip–flops. By investing some time in
performing the above computations, SAMSON selects a better
set of registers to scan than OPUS and provides higher fault cov-
erage.

For the benchmark the cycle breaking option of OPUS
selects 30 scan registers and provides 93.4% fault coverage,
while the same number of registers scanned using SAMSON
provides only 88.6% fault coverage. We analyzed this circuit to
find the reasons for the poor performance of SAMSONvis-a-vis
OPUS. We made the following observation. The affinity graph
of the circuit has only one strongly connected component (SCC)
consisting of 124 flip–flops. Since we limit our partition size
to 30 flip–flops, this SCC gets broken and we are unable to
create a sub-FSM that encompasses this SCC. Intuitively, if
a sub-FSM entirely contains all the flip–flops of an SCC of
the circuit, the interaction between the flip–flops can be mod-
eled more efficiently for FSM traversal. This may potentially
lead to a better approximation of overall machine reachability.

By breaking this SCC into different sub-FSMs, we allow ad-
ditional degrees of freedom on the state variables and are un-
able to model their interaction efficiently. We conjecture that it
is perhaps for this reason that the noncontrollability measures
evaluated by SAMSON for the flip–flops of are inaccu-
rate. Unfortunately, since it is computationally infeasible to per-
form implicit state enumeration on a partition that would contain
this SCC (124 flip–flops), there is no way to verify whether the
above is really the case.

However, similar observations on other benchmarks support
our intuition. For example, the benchmark has 17 SCCs.
Only 1 out of the 17 SCCs contains 252 latches and the rest of
the 16 SCCs contain fewer than 30 latches. These SCCs are con-
tained entirely within a partition. Note that for this benchmark,
SAMSON provides higher fault coverage (84.2%) as compared
with OPUS (77%). Perhaps by encompassing the SCCs within
partitions we were able to model their interaction more effec-
tively.

B. Iterative Application of SAMSON

In Section VI-B, we had discussed that by scanning a reg-
ister it may become possible to indirectly control other regis-
ters of the circuit. Scanning such indirectly controllable regis-
ters should then be unnecessary. Subsequently, we had argued
that by using SIMPSON iteratively, i.e., by selecting the most
noncontrollable flip–flop for scan in each iteration of SIMPSON
and modifying the circuit by transforming the flip–flop into pri-
mary input and output, we could avoid selecting such indirectly
controllable flip–flops for scan. Analogous to the iterative appli-
cation of SIMPSON, we analyze the effect of using SAMSON
iteratively on the above larger circuits of the ISCAS’89 bench-
mark suite.

Since the circuits experimented with SAMSON contain
a large number of flip–flops, selecting only one (the most
noncontrollable) flip–flop for scan in each iteration would
make the entire scan selection process too time consuming.
For this reason, we experimented with two different criteria for
selecting a set of scan registers in each iteration. The results are
depicted in Table VI in columns “Iterative SAMSON—1” and
“Iterative SAMSON—2” and are compared with the results
obtained by using the one-pass application of SAMSON. The
total number of flip–flops selected for scan in each experi-
ment is kept the same as that for the one-pass application of
SAMSON.

Iterative SAMSON—1:Recall that SAMSON decomposes
a large FSM into smaller ones and then performs reachability
analysis on the individual sub-FSMs. Therefore, for the first
set of iterative experiments with SAMSON, we select the most
noncontrollable flip–flop fromeach partitioned submachine, in
every iteration. In other words, we select one (the most non-
controllable) flip–flop for scan per sub-FSM per iteration. After
the flip–flops are selected for scan, one from each sub-FSM of
the SSD FSM network, their present state and next state lines
are transformed into primary inputs and outputs of the circuit.
SAMSON is again applied on the modified circuit and another
set of flip–flops is selected for scan, one from each sub-FSM.
The process terminates when the required number of flip–flops
has been selected for scan.
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TABLE VI

By modifying the scan flip–flops into primary inputs and
outputs, not only does the state space of the original machine
change, but the structure of the circuit (and hence the latch con-
nectivity, correlation, and affinity measures) also undergoes a
change. This means that when the modified circuit is again par-
titioned for approximate FSM traversal, the new SSD FSM net-
work may potentially be vastly different from the ones obtained
in previous iterations.

The results obtained by experimenting with the above tech-
nique are not encouraging. For almost all the circuits, the fault
coverage achieved by selecting scan flip–flops one per sub-
machine per iteration is worse than that achieved by using the
one-pass approach of SAMSON. We analyzed the submachines
and the testability measures of the corresponding flip–flops
to find the reasons behind the apparent failure of this tech-
nique. We found that some submachines contained flip–flops
whose noncontrollability measures were low, suggesting that
the corresponding sub-FSM was an easily testable machine.
Easily testable machines may not require scan to provide high
fault coverage of the area corresponding to their portion of
the circuit. On the other hand, some submachines contained
a significant number of flip–flops whose noncontrollability
measures were very high, suggesting that the corresponding
sub-FSM was a difficult to test machine. Such sub-FSMs may
require a high degree of scan to cover the faults corresponding
to their portion of the circuit. Selecting the easily controllable
flip–flops for scan, while omitting the ones that belong to a
difficult to test submachine, is the main cause of the reduced
fault coverage. Clearly, selecting one flip–flop per sub-FSM
per iteration is not an effective strategy to obtain a good set of
scan flip–flops for high fault coverage.

Iterative SAMSON—2:We have argued that selecting one
flip–flop for scan in each iteration of SAMSON would be too
time consuming. Therefore, in our second set of iterative ex-
periments, instead of selecting one scan register per iteration,
we propose to select a predetermined number of scan regis-
ters in each iteration. For our experiments, in each iteration of
SAMSON, we selected 25% of the required number of scan reg-
isters, limiting the number of iterations of SAMSON to four.
For example, for the benchmark , the required number
of scan registers is 30. Since 25% of 30 is 7.5, we select eight
(rounding up 7.5 to 8) scan registers in each of the first three
iterations and the remaining six in the last one. After each itera-
tion of SAMSON, the selected scan registers are transformed
into primary inputs and outputs and the algorithm is applied
again, and so on. The results, when compared with “Iterative
SAMSON—1” are better in terms of fault coverage. When com-
pared with the one-pass approach of SAMSON, the fault cov-
erage achieved is marginally better though it comes at the cost
of higher CPU times. For example, for the benchmark ,

the improvement in fault coverage is only 0.7%, and it comes
at a cost of more than triple the investment in CPU time. As far
as the achieved fault-coverage/CPU-time tradeoff is concerned,
from the experiments one can conclude that the one-pass ap-
proach of SAMSON is a better option.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach to the partial scan
problem that analyzes the circuit state information in order to
evaluate the noncontrollability of flip–flops. Implicit state enu-
meration is used as a tool to analyze the reachable and unreach-
able state space of the underlying FSM of the sequential cir-
cuit in order to evaluate its testability measures. An algorithm,
SIMPSON, has been proposed and the results have been pre-
sented which demonstrate the importance of using the circuit
state information in order to evaluate the noncontrollability of
the flip–flops. As compared to conventional state-of-the-art par-
tial scan register selection techniques, our approach performs
better; by selecting fewer scan registers, higher or equally high
fault coverage is achieved.

However, SIMPSON suffers from BDD size explosion prob-
lems and is computationally expensive and slow for very large
circuits. The excessive CPU time requirements arise from the
iterative reachability computations performed while state enu-
meration. As it becomes infeasible to represent and manipu-
late the set of all the reachable and unreachable states for very
large circuits using BDDs, the use of approximate reachability
analysis is proposed to analyze the behavior of the underlying
sequential machine. Approximate reachability analysis avoids
the BDD explosion problem because it allows us to represent a
superset of reachable states of the machine as the product of
smaller subsets, such that BDDs of their characteristic func-
tions can be built and processed easily. We presented an algo-
rithm, SAMSON, that exploits the power of approximate im-
plicit FSM traversal techniques to estimate the noncontrollabili-
ties of flip–flops. These most noncontrollable flip–flops are tar-
geted for partial scan design. Approximate FSM traversal re-
sults in some “loss of information” of the reachable and un-
reachable state sets of the machine. However, we demonstrated
by experiments that such a loss does not significantly affect the
proposed noncontrollability measures evaluated on the approx-
imated state sets. Using our techniques, we are able to select
a better set of scan registers that provide higher fault coverage
than that achieved by using contemporary scan register selec-
tion techniques, though at the cost of higher computation times.

We also discussed how the scanning of a register changes the
state space of the underlying machine and, as a result, affects
the ranking of the flip–flops according to their noncontrolla-
bility measures. We analyzed the effect of iterative application
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of the proposed algorithms while selecting only one flip–flop
(in the case of SIMPSON) or a set of flip–flops (in the case of
SAMSON) in each iteration. While iterative application of the
presented algorithms does provide higher fault coverage, the im-
provement in fault coverage is often marginal, and it is achieved
at the expense of significant amount of CPU times.

The testability measures of flip–flops proposed in this paper
address not only the noncontrollable and difficult-to-control
registers, but also take into account the unreachable states of
the machine that contribute to the sequentially untestable faults.
While we have shown how to model the noncontrollability of
flip–flops using state machine transitions, it is not clear how to
address the issue ofobservabilityusing implicit FSM traversal.
This topic is worthy of future research. Further, the techniques
presented in the paper are well suited for finite state machines,
i.e., sequential circuits with feedback. It is not clear how
the proposed techniques can be modified to identify pipeline
registers for partial scan. Also, if the designs contain RAMs,
it would be interesting to research whether or not the states of
the RAM should be analyzed for determining scan flip–flops
in the design.
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