
Magic: An Industrial-Strength Logic Optimization,

Technology Mapping, and Formal Verification Tool

Alan Mishchenko Niklas Een Robert Brayton Stephen Jang Maciej Ciesielski Thomas Daniel

 Department of EECS LogicMill Technology Abound Logic

 University of California, Berkeley San Jose, CA / Amherst, MA Santa Clara, CA

 {alanmi, een, brayton}@eecs.berkeley.edu {sjang, mciesielski}@logic-mill.com tdaniel@aboundlogic.com

ABSTRACT

This paper presents an industrial-strength CAD system for logic

optimization, technology mapping, and formal verification of

synchronous designs. The new system, Magic, is based on the

code of ABC that has been improved by adding industrial

requirements. Distinctive features include: global-view

optimizations for area and delay, scalable sequential synthesis, the

use of white-boxes for instances that should not be mapped, and a

built-in formal verification framework to run combinational and

sequential equivalence checking. Comparison against a reference

industrial flow shows that Magic is capable of reducing both area

and delay. Experiments on a suite of industrial FPGA designs

show that LUT count is reduced by 12.7%, flip-flop (FF) count is

reduced by 9.4%, FF-to-FF level is reduced by 22.3%, and fMAX

is improved by 11.8%. A remarkable consequence of these

reductions is that, although Magic itself takes time to run, the total

runtime of the design flow is reduced.

1. INTRODUCTION
Although manual design efforts are still used, several decades of

academic research in electronic design automation (EDA) have

produced efficient methods for synthesis and verification of large

industrial designs. In most cases, the progress in academia is

paralleled by that in industry; engineers build commercial CAD

tools by utilizing the results of academic research while making

substantial contributions of their own.

The “technology transfer” between academia and industry takes

many forms. A typical situation is, a researcher publishes a paper

describing a new idea; an engineer reads the paper, implements

the idea, and improves a commercial tool. Another example is that

of a graduate student who interns at a company and later joins as

an employee, bringing along knowledge gained in graduate

school. Yet another scenario is an academic research group

develops a tool, which is then evaluated by industry and adopted

to fill the gap in an existing design flow.

This paper presents an example of the latter type involving

ABC, a public domain tool. ABC represents about eight years of

active research and software development and improves on

previous generations of logic synthesis and verification solutions,

exemplified by Espresso, SIS, MVSIS, and VIS.

ABC has piqued the interest of several companies who either

learned from it and implemented comparable solutions, or re-used

it in their own tools with varying degrees of success. However,

what is often missing in these industrial efforts, is the sharing of

information: which parts of ABC were found helpful, how were

these parts integrated into an existing flow, what QoR, memory,

runtime improvement were achieved on large designs, etc.

The present paper outlines the result of integrating ABC into

one commercial flow and shows the results produced.

We named the result of this integration “Magic” to distinguish it

from ABC as a public-domain system. The two are closely related

but not the same: ABC is a store-house of implementations called

application packages, most of which are experimental,

incomplete, or have known bugs, while Magic integrates and

extends only those features that create a robust optimization flow.

Magic features an all-new design database developed within

ABC to meet industrial requirements. The database was developed

from scratch, based on our experience gained while applying ABC

to industrial designs. It reduces the memory requirements and

runtime of the integration and addresses some known limitations

of ABC, such as the inability to work with multiple clock-

domains, flops with complex controls, and persistent instances

that should be skipped by the mapper (white and black boxes).

Magic represents a whole greater than the sum of its parts:

• scalable sequential synthesis

• fast local transformations

• iterative computations

• mapping with structural choices

• global view optimizations

• the use of white-boxes

Each of these aspects can bring an improvement independently in

a synthesis tool. However, in combination they allow Magic to

make the most of each aspect and their synergy with the others.

For example, the use of white-boxes allows for tracing of

functional relationships through the logic cones, which is used by

sequential synthesis to detect sequential equivalences across the

entire design. Another example: iterative local computations may

not lead to substantial improvements if they are not supplemented

by a global-view aspect of the computation, such as a global hash-

table of shared logic structures, and the use of (global) delay-

optimal technology mapping. Another goal of the paper is to list

application packages used in Magic and explain how they helped

produce good experimental results.

In summary, the contributions of this paper are three-fold:

• provide an example of technology transfer from academia

to industry,

• describe Magic, an integration of ABC into an industrial

tool, and

• outline the most useful optimizations performed by Magic

while tracing their synergies.

The rest of this paper is organized as follows. Section 2

describes the background. Section 3 describes the optimization

flow implemented in Magic. Section 4 outlines the industrial

design environment where Magic was applied. Section 5

concludes the paper and outlines future work.

2. BACKGROUND
A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges

corresponding to wires connecting the gates. The terms Boolean

network, netlist, and circuit are used interchangeably in this paper.

If the network is sequential, the memory elements are assumed to

be D-flip-flops with initial states.

A node n has zero or more fanins, i.e. nodes that are driving n,

and zero or more fanouts, i.e. nodes driven by n. The primary

inputs (PIs) are nodes without fanins in the current network. The

primary outputs (POs) are a subset of nodes of the network. A

fanin (fanout) cone of node n is a subset of all nodes of the

network, reachable through the fanin (fanout) edges of the node.

A node is a logic component having a propagation delay. An

edge, also called wire, is the connection between two adjacent

nodes. The delay of a path includes logic delays and wire delays.

The logic delay occurs in a logic component, such as a LUT. The

wire delay occurs on the edges. In modern FPGAs, the delay for

each pin in a LUT is different, so a variable-pin-delay model is

used in this paper. Wire delays are usually not known until

placement and routing. To approximate wire delays, a fixed delay

is added to the delay of all pins of the LUTs in the library.

3. OPTIMIZATION FLOW
This section describes typical optimizations applied by Magic.

3.1 Algorithms

The optimizations of ABC integrated into Magic where

modified when needed to interface with the new design data-base.

The algorithms are divided into three categories: (a) synthesis,

(b) mapping, (c) verification. They are not discussed in detail here

because they are presented in the past publications, listed below.

These algorithms were selected because they constitute a practical

subset of efficient and scalable features of ABC.

3.1.1 Synthesis

Scalable sequential synthesis [9] and retiming [12].

Combinational synthesis using AIG rewriting [6].

Combinational restructuring for delay optimization [10].

3.1.2 Mapping

Mapping with structural choices [3].

Mapping with global view and priority cuts [8].

Mapping to optimize application-specific metrics [4][5].

3.1.3 Verification

Fast sequential simulation [5].

Improved combinational equivalence checking [7].

Improved sequential equivalence checking [9][11].

3.2 Integration

This subsection describes the integration of components inside

Magic, illustrated in Figure 1. The design database is shown as

the circle in the figure. It is the center of Magic, storing the design

and interfacing the packages.

The design entry into Magic is performed through a file or using

programmable APIs.

Shown on the right of Figure 1, is sequential synthesis based on

detecting, proving, and merging sequentially equivalent nodes.

This transformation can be applied at the beginning of the flow,

before combinational synthesis and mapping. Another optional

transform is retiming to reduce the total number of logic levels in

the AIG or in the mapped network. Reducing logic level

correlates but does not always lead to an improvement in the

clock frequency after place-and-route. The sequential transforms

can be verified by sequential simulation and sequential

equivalence checking, shown at the bottom of Figure 1.

Shown on the left, is the combinational synthesis flow, which

includes AIG rewriting, computing structural choices, and LUT

mapping. Computation of structural choices can be skipped if fast

low-effort synthesis is desired. The result of mapping is returned

to the design database or passed for delay optimization.

Correctness of combinational synthesis and mapping can be

verified using combinational equivalence checking.

Finally, the box in the bottom right corner of Figure 1 stands for

post-placement resynthesis, which includes restructuring and

retiming with wire-delay information. Detailed description of

these transformations is beyond the scope of the paper.

Figure 1. Interaction of application packages in Magic.

4. EXPERIMENTAL ENVIRONMENT
Magic enhances the Raptor Development Environment (RDE)

from Abound Logic, to perform sequential and combinational

synthesis, LUT-based technology mapping, and verification.

For completeness, we summarize the features of RDE. It is a

complete FPGA design flow targeting Raptor devices. A detailed

description can be found in [1]. Highlights relevant to this

integration are summarized below.

The RDE provides a complete RTL-to-bitstream design flow,

including synthesis, Magic-based netlist optimization and

mapping to Raptor architecture, timing-driven placement and

routing, bitstream generation, as well as a set of tools for design

debugging, IP generation, and package planning.

The flow is able to handle half-million LUT class designs in

under two hours in a completely automated approach, where the

only required user inputs are source VHDL, Verilog,

SystemVerilog RTL files.

RDE includes Synopsys Primetime-compatible static timing

analysis engine and accepts standard SDC timing constraints,

providing support for input and output delays, clock and

generated clock definitions, false and multi-cycle paths, as well as

netlist exploration and manipulation commands.

Unlike many other FPGA or ASIC design flows, RDE provides

fine-grained control over placement and routing and includes

incremental engines capable of re-using previous results as is and

place and route only the differences.

Design

database

Sequential

synthesis

AIG

rewriting

File / Code

interface

Computing

choices

LUT

mapping

Retiming

Structuring

for delay

Post-place

optimization

Verification

This last feature is particularly needed in post-placement and

post-routing netlist reoptmizations. In that use model, a design is

first placed and routed normally. Using either exact (after routing)

or estimated (after placement) delays, an optimization tool such as

Magic can then further optimize the netlist to improve delays on

critical paths. The new netlist is then sent back for place and

route. Since RDE supports incremental placement and routing, it

only needs to process the differences between the two netlists.

The primary benefit of that approach is that it ensures

convergence of the flow. If a full placement of the new netlist has

to be performed, it often results in completely different paths

being critical and the iteration doesn't improve delays. The

secondary benefit of the incremental approach is that is

significantly reduces the runtime.

RDE incremental flows were originally developed to address

ECO requirements, when designers find last minute functionality

problems. Correcting these problems through RTL changes and

rerunning the whole flow not only costs time, but often makes

significant perturbation to an already optimized design. Instead, it

is often easier to make a small localized change in a netlist and

have new design available in minutes instead of hours or days.

A unique feature of RDE, compared to other FPGA tool flows is

that it allows to retain not only the existing placement, but also

existing routing information.

Real-life designs are rarely all done from scratch. Typically,

existing IP blocks or blocks from previous designs are reused. In

typical FPGA designs flows, such re-use can occur only at the

RTL level. Raptor Development Environment supports design

reuse at the netlist, placement or even routing level. For example,

a high-speed, timing critical logic may be heavily optimized,

placed adjacent to I/O pads and routed. When such design is

verified, it may be then copy-pasted over the chip or to other

designs, similar to GDS instantiation in an ASIC design.

In addition to the top-down, synthesis and place and route

design flow, RDE also provides robust design debugging

capabilities. This includes ability to automatically insert real-time

observability into the source RTL, whereas pre-defined trigger

events cause signals being stored in on-chip memory resources as

well as offline (i.e. when clocks are stopped) ability to read and

write all chip registers and memories.

5. EXPERIMENTAL RESULTS
The experiments in RDE were performed by adding a call to

Magic between design entry and global placement. No other part

of RDE was changed. The resulting designs were verified using

sequential simulation and formal verification in Magic.

The experiments were performed on 20 industrial designs

ranging in size from 175K to 648K LUT4. The results are shown

in Table 5.1, which contains two experimental runs:

• Section “Reference” stands for the typical RDE flow.

• Section “Magic” stands for the new RDE flow with Magic.

Columns “PI” and “PO” in Table 5.1 shows the number of

primary inputs and primary outputs, respectively. Columns “LUT”

and “FF” shows the LUT count and the register count,

respectively. Column “Lev” shows the maximum logic level

between registers. Column “fMAX” shows the maximum

frequency, computed using static timing analysis after place-and-

route. Column “Time” shows the total runtime without initial

synthesis. Row “Geomean” shows the geometric mean for each

column. Row “Ratio” shows the ratio of values in sections

“Magic” vs. “Baseline” for each metric.

The experiments can be summarized as follows:

• fMAX is improved by 11.8%

• FF-to-FF level is reduced by 22.3%

• LUT count is reduced by 12.7%

• Register count is reduced by 9.4%

• The total runtime is reduced by 3.1%

It was observed that Magic optimization leads to better results

in terms of all metrics, including fMAX, LUT count, and register

count. It is also interesting that using Magic as part of the design

flow reduces the total runtime of the flow.

To understand the reason for the runtime reduction, the runtime

distribution and peak memory usage were analyzed. Although not

included in Table 5.1, it was found that the runtime and memory

used by the routing tool was reduced by 54% and 8%,

respectively, when Magic was used. This is probably the reason

that the total runtime of the design flow was reduced, even though

the non-negligible runtime of Magic is included in the total.

Routing probably became faster because the LUT count was

reduced significantly, freeing routing resources in congested

regions and simplifying the routing task.

6. CONCLUSIONS
Magic is a system developed on top of ABC [2] and deployed in

a commercial design flow from Abound Logic [1]. Magic features

an all-new memory-efficient design database which integrates the

most robust application packages in ABC to perform synthesis,

FPGA mapping, and verification for large industrial designs.

Experimental results produced with Magic show improvements in

all metrics, including area, delay, memory, and even runtime of

the complete design flow.

Future work will include:

• Continuing to improve the underlying application packages

in ABC, such as sequential synthesis, mapping with

structural choices, and formal verification.

• Exploring optimization that targets tighter integration of

logic synthesis and physical design, for example, integrated

retiming and logic restructuring to reduce delay.

• Extending the optimization flow in Magic to work on

standard cell designs and standard cell libraries represented

using Verilog and Synopsys Liberty format, respectively.

7. REFERENCES
[1] Abound Logic. Raptor Development Environment. Product brief.

PB003 (V1.0), Dec 2009. http://www.aboundlogic.com/

[2] Berkeley Logic Synthesis and Verification Group. ABC: A System

for Sequential Synthesis and Verification. Release 00127p.

http://www-cad.eecs.berkeley.edu/~alanmi/abc

[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,

“Reducing structural bias in technology mapping”, Proc.

ICCAD '05, pp. 519-526.

[4] S. Jang, B. Chan, K. Chung, and A. Mishchenko, "WireMap: FGPA

technology mapping for improved routability". Proc. FPGA '08,

pp. 47-55.

[5] S. Jang, K. Chung, A. Mishchenko, and R. Brayton, "A power

optimization toolbox for logic synthesis and mapping", Proc.

IWLS '09, pp. 1-8.

[6] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG

rewriting: A fresh look at combinational logic synthesis", Proc.

DAC '06, pp. 532-536.

[7] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een,

"Improvements to combinational equivalence checking", Proc.

ICCAD '06, pp. 836-843.

[8] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton,

“Combinational and sequential mapping with priority cuts”, Proc.

ICCAD ’07, pp. 354-361.

[9] A. Mishchenko, M. L. Case, R. K. Brayton, and S. Jang, "Scalable

and scalably-verifiable sequential synthesis", Proc. ICCAD'08, pp.

234-241.

[10] A. Mishchenko, R. Brayton, and S. Jang, "Global delay optimization

using structural choices", Proc. FPGA'10, pp. 181-184.

[11] H. Mony, J. Baumgartner, A. Mishchenko, and R. Brayton,

"Speculative reduction-based scalable redundancy identification",

Proc. DATE'09, pp. 1674-1679.

[12] S. Ray, A. Mishchenko, R. K. Brayton, S. Jang, and T. Daniel.

“Minimum-perturbation retiming for delay optimization”. Proc.

IWLS’10.

Table 5.1. Experimental evaluation of Magic against the reference flow on industrial circuits after place-and-route.

Profile Reference Magic
Circuits

PI PO LUT FF Lev fMAX Time LUT FF Lev fMAX Time

C1 736 369 174972 113157 12 128.53 1.05 173561 100398 10 133.87 0.70

C2 150 67 187037 112991 18 91.32 0.53 161303 93930 16 95.69 0.67

C3 4 80 199097 53954 27 68.49 0.69 137126 36190 20 75.59 0.77

C4 517 253 206725 132416 11 105.37 1.31 197029 114745 8 129.20 0.67

C5 4 280 212124 64120 26 68.82 0.65 152799 49513 19 77.70 0.74

C6 803 258 255415 166644 11 113.25 2.08 255026 148445 8 123.00 1.00

C7 24 10 296152 133704 17 89.93 0.72 246908 114002 14 120.48 0.90

C8 124 58 323818 86712 32 40.68 1.99 346516 86662 25 47.08 1.94

C9 268 132 413017 195150 18 81.50 1.40 375481 174306 15 79.81 1.61

C10 205 94 439963 134139 20 63.17 3.55 445950 133575 15 69.06 2.64

C11 148 456 455429 160450 96 27.53 2.23 398428 149126 56 33.11 1.90

C12 4 3 455630 20277 6 66.67 0.78 152414 19446 6 100.40 0.41

C13 4 240 470436 230811 28 53.59 3.30 462010 225676 18 57.34 6.18

C14 218 69 522988 311436 17 68.78 1.83 448426 257996 15 69.40 2.19

C15 377 183 575355 351911 10 136.05 2.59 575672 349715 8 136.99 2.95

C16 73 33 599413 216051 4 202.02 1.07 599413 216051 4 209.21 1.79

C17 136 66 618377 259844 56 47.66 2.75 562367 243084 34 53.53 2.61

C18 136 66 621875 249327 27 45.68 4.60 606135 247825 27 52.58 4.03

C19 146 391 630918 275871 55 46.36 2.50 572834 259336 36 50.76 2.51

C20 135 32 648849 353940 7 127.71 2.45 645501 353616 5 136.43 2.91

Geomean 377883 150015 18.54 74.768 1.591 329751 135972 14.40 83.572 1.541

Ratio 1 1 1 1 1 0.873 0.906 0.777 1.118 0.969

