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ABSTRACT 

This paper presents an industrial-strength CAD system for logic 

optimization, technology mapping, and formal verification of 

synchronous designs. The new system, Magic, is based on the 

code of ABC that has been improved by adding industrial 

requirements. Distinctive features include: global-view 

optimizations for area and delay, scalable sequential synthesis, the 

use of white-boxes for instances that should not be mapped, and a 

built-in formal verification framework to run combinational and 

sequential equivalence checking. Comparison against a reference 

industrial flow shows that Magic is capable of reducing both area 

and delay. Experiments on a suite of industrial FPGA designs 

show that LUT count is reduced by 12.7%, flip-flop (FF) count is 

reduced by 9.4%, FF-to-FF level is reduced by 22.3%, and fMAX 

is improved by 11.8%. A remarkable consequence of these 

reductions is that, although Magic itself takes time to run, the total 

runtime of the design flow is reduced.  

 

1. INTRODUCTION 
Although manual design efforts are still used, several decades of 

academic research in electronic design automation (EDA) have 

produced efficient methods for synthesis and verification of large 

industrial designs. In most cases, the progress in academia is 

paralleled by that in industry; engineers build commercial CAD 

tools by utilizing the results of academic research while making 

substantial contributions of their own. 

The “technology transfer” between academia and industry takes 

many forms. A typical situation is, a researcher publishes a paper 

describing a new idea; an engineer reads the paper, implements 

the idea, and improves a commercial tool. Another example is that 

of a graduate student who interns at a company and later joins as 

an employee, bringing along knowledge gained in graduate 

school. Yet another scenario is an academic research group 

develops a tool, which is then evaluated by industry and adopted 

to fill the gap in an existing design flow. 

This paper presents an example of the latter type involving 

ABC, a public domain tool. ABC represents about eight years of 

active research and software development and improves on 

previous generations of logic synthesis and verification solutions, 

exemplified by Espresso, SIS, MVSIS, and VIS. 

ABC has piqued the interest of several companies who either 

learned from it and implemented comparable solutions, or re-used 

it in their own tools with varying degrees of success. However, 

what is often missing in these industrial efforts, is the sharing of 

information: which parts of ABC were found helpful, how were 

these parts integrated into an existing flow, what QoR, memory, 

runtime improvement were achieved on large designs, etc.  

The present paper outlines the result of integrating ABC into 

one commercial flow and shows the results produced.  

We named the result of this integration “Magic” to distinguish it 

from ABC as a public-domain system. The two are closely related 

but not the same: ABC is a store-house of implementations called 

application packages, most of which are experimental, 

incomplete, or have known bugs, while Magic integrates and 

extends only those features that create a robust optimization flow.  

Magic features an all-new design database developed within 

ABC to meet industrial requirements. The database was developed 

from scratch, based on our experience gained while applying ABC 

to industrial designs. It reduces the memory requirements and 

runtime of the integration and addresses some known limitations 

of ABC, such as the inability to work with multiple clock-

domains, flops with complex controls, and persistent instances 

that should be skipped by the mapper (white and black boxes). 

Magic represents a whole greater than the sum of its parts: 

• scalable sequential synthesis 

• fast local transformations 

• iterative computations 

• mapping with structural choices 

• global view optimizations 

• the use of white-boxes 

Each of these aspects can bring an improvement independently in 

a synthesis tool. However, in combination they allow Magic to 

make the most of each aspect and their synergy with the others.   

For example, the use of white-boxes allows for tracing of 

functional relationships through the logic cones, which is used by 

sequential synthesis to detect sequential equivalences across the 

entire design. Another example: iterative local computations may 

not lead to substantial improvements if they are not supplemented 

by a global-view aspect of the computation, such as a global hash-

table of shared logic structures, and the use of (global) delay-

optimal technology mapping. Another goal of the paper is to list 

application packages used in Magic and explain how they helped 

produce good experimental results. 

In summary, the contributions of this paper are three-fold:  

• provide an example of technology transfer from academia 

to industry, 

• describe Magic, an integration of ABC into an industrial 

tool, and 

• outline the most useful optimizations performed by Magic 

while tracing their synergies. 

The rest of this paper is organized as follows. Section 2 

describes the background. Section 3 describes the optimization 

flow implemented in Magic. Section 4 outlines the industrial 

design environment where Magic was applied. Section 5 

concludes the paper and outlines future work. 



2. BACKGROUND 
A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and directed edges 

corresponding to wires connecting the gates. The terms Boolean 

network, netlist, and circuit are used interchangeably in this paper. 

If the network is sequential, the memory elements are assumed to 

be D-flip-flops with initial states.  

A node n has zero or more fanins, i.e. nodes that are driving n, 

and zero or more fanouts, i.e. nodes driven by n. The primary 

inputs (PIs) are nodes without fanins in the current network. The 

primary outputs (POs) are a subset of nodes of the network. A 

fanin (fanout) cone of node n is a subset of all nodes of the 

network, reachable through the fanin (fanout) edges of the node. 

A node is a logic component having a propagation delay. An 

edge, also called wire, is the connection between two adjacent 

nodes. The delay of a path includes logic delays and wire delays.  

The logic delay occurs in a logic component, such as a LUT.  The 

wire delay occurs on the edges. In modern FPGAs, the delay for 

each pin in a LUT is different, so a variable-pin-delay model is 

used in this paper. Wire delays are usually not known until 

placement and routing. To approximate wire delays, a fixed delay 

is added to the delay of all pins of the LUTs in the library.     

 

3. OPTIMIZATION FLOW  
This section describes typical optimizations applied by Magic.  

3.1 Algorithms 

The optimizations of ABC integrated into Magic where 

modified when needed to interface with the new design data-base. 

The algorithms are divided into three categories: (a) synthesis, 

(b) mapping, (c) verification. They are not discussed in detail here 

because they are presented in the past publications, listed below. 

These algorithms were selected because they constitute a practical 

subset of efficient and scalable features of ABC.  

3.1.1 Synthesis 

Scalable sequential synthesis [9] and retiming [12]. 

Combinational synthesis using AIG rewriting [6]. 

Combinational restructuring for delay optimization [10]. 

3.1.2 Mapping 

Mapping with structural choices [3]. 

Mapping with global view and priority cuts [8]. 

Mapping to optimize application-specific metrics [4][5]. 

3.1.3 Verification 

Fast sequential simulation [5]. 

Improved combinational equivalence checking [7]. 

Improved sequential equivalence checking [9][11]. 

3.2 Integration 

This subsection describes the integration of components inside 

Magic, illustrated in Figure 1. The design database is shown as 

the circle in the figure. It is the center of Magic, storing the design 

and interfacing the packages. 

The design entry into Magic is performed through a file or using 

programmable APIs.  

Shown on the right of Figure 1, is sequential synthesis based on 

detecting, proving, and merging sequentially equivalent nodes. 

This transformation can be applied at the beginning of the flow, 

before combinational synthesis and mapping. Another optional 

transform is retiming to reduce the total number of logic levels in 

the AIG or in the mapped network. Reducing logic level 

correlates but does not always lead to an improvement in the 

clock frequency after place-and-route. The sequential transforms 

can be verified by sequential simulation and sequential 

equivalence checking, shown at the bottom of Figure 1. 

Shown on the left, is the combinational synthesis flow, which 

includes AIG rewriting, computing structural choices, and LUT 

mapping. Computation of structural choices can be skipped if fast 

low-effort synthesis is desired. The result of mapping is returned 

to the design database or passed for delay optimization.  

Correctness of combinational synthesis and mapping can be 

verified using combinational equivalence checking. 

Finally, the box in the bottom right corner of Figure 1 stands for 

post-placement resynthesis, which includes restructuring and 

retiming with wire-delay information.  Detailed description of 

these transformations is beyond the scope of the paper.  

 

 
Figure 1. Interaction of application packages in Magic. 

 

4. EXPERIMENTAL ENVIRONMENT  
Magic enhances the Raptor Development Environment (RDE) 

from Abound Logic, to perform sequential and combinational 

synthesis, LUT-based technology mapping, and verification.  

For completeness, we summarize the features of RDE. It is a 

complete FPGA design flow targeting Raptor devices. A detailed 

description can be found in [1]. Highlights relevant to this 

integration are summarized below. 

The RDE provides a complete RTL-to-bitstream design flow, 

including synthesis, Magic-based netlist optimization and 

mapping to Raptor architecture, timing-driven placement and 

routing, bitstream generation, as well as a set of tools for design 

debugging, IP generation, and package planning. 

The flow is able to handle half-million LUT class designs in 

under two hours in a completely automated approach, where the 

only required user inputs are source VHDL, Verilog, 

SystemVerilog RTL files.  

RDE includes Synopsys Primetime-compatible static timing 

analysis engine and accepts standard SDC timing constraints, 

providing support for input and output delays, clock and 

generated clock definitions, false and multi-cycle paths, as well as 

netlist exploration and manipulation commands. 

Unlike many other FPGA or ASIC design flows, RDE provides 

fine-grained control over placement and routing and includes 

incremental engines capable of re-using previous results as is and 

place and route only the differences. 
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This last feature is particularly needed in post-placement and 

post-routing netlist reoptmizations. In that use model, a design is 

first placed and routed normally. Using either exact (after routing) 

or estimated (after placement) delays, an optimization tool such as 

Magic can then further optimize the netlist to improve delays on 

critical paths. The new netlist is then sent back for place and 

route. Since RDE supports incremental placement and routing, it 

only needs to process the differences between the two netlists. 

The primary benefit of that approach is that it ensures 

convergence of the flow. If a full placement of the new netlist has 

to be performed, it often results in completely different paths 

being critical and the iteration doesn't improve delays. The 

secondary benefit of the incremental approach is that is 

significantly reduces the runtime.  

RDE incremental flows were originally developed to address 

ECO requirements, when designers find last minute functionality 

problems. Correcting these problems through RTL changes and 

rerunning the whole flow not only costs time, but often makes 

significant perturbation to an already optimized design. Instead, it 

is often easier to make a small localized change in a netlist and 

have new design available in minutes instead of hours or days. 

A unique feature of RDE, compared to other FPGA tool flows is 

that it allows to retain not only the existing placement, but also 

existing routing information. 

Real-life designs are rarely all done from scratch. Typically, 

existing IP blocks or blocks from previous designs are reused. In 

typical FPGA designs flows, such re-use can occur only at the 

RTL level. Raptor Development Environment supports design 

reuse at the netlist, placement or even routing level. For example, 

a high-speed, timing critical logic may be heavily optimized, 

placed adjacent to I/O pads and routed. When such design is 

verified, it may be then copy-pasted over the chip or to other 

designs, similar to GDS instantiation in an ASIC design. 

In addition to the top-down, synthesis and place and route 

design flow, RDE also provides robust design debugging 

capabilities. This includes ability to automatically insert real-time 

observability into the source RTL, whereas pre-defined trigger 

events cause signals being stored in on-chip memory resources as 

well as offline (i.e. when clocks are stopped) ability to read and 

write all chip registers and memories. 

 

5. EXPERIMENTAL RESULTS  
The experiments in RDE were performed by adding a call to 

Magic between design entry and global placement. No other part 

of RDE was changed. The resulting designs were verified using 

sequential simulation and formal verification in Magic. 

The experiments were performed on 20 industrial designs 

ranging in size from 175K to 648K LUT4. The results are shown 

in Table 5.1, which contains two experimental runs: 

• Section “Reference” stands for the typical RDE flow.   

• Section “Magic” stands for the new RDE flow with Magic. 

Columns “PI” and “PO” in Table 5.1 shows the number of 

primary inputs and primary outputs, respectively. Columns “LUT” 

and “FF” shows the LUT count and the register count, 

respectively. Column “Lev” shows the maximum logic level 

between registers. Column “fMAX” shows the maximum 

frequency, computed using static timing analysis after place-and-

route. Column “Time” shows the total runtime without initial 

synthesis. Row “Geomean” shows the geometric mean for each 

column. Row “Ratio” shows the ratio of values in sections 

“Magic” vs. “Baseline” for each metric. 

 

The experiments can be summarized as follows:   

• fMAX is improved by 11.8% 

• FF-to-FF level is reduced by 22.3% 

• LUT count is reduced by 12.7% 

• Register count is reduced by 9.4% 

• The total runtime is reduced by 3.1% 

It was observed that Magic optimization leads to better results 

in terms of all metrics, including fMAX, LUT count, and register 

count. It is also interesting that using Magic as part of the design 

flow reduces the total runtime of the flow.   

To understand the reason for the runtime reduction, the runtime 

distribution and peak memory usage were analyzed. Although not 

included in Table 5.1, it was found that the runtime and memory 

used by the routing tool was reduced by 54% and 8%, 

respectively, when Magic was used. This is probably the reason 

that the total runtime of the design flow was reduced, even though 

the non-negligible runtime of Magic is included in the total. 

Routing probably became faster because the LUT count was 

reduced significantly, freeing routing resources in congested 

regions and simplifying the routing task. 

 

6. CONCLUSIONS  
Magic is a system developed on top of ABC [2] and deployed in 

a commercial design flow from Abound Logic [1]. Magic features 

an all-new memory-efficient design database which integrates the 

most robust application packages in ABC to perform synthesis, 

FPGA mapping, and verification for large industrial designs. 

Experimental results produced with Magic show improvements in 

all metrics, including area, delay, memory, and even runtime of 

the complete design flow. 

Future work will include: 

• Continuing to improve the underlying application packages 

in ABC, such as sequential synthesis, mapping with 

structural choices, and formal verification. 

• Exploring optimization that targets tighter integration of 

logic synthesis and physical design, for example, integrated 

retiming and logic restructuring to reduce delay. 

• Extending the optimization flow in Magic to work on 

standard cell designs and standard cell libraries represented 

using Verilog and Synopsys Liberty format, respectively. 
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Table 5.1. Experimental evaluation of Magic against the reference flow on industrial circuits after place-and-route. 

Profile Reference Magic 
Circuits 

PI PO LUT FF Lev fMAX Time LUT FF Lev fMAX Time 

C1 736 369 174972 113157 12 128.53 1.05 173561 100398 10 133.87 0.70 

C2 150 67 187037 112991 18 91.32 0.53 161303 93930 16 95.69 0.67 

C3 4 80 199097 53954 27 68.49 0.69 137126 36190 20 75.59 0.77 

C4 517 253 206725 132416 11 105.37 1.31 197029 114745 8 129.20 0.67 

C5 4 280 212124 64120 26 68.82 0.65 152799 49513 19 77.70 0.74 

C6 803 258 255415 166644 11 113.25 2.08 255026 148445 8 123.00 1.00 

C7 24 10 296152 133704 17 89.93 0.72 246908 114002 14 120.48 0.90 

C8 124 58 323818 86712 32 40.68 1.99 346516 86662 25 47.08 1.94 

C9 268 132 413017 195150 18 81.50 1.40 375481 174306 15 79.81 1.61 

C10 205 94 439963 134139 20 63.17 3.55 445950 133575 15 69.06 2.64 

C11 148 456 455429 160450 96 27.53 2.23 398428 149126 56 33.11 1.90 

C12 4 3 455630 20277 6 66.67 0.78 152414 19446 6 100.40 0.41 

C13 4 240 470436 230811 28 53.59 3.30 462010 225676 18 57.34 6.18 

C14 218 69 522988 311436 17 68.78 1.83 448426 257996 15 69.40 2.19 

C15 377 183 575355 351911 10 136.05 2.59 575672 349715 8 136.99 2.95 

C16 73 33 599413 216051 4 202.02 1.07 599413 216051 4 209.21 1.79 

C17 136 66 618377 259844 56 47.66 2.75 562367 243084 34 53.53 2.61 

C18 136 66 621875 249327 27 45.68 4.60 606135 247825 27 52.58 4.03 

C19 146 391 630918 275871 55 46.36 2.50 572834 259336 36 50.76 2.51 

C20 135 32 648849 353940 7 127.71 2.45 645501 353616 5 136.43 2.91 

Geomean   377883 150015 18.54 74.768 1.591 329751 135972 14.40 83.572 1.541 

Ratio   1 1 1 1 1 0.873 0.906 0.777 1.118 0.969 

 

 


