
Formal Verification of Truncated Multipliers using
Algebraic Approach and Re-synthesis

Tiankai Su, Cunxi Yu, Atif Yasin, Maciej Ciesielski

ECE Department, University of Massachusetts, Amherst, USA

tiankaisu@umass.edu, ycunxi@umass.edu, ayasin@umass.edu, ciesiel@ecs.umass.edu

Abstract - This paper presents a formal approach to verify
multipliers that approximate integer multiplication by output
truncation. The method is based on extracting polynomial
signature of a truncated multiplier using algebraic rewriting.
To efficiently compute the polynomial signature, a multiplier
reconstruction approach is used to construct the precise multi-
plier from the truncated one. The method consists of three
basic steps: 1) determine the weights (binary encoding) of
the output bits; 2) reconstruct the truncated multiplier using
functional merging and re-synthesis; and 3) construct the
polynomial signature of the resulting circuit. The method
has been tested on multipliers up to 256 bits with three
truncation schemes: Deletion, D-truncation, and Truncation
with Rounding. Experimental results are compared with the
state-of-the-art SAT, SMT, and computer algebraic solvers.

Keywords— Formal Verification; Truncated Multipliers; Approx-
imate Computing; Computer Algebra.

I. INTRODUCTION

Multiplication is one of the major operations used in modern
digital signal processing (DSP) applications. Performance and
energy efficiency of multiplier circuits are critically affected
by long carry chain in the adder circuit tree. Both can be
significantly improved using more efficient multiplier circuits.
To reduce area and power of a multiplier, a broad concept of
truncation or approximate computing is used, which utilizes
an inexact computation used in error-tolerant applications.
Truncated multipliers discard some of the partial products
(PPs) or truncate some of the output bits to reduce the circuit
complexity, area, and power at a price of accuracy.

An n-bit precise multiplier has 2n output bits. In contrast,
truncated multipliers have fewer output bits, with output bits
close to the least significant bit (LSB) typically being trun-
cated. Those truncation schemes may result in an unacceptable
error rate, hence a correction circuit [1] is usually added
at a later stage. FIR Filter is one example where truncated
multipliers are widely utilized. Although many applications
benefit from those truncated multipliers for power efficiency
and performance, formal verification problem of those designs
has not been adequately addressed.

Verification of precise arithmetic circuits is solved using
arithmetic combinational equivalence checking (ACEC) [2].
Several approaches have been applied to check an arithmetic
circuit against its functional specification, including canonical

diagrams, Boolean satisfiability (SAT), or satisfiability modulo
theories (SMT). However, those methods are not efficient in
solving ACEC problems because of ”bit-blasting” of gate-
level arithmetic circuits [3]. Recently, computer algebraic
approaches have been extensively studied for solving ACEC
problems in both integer and finite field domain, and have
been successfully applied to large arithmetic circuits, such as
512-bit multipliers [2][3][4][5].

However, these techniques are not efficient in verifying
truncated arithmetic circuits. During algebraic rewriting the
size of intermediate polynomials, which is manageable in
conventional arithmetic circuits, can grow exponentially large
in truncated circuits, such as multipliers. This is because trun-
cation prevents monomial cancellations that naturally occur
during the rewriting of a complete circuit [6]. For example, in
a half-adder (HA) block, the polynomials are linear (2C+S),
whereas the algebraic models of XOR (sum) and AND (carry)
gates in the HA are nonlinear. Once the XOR gate of the
sum (a ⊕ b = a + b − 2ab) is removed during the truncation
process, the non-linear terms (2ab) remain in the polynomial
expression, while they are normally canceled in a regular half-
adder: 2C+S = 2·(ab)+(a+b−2ab) = a+b. This causes an
exponential increase in the size of intermediate polynomials,
resulting in memory explosion for large circuits.

In this paper we propose an algebraic approach with re-
synthesis that reconstructs the complete multiplication of the
truncated multiplier, followed by algebraic rewriting of the
reconstructed multiplier. Specifically, we make the following
novel contributions:

• A framework using re-synthesis technique is presented
to reconstruct a complete multiplication for arbitrarily
truncated multipliers.

• A complete methodology that efficiently determines the
correctness of the given circuit is proposed.

• Analysis of arithmetic verification of truncated multi-
plier using comprehensive truncation schemes is given,
including Deletion, D-truncation and Rounding [7].

II. BACKGROUND

Several approaches have been applied to check an arithmetic
circuit against its functional specification, including canonical
diagrams, satisfiability theories, theorem proving and others.
However, building canonical diagrams, such as BDDs [8],
BMDs [9] [10], or TEDs [11], for large and arithmetic circuits
is very expensive because of large memory usage.

2017 IEEE Computer Society Annual Symposium on VLSI

2159-3477/17 $31.00 © 2017 IEEE

DOI 10.1109/ISVLSI.2017.79

415

Alternatively, ACEC problems can be solved using Boolean
satisfiability (SAT) or satisfiability modulo theories (SMT),
using SAT and SMT solvers, such as MiniSAT [12], Lingeling
[13], Chaff [14], Boolector [15], and others. These SAT solvers
have been widely used in industry because of their capability
to solve equivalence checking problem. Other tools have been
developed to ease this verification problem [16]. However, even
the best SAT solvers cannot solve verification problem of a
16-bit truncated multiplier by just using equivalence checking.
High memory usage prevents canonical diagrams from solving
the main problem of truncated multipliers verification.

A. Computer Algebraic Approach

Computer algebra method is believed to be the best tech-
nique for solving arithmetic verification problems. Using com-
puter algebra methods, the verification problem is typically
formulated as a proof that the implementation satisfies the
specification [4][5][3][2]. The goal is to prove that the circuit
implementation satisfies the specification by performing a
series of divisions of the specification polynomial F by the
implementation polynomials B = {f1, ..., fs}, that represent
components of the implementation circuit. The polynomials
f1, ..., fs are called the generators of the ideal J . Given a
set f1, ..., fs, a set of all the simultaneous solutions to a
system of equations f1 = 0, ..., fs = 0 is called variety,
V (J). Verification problem is then formulated as checking
if the specification F vanishes on V (J). If polynomial f
contains some term t that is divisible by the leading term
lt(g) of polynomial g, then the division of f by g gives a

remainder polynomial r = f − lt(f)
lt(g) × g. In this case, we say

that f reduces to r modulo g, denoted f
g
−→ r. Techniques

based on Gröbner Basis demonstrate that this approach can
transform the verification problem to membership testing of the
specification polynomial in the ideals [5]. Some modifications
have been addressed in [2] to improve the efficiency of the
process. A different approach to arithmetic verification of gate-
level circuits called function extraction [3] is discussed next.

B. Function Extraction

Function Extraction is an arithmetic verification method
originally proposed in [3] for integer arithmetic circuits in Z2m .
It extracts a unique bit-level polynomial function implemented
by the circuit directly from its gate-level implementation.
Extraction is done by backward rewriting, i.e., transforming
the polynomial representing encoding of the primary outputs
(called the output signature) into a polynomial at the pri-
mary inputs (the input signature). This technique has been
successfully applied to large integer arithmetic circuits, such as
512-bit integer multipliers, benefiting from a large number of
polynomial reductions obtained during rewriting [6]. A similar
approach has also been applied to Galois Field arithmetic
circuits GF(2m), which offer an inherent parallelism that can
be exploited in backward rewriting [17]. Although those works
showed good performance in solving arithmetic verification
problems, they still suffer from potential polynomial explosion
problem if the arithmetic function is not complete, i.e., if some
output bits have been removed. In the rest of the paper, we will

Fig. 1: Partial product array of a 8-bit multiplier.

show how to apply function extraction to truncated multipliers
with AIG-based functional merging.

C. Formal Truncation Schemes

Three formal truncation schemes used to design truncated
multipliers are: Deletion, D-truncation and Rounding. Fixed-
width multipliers are the prevalently used truncated multipliers.
An example of such a multiplier is shown in Fig. 1. Normally,
2n output bits are generated in a regular n×n multiplier,
whereas a fixed-width truncated multiplier only computes n
most significant bits (MSBs). In this work, we analyze such
a fixed-width multiplier. In this example, the inputs a[n-1:0]
and b[n-1:0] are assumed to be two integer inputs. The partial
products are divided into two subsets:

1) The most significant partial products (MSPPs),
corresponding to n MSBs; and,

2) The least significant partial products (LSPPs),
further subdivided in LSPP major and LSPP minor,
corresponding to the k most significant columns of
LSPPs and the remaining (n–k) columns respectively.

Deletion: This scheme discards the partial products in
LSPP minor, which have a small impact on the accuracy of the
result. Those PPs are dropped to prevent the carry chain from
propagating further. This decreases the size of the carry chain,
which reduces the delay and power. Even though LSPP minor
have a smaller contribution to the accuracy of the MSBs, the
error of just discarding them can be high, in the worst case
is 7 ∗ 28 for an 8-bit fixed-width multiplier. To rectify this, a
compensatory circuit [1][18] is typically added after deletion.
From the verification point of view, such a compensatory
circuit can be presented as a separable block, described by
a set of polynomial(s) D in terms of the primary inputs. The
most crucial thing is to verify partial products and adder tree
of a multiplier.

D−truncation: In this scheme some output bits computed
by LSPPs are truncated without modifying the entire carry
chain. In contrast to the Deletion scheme, which improves
performance and saves power, D-truncation only removes those
gates that are directly connected to the truncated bits. The
purpose of D-truncation is to manage the number of output
bits, i.e., maintaining the number of input and output bits to be
the same. Although D-truncation will not affect the accuracy

416

of the MSBs, the error due to losing the value in LSPPs is
(28 − 1) in the worst case.

Rounding scheme is often introduced to achieve further
accuracy and truncation [19]. Instead of truncating all columns
in LSPP major, some of the most significant columns in
LSPP major are kept for the rounding circuit. The value of
those columns in LSPP major is rounded into MSPPs.

III. IMPLEMENTATION

In this section, we describe two our basic techniques,
functional merging and re-synthesis, used to verify trun-
cated multipliers. We introduce a Partial Product Detector
(PPD) which assigns correct weights to the respective output
bits. In order to better understand how PPD works, we analyze
in section III-A a truncated multiplier designed with only the
Deletion scheme. In section III-B, we consider a truncated
multiplier designed with only the D-truncation scheme to de-
scribe the detail of functional merging and re-synthesis. Lastly,
we perform a comprehensive verification analysis where all
truncation schemes are combined together. Fig. 3 shows the
verification flowchart of our methodology applicable to general
truncated multipliers. Two assumptions are made:

• The compensatory circuits for Deletion and Rounding
can be extracted from the high-level synthesis netlist,
and represented as polynomials in primary inputs.

• The bit position of primary inputs (a[n-1 : 0], b[n-1 : 0])
is known, so that the weights of the partial products are
also known.

A. Deletion Scheme Only

In the Deletion scheme, some of the partial products are
removed to reduce circuit complexity at the expense of ac-
curacy. For example, in Fig. 1, six of the partial products in
LSPP minor are removed, and the logic columns PO0, PO1

and PO2 in shaded area will disappear. As a result, there is no
carry feed into the PO3 column. Hence, the remaining adder
tree still executes complete additions (the remaining HA/FA
blocks are complete). In this case, there is no polynomial
explosion problem, since all additions preserve polynomial
eliminations during the rewriting process. This means that
function extraction is sufficient to extract the input signature
of the circuit.

In Fig. 1, when the logic cones associated with LSPP minor
columns are removed, PO3 corresponds to the current LSB.
Hence, the weight of the current LSB that was 23 in the exact
multiplier is shifted to 20. The computed input signature will
never match the specification until all the output bits are as-
signed their original weight. Moreover, additional polynomials
representing those removed partial products must be added. In
this case, PPD perform the following functions (Algorithm 1):

• Assigns correct/original weight to each current output
bit.

• Detects the deleted elements in LSPP minor and gener-
ates additional polynomials.

In general, for an Na×Nb-bit multiplier, Algorithm 1 will
search Na+Nb logic columns. Specifically, for an 8-bit multi-
plier shown in Fig 1, it searches 2 × 8 = 16 logic columns,

Algorithm 1 Weight Determination and Signature Generation
Input: Gate-level netlist of truncated multiplier

Output: Correct weight of each output bit

Output: Additional polynomials representing the removed partial products

1: PO={PO0, PO1, ..., POc}: current output bits of truncated multiplier
2: for i ← 0 to 2n− 1 do

3: Create listi corresponding to logic column i

4: for j ← 0 to i; k ← 0 to i; j + k ← 0 to i do

5: Search partial product ajbk in the netlist
6: if partial product ajbk exists then

7: Save product ajbk into listi
8: else Additional Polynomials ← Additional Polynomials + 2iajbk
9: end if

10: end for

11: Number of Total PPs ← Number of Total PPs + length(listi)
12: Rank of Logic Column ← i

13: Save Pairi(Rank of Logic Column, Number of Total PPs)
14: end for

15: for i ← 0 to c do

16: Search and count the number of PPs that current output bit POi depends on
17: Match the count with Number of Total PPs in Pairs
18: return Rank of Logic Column

19: Assign correct weight Wi ← 2Rank of Logic Column

20: end for

21: return Correct weights W={W0,W1, ...,Wc} and Additional Polynomials

TABLE I: The relationship between RLC and NTPP
RLC: Rank of Logic Column, NTPP : Number of Total PPs

RLC NTPP RLC NTPP RLC NTPP

0 0 5 15 10 48

1 0 6 22 11 52

2 0 7 30 12 55

3 4 8 37 13 57

4 9 9 43 14,15 58

PO0 to PO15. The results of applying Algorithm 1 to this
example are shown in Table I.

To assign the correct weight for each output bit, we traverse
and count all those PPs on which that output bit depends.
This information is stored in Table I, which shows for each
output bits (rank of logic column, RLC) the number of total
PPs (NTPP) that this bit depends on. Since all PPs in the
LSPP minor logic were removed, NTPP for RLC = 0, 1, 2
is 0. To find the weight of the current LSB of this truncated
multiplier, we examine the PPs this bit depends on. In this case,
four PPs have been found, namely a0b4, a1b3, a2b2, a3b1, a4b0.
We then examine Table I to find which bit (RLC) depends on
NTPP = 4. The table shows that RLC = 3, which means
the current LSB of this truncated multiplier is the PO3 of the
complete multiplier. Hence, the correct weight for this bit must
be 23.

In the same way, we can assign the correct weights to the
other output bits. For example, if we find out that one of
the output bits depends on 15 PPs, then the correct weight
of that output bit is 25, since RLC for NTPP = 15 is 5.
Furthermore, those 15 partial products consist of 6 PPs in logic
column PO5, 5 PPs in PO4 and 4 PPs in PO3.

Algorithm 1 explains a general idea of how the PPD works.
However, a special case need to be discussed. Notice that the
two MSBs PO14 and PO15 depend on the same number of
partial products, that is 58, as shown in Table I. In such a
one-to-two mapping problem, PPD will determine the correct
weight according to the information of the circuit. That is, the

417

output bit with the higher rank is assigned the higher weight,
that is 215, and the other output bit as 214.

Once all the output bits have been assigned their correct
weights, we can then apply function extraction to compute
input signature. Notice that the boundary between LSPP minor
and LSPP major does not necessarily have to be straightfor-
ward (along the column lines). As long as the correct weight
of each output bit is assigned and the LSPP minor has been
detected, the calculated signature will always be correct.

While searching each logic column, the dis-
carded/undetected partial products will be added as additional
polynomial at the end of signature calculation, with the
corresponding coefficients. In this case, the additional
polynomial will be 22(a2b0 + a1b1 + a0b2) + 21(a1b0 + a0b1)
+20a0b0. The polynomial of the compensatory circuit D
also need to be considered, if it exists. The size of the
compensatory circuit depends upon the number of partial
products removed. The worst case size occurs when k = 0,
that is, when all the LSPPs are removed. However, the bigger
the compensatory circuit, the harder the verification process
is. In the worst case scenario, most of the time is spent on
computing D. Therefore, if the size of the compensatory
circuit is too big, we need to remove it before the verification
process.

Finally, we compare 1) the calculated polynomial of the
truncated circuit expanded by additional polynomial, with 2)
the sum of full multiplier specification and polynomial D. This
is Because compensatory circuit is included in the truncated
circuit. This is trivial when there’s no compensatory circuit
(D = 0). If the two polynomials are equal, the given circuit is
proved to be a Deletion-based truncated multiplier.

B. D-truncation scheme only

D-truncation is the process in which some of the output
bits are removed without changing the functionality of the
remaining output bits. A fixed-width multiplier can be built by
simply applying D-truncation scheme to a regular multiplier.
For example, in Fig. 1, assuming that k = 8, then no partial
product is removed and 8 LSBs are truncated. Although the
functionality of the remaining 8 MSBs has not changed, the
entire structure of adder tree is no longer complete. For
example, assume that one output bit is computed by the XOR
gate of a HA block. When this bit is truncated, the XOR gate
will be automatically removed from the circuit because it is
redundant. However, the AND gate will remain to preserve the
carry chain.

In this example, the XOR gates directly connected to PO2 to
PO7 will disappear due to D-truncation. The remaining AND
gates make the structure of adder tree incomplete. The nonlin-
ear terms of polynomials, which were supposed to be canceled,
will propagate during the backward rewriting. This leads to an
exponential increase in memory size, potentially ending up in
a memory explosion. In other words, we cannot directly apply
function extraction to the circuit. To efficiently apply function
extraction, our approach transforms the incomplete function
into a complete one. This is achieved by functional merging,
followed by re-synthesis of the combined circuit by ABC [20].

Fig. 2: Functional Merging and Re-synthesis.

To better explain this idea, we use a 2×2 multiplier in Fig. 2
as an example. A 2-bit truncated multiplier (with two LSBs
truncated) is presented in Fig. 2(a). Assume that Fig. 2(a)
represents a circuit to be verified whether it is a 2-bit fixed-
width multiplier. We use Algorithm 1 to determine the correct
weights of this circuit. After reading the gate-level netlist, PPD
assigns weight 23 to m1 and 22 to m0. Then, we generate a
regular 2×2 multiplier and remove the output bits with weights
22 and 23. The generated circuit is shown in Fig. 2(b), whose
weight of m1′ is 21 and m0′ is 20. Finally, we apply our
scheme of functional merging and re-synthesis resulting in
the circuit in Fig. 2(c). The red (shaded) part in this figure
corresponds to the generated corrective circuit of Fig. 2(b).

If the re-synthesized circuit proves to be a 2×2 multiplier
by algebraic polynomial rewriting, this means that the given
circuit in Fig. 2(a) is indeed a truncated multiplier. This is
because the circuit generated in Fig. 2(b) has a correct function
of two LSBs in a regular 2×2 multiplier. If and only if the
circuit in Fig. 2(a) has the function of two MSBs in a regular
2×2 multiplier, then the re-synthesized circuit can be a 2×2
multiplier.

In general, for a given circuit X that needs to be verified
whether it is the D-truncation-based multiplier or not, we first
calculate correct weights for each output bit by PPD. Then,
we generate a regular multiplier and truncate those output
bits that have the same weight as the ones in circuit X . The
generated circuit should have the same number of input bits
as circuit X . After functional merging and re-synthesis, the
number of output bits in the re-synthesized circuit is equal
to the sum of output bits in the given circuit X and the
generated circuit, as shown in Fig. 2. Finally we apply function
extraction (backward rewriting) to the re-synthesized circuit. If
the calculated signature matches the specification of a regular
multiplier, the functionality of circuit X as truncated multiplier
is confirmed.

The goal of functional merging is to find the maximum
functional similarity between the given circuit and the gen-
erated corrective circuit. The merging eliminates as much as
possible incomplete addition in the given circuit to speed up
function extraction. Resynthesis (using ABC) transforms the
two circuits into And-Inverter-Graphs (AIGs) and performs
sweeping, redundancy removal, common logic identification,

418

etc. If the two circuits (the original one and the reconstructed
one) have been built in the same way, resynthesis in effect
transforms the structure of the original circuit into the circuit
performing a complete arithmetic function.

Despite ABC being the state-of-the-art synthesis and veri-
fication tool, it cannot solve the equivalent checking problem
between two different 12-bit truncated multipliers. In contrast,
our approach is scalable and can be used to verify truncated
multipliers at least 256 bits. The success depends upon the lo-
cal functional similarity between the original and the generated
corrective circuit. Such a similarity assumption is acceptable,
especially in industry. For example, designer of the fixed-
width multiplier has access to the original regular multiplier.
If we use the structure of the regular multiplier to build the
generated circuit, as in Fig. 2(b), solving the problem will
be very fast. This is also true even if the original circuit and
the generated circuit are not built using the same algorithm
but exhibit enough local functional similarity. The speed of
applying function extraction to the re-synthesized circuit will
be much higher than directly applying function extraction to
the original circuit. This is because more nonlinear terms will
be canceled during polynomial rewriting. However, we cannot
reconstruct a circuit without considering the algorithm used to
design it. For example, functional merging between a Booth-
Multiplier and non-Booth multiplier will gain no speedup for
function extraction and also cause more additions incomplete
that makes the process fail.

Another significant contribution of this approach is that
we can verify a multiplier whose arbitrarily output bits are
truncated. For example in Fig. 2(a), PPD can assign the correct
weight to each of the output bits. We can then generate a
regular 2×2 multiplier and truncate those output bits that have
the same weight as the one in the given circuit. Therefore, we
don’t need to know which output bits are truncated. Instead, we
can automatically detect arbitrarily truncated bits and follow
the same procedure as described earlier.

A special case in weight determination is when either the
MSB or (MSB-1)th bit is truncated. Since these two bits
depend on all the PPs, PPD cannot tell which one is truncated.
In this case, we will generate two circuits: one circuit assuming
that MSB is truncated, and the other circuit assuming that
(MSB-1)th bit is truncated. In this case, both circuits are
reconstructed, and only if either of them turns out to be a
regular multiplier, we conclude that the given circuit is a
truncated multiplier.

C. Deletion + D-truncation + Rounding

In this section, we discuss the case where a truncated
multiplier is designed using all of the three truncation schemes,
Deletion, D-truncation, and Rounding. Partial product detector
(PPD), functional merging, and re-synthesis can still be used
along with the function extraction to solve the verification
problem. Fig. 3 shows the verification flow of our methodology
applicable to the Deletion only, D-truncation only, and a
combination of these two schemes.

An 8-bit fixed-width multiplier is used as an example for
the analysis of these truncation schemes. Assume that six of

Fig. 3: Verification Flow dealing with all truncation schemes.

the partial products in LSPP minor are removed, as shown in
Fig. 1. Therefore, the output bits associated with PO0, PO1,
and PO2 will disappear due to Deletion. Then, five output bits
which corresponding to logic columns PO3 to PO7 will be
removed using D-truncation and Rounding scheme.

In the verification flow, PPD detects the elements in
LSPP minor and assigns a correct weight to each of the output
bits. Then, we generate a regular multiplier which has the
same number of inputs as the original circuit. An additional
step, which is different from analysis in section II-B, is as
follows. We discard the undetected PPs in the generated circuit
so that the PPs in the generated circuit and the PPs in the
original circuit are the same. After that, the generated circuit
has 5 output bits, corresponding to PO3 to PO7, while the
original circuit has 8 output bits, corresponding to PO8 to
PO15. We then apply functional merging and re-synthesis to
the combined circuit.

Finally, we calculate the polynomials as shown in Fig. 3,
and compare the following two terms: 1) the computed signa-
ture of the re-synthesized circuit with additional polynomials
representing the undetected PPs (LSPP minor); with 2) the
specification of the regular 8-bit multiplier enlarged by the
polynomials of the compensatory circuits. Upon being equal,
the given circuit is proved to be an 8-bit fixed-width multiplier.
Experiments were performed on a Baugh-Wooley multiplier
and a CSA array multiplier for up to 256 bits.

IV. RESULTS

We performed our experiments on an Intel® Core™ CPU
i5-3470 @ 3.20 GHz × 4 with 15.6 GB memory. The partial
product detector (PPD) was implemented in Python. ABC
[20] was used to implement the functional merging and re-
synthesis. Experiments are performed on a Baugh-Wooley
multiplier and a CSA multiplier for up to 256 bits. In par-
ticular, the Baugh-Wooley multiplier refers to a modified non-
Booth unsigned multiplier using Baugh-Wooley scheme. CSA
multiplier implemented in our experiment is an array based
CSA multiplier, generated by ABC. Unless stated otherwise,
the truncated multipliers in our experiment are obtained by
removing 1/4 partial products and truncating up to half of the
output bits (LSBs).

As analyzed in section III-B, direct application of function
extraction to a truncated multiplier causes a memory explosion
during polynomial rewriting. Table II makes a comparison
between our scheme and the original function extraction [3]
for execution time and memory consumption. Truncated mul-
tipliers used here are CSA based multipliers.

Function extraction [3] only succeed for truncated multipli-
ers with the operand size up to 6. For the larger operand sizes,

419

TABLE II: Results and comparison with Function Extrac-
tion[3] using truncated CSA multipliers.

*TO : Time out of 9,000sec, MO : Memory out of 10GB.

bits
Function Extraction [3] This Work

Runtime (sec) Memory (MB) Runtime (sec) Memory (MB)

6 38.94 296.0 0.01 4.2

8 1174.4* MO 0.01 4.8

16 928.2* MO 0.05 7.3

32 796.3* MO 0.25 17.2

64 631.4* MO 1.05 57.3

128 470.9* MO 4.40 220.4

256 286.1* MO 18.94 880.1

TABLE III: Results and comparison with ABC, SMT, and SAT
solvers using truncated Baugh-Wooley multipliers.

*TO : Time out of 9,000sec, MO : Memory out of 10GB.

bits
cec-ABC
[20] (sec)

Lingeling
[21] (sec)

Boolector
[15] (sec)

This Work
Runtime (sec) Memory (MB)

6 0.41 0.30 0.16 0.01 4.6

8 16.2 5.92 3.49 0.28 15.4

10 318.1 350.3 261.6 0.50 19.8

12 TO TO 8746.4 0.81 24.1

16 TO TO TO 1.12 36.8

32 TO TO TO 3.87 50.9

64 TO TO TO 14.7 268.2

128 TO TO TO 68.2 757.6

256 TO TO TO 279.3* MO

the system runs out of memory and results in an incomplete
calculation. The runtime numbers labeled with * indicate the
CPU time up to the moment when memory usage exceeds
10GB. In principle, given enough memory, function extraction
might be able to output a correct result. However, such an
experiment is not feasible or scalable. Hence, a direct imple-
mentation of function extraction to the truncated multiplier is
neither efficient nor scalable. In contrast, our approach based
on functional merging and re-synthesis is very fast, since we
eliminate the incomplete additions in a truncated multiplier.

We also analyzed truncated multipliers designed with
Baugh-Wooley scheme with bit-width varying from 6 to 256
bits. Comparison in Table III shows that our approach gives a
much better performance than ABC and Lingeling SAT solver.
ABC runtime exceeds 9,000 seconds in checking equivalence
between a 12-bit truncated Baugh-Wooley multiplier and a
CSA truncated multiplier generated by ABC. SAT solver in
ABC, Lingeling solver, and SMT solver Boolector all fail for
sizes greater than 12 bits for this experiment.

V. CONCLUSION

We presented an algebraic functional verification technique
of truncated multipliers. The method is based on a combi-
nation of algebraic rewriting (function extraction) and func-
tional merging using a multiplier reconstruction technique. We
demonstrate that this approach can efficiently verify Baugh-
Wooley and CSA truncated smultipliers, up to 256-bit, with
arbitrary bits truncated. The experimental results show that
our approach surpasses the state-of-the-art SAT, SMT, and
computer algebraic solvers. This technique can be expanded
to other arithmetic circuits.

Acknowledgment: This work has been funded by NSF
grants, CCF-1319496 and CCF-1617708.

REFERENCES

[1] N. Petra and A. G. M. Strollo, “Design of Fixed-Width Multipliers with
Linear Compensation Function,” IEEE Trans. Circuits Syst.I: Regular

Papers, vol. 58, no. 5, pp. 947–960, May. 2011.

[2] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining grobner basis
with logic reduction,” in DATE’16, 2016, pp. 1–6.

[3] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, “Verification of
Gate-level Arithmetic Circuits by Function Extraction,” in 52nd DAC.
ACM, 2015, pp. 52–57.

[4] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, A. Dreyer, F. Seelisch,
and G. Greuel, “Stable: A new qf-bv smt solver for hard verification
problems combining boolean reasoning with computer algebra,” in
DATE, 2011, pp. 155–160.

[5] J. Lv, P. Kalla, and F. Enescu, “Efficient Grobner Basis Reductions for
Formal Verification of Galois Field Arithmatic Circuits,” IEEE Trans.

on CAD, vol. 32, no. 9, pp. 1409–1420, September 2013.

[6] C. Yu, W. Brown, D. Liu, A. Rossi, and M. J. Ciesielski, “Formal
verification of arithmetic circuits using function extraction,” IEEE

Trans. on CAD of Integrated Circuits and Systems, vol. 35, no. 12,
pp. 2131–2142, 2016.

[7] R. Devarani and C. S. Manikandababu, “Design and Implementation of
Truncated Multipliers for Precision Improvement,” Computer Commu-

nication and Informatics (ICCCI), 2013 International Conference.

[8] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. on Computers, vol. 100, no. 8, pp. 677–691, 1986.

[9] R. E. Bryant and Y.-A. Chen, “Verification of Arithmetic Functions
with Binary Moment Diagrams,” in DAC’95.

[10] Y.-A. Chen and R. Bryant, “*PHDD: An Efficient Graph Representation
for Floating Point Circuit Verification,” School of Computer Science,
Carnegie Mellon University, Tech. Rep. CMU-CS-97-134, 1997.

[11] M. Ciesielski, P. Kalla, and S. Askar, “Taylor Expansion Diagrams: A
Canonical Representation for Verification of Data Flow Designs,” IEEE

Trans. on Computers, vol. 55, no. 9, pp. 1188–1201, Sept. 2006.

[12] N. Sorensson and N. Een, “Minisat v1. 13-a sat solver with conflict-
clause minimization,” SAT, vol. 2005, p. 53, 2005.

[13] A. Balint, A. Belov, and M. Heule, “Lingeling, Plingeling and Treen-
geling Entering the sat Competition 2013,” University of Helsinki, vol.
B-2012-2, pp. 51–52, 2013.

[14] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proceedings of the 38th

Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June

18-22, 2001, 2001, pp. 530–535.

[15] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” Journal on

Satisfiability, Boolean Modeling and Computation, vol. 9, 2015.

[16] A. Mishchenko, N. Een, R. K. Brayton, S. Jang, M. Ciesielski, and
T. Daniel, “MAGIC: An Industrial-Strength Logic Optimization, Tech-
nology Mapping, and Formal Verification Tool,” in Intl. Workshop on

Logic Synthesis, June 2010, pp. 124–127.

[17] C. Yu and M. J. Ciesielski, “Efficient parallel verification of galois field
multipliers,” ASP-DAC’17, 2017.

[18] M. B. Sullivan and E. E. Swartzlander, “Truncated Error Correction for
Flexible Approximate Multiplication,” Signals, Systems and Computers

(ASILOMAR), vol. ACSSC.2012.6489023, p. 10.1109, Nov 2012.

[19] T. A. Drane, T. M. Rose, and G. A. Constantinides, “On the Systematic
Creation of Faithfully Rounded Truncated Multipliers and Arrays,”
IEEE Trans. on Computers, vol. 63, no. 10, pp. 2513–2525, Oct. 2014.

[20] A. Mishchenko et al., “Abc: A system for sequential synthesis and
verification,” URL http://www. eecs. berkeley. edu/˜ alanmi/abc, 2007.

[21] A. Biere, “Lingeling, plingeling and treengeling entering the sat com-
petition 2013,” Proceedings of SAT Competition, pp. 51–52, 2013.

420

