
Logic Debugging of Arithmetic Circuits
Samaneh Ghandali, Cunxi Yu, Duo Liu, Walter Brown, Maciej Ciesielski

University of Massachusetts, Amherst, USA
{samaneh, ycunxi, duo, webrown, ciesiel}@umass.edu

Abstract— This paper presents a novel diagnosis and
logic debugging method for gate-level arithmetic circuits.
It detects logic bugs in a synthesized circuit caused by
using a wrong gate (“gate replacement” error), which
change the functionality of the circuit. The method is
based on modeling the circuit in an algebraic domain and
computing its algebraic “signature”. The location and type
of the bug is determined by comparing signatures
computed in both directions, using forward (PI to PO) and
backward (PO to PI) rewriting. It will also perform
automatic correction for the detected bugs. The approach
is demonstrated and tested on a set of integer
combinational arithmetic circuits.

Keywords— Formal verification; Logic debugging; Arithmetic
circuits.

I. INTRODUCTION
As today’s VLSI designs grow in complexity and size,

design errors become more frequent and difficult to track [1].
The process of verifying the functional correctness of a design,
determining the source of potential errors and correcting those
errors, can take up to 70% of the overall design time [2].
Recent developments have automated most of the verification
tasks, but debugging, i.e., error localization and correction, still
remains a resource intensive, manually conducted process [4].
Efficient automated debugging techniques are necessary to
complement and enhance the verification techniques.

Traditional automated debugging solutions for hardware
designs are based on simulation, critical path tracing [5], BDDs
and *BMDs [6]. Recent automated debugging methods tend to
rely on SAT solvers. In [7] error detection is facilitated by
adding corrector models to the circuit implementation and
mapping it into a Boolean formula in CNF. By solving the
resulting SAT problem, a set of suspect error locations are
obtained. This approach, however, is restricted by the
performance and capacity of the available SAT solvers. Other
techniques, such as those based on Quantified Boolean
Formula (QBF) [8], abstraction and refinement in error
localization [9], and maximum satisfiability [10], [11], are used
to improve SAT-based debugging method. However, the
performance of these methods and their capability to handle
large designs remain limited by SAT. In order to reduce the
number of SAT solver calls, the concept of reverse dominators
was introduced in [12] to allow for early pruning of non-
solution areas of the problem search space. FPGA-based
debugging methodology, proposed in [13], [14], [15], locally
modifies the circuit structure.

The diagnosis problem for sequential circuits is typically
structured as bounded model checking (BMC) [16], [17] and
formulated as a SAT problem. In [17], resynthesis method
guided by counterexamples performs gate-level circuit repair,
based on error traces composed of input vectors and output
responses. The method described in [18],[19] introduces an
abstraction and refinement algorithm for design debugging
built upon a time-windowing framework to manage excessive
error trace lengths. Non-modeled portions of the trace are
approximated using a path directed abstraction that represents
structural circuit paths. Due to the inherent iterative nature of
the algorithm, performance remains the crucial issue in this
work.

A debugging technique applicable to divider circuits is
proposed in [20]. It is based on a “reverse-engineering”
mechanism of extracting a high level arithmetic model, called
Functional Bit Level Adder (FBLA), which may be difficult to
obtain in synthesized circuits. Furthermore, these methods can
only reason about the correctness of the quotient part of the
result using iterative subtraction model, but not about the entire
divider circuit. In [21] verification of RTL code to optimize
assertion coverage is proposed. Their algorithm can be used to
isolate only those statements that are covered by an assertion as
the most likely location of the bug. However, the problem of
generating assertions remains open.

In this paper, we introduce a novel diagnosis and logic
debugging method for gate-level arithmetic circuits. The
proposed method is part of the functional verification approach
proposed in [3]. It detects the logical bugs, caused by using a
wrong gate (“gate replacement” bug) or inversion of an internal
signal, that change the functionality of the circuit. It will also
perform automatic correction for the detected bugs. The
approach assumes a “single-gate” replacement error, caused by
using a wrong gate, but it can correct multiple independent
bugs. It consists of three phases: 1) the circuit is scanned
forward from the primary inputs (PI) to primary outputs (PO)
and an algebraic expression (signature) is derived for each cut
(a set of signals that separate PI from PO); 2) the circuit is
scanned backward from PO to PI and an algebraic signature is
generated for each cut; 3) the difference between the two
expressions, �i, at each cut is then computed. A non-zero �i for
a given cut indicates inconsistency between the two
expressions, showing that there is a bug located at this cut. The
value of �i is then analyzed to determine the source of the bug
and to correct it. Under certain conditions several bugs in the
same cut can be corrected simultaneously.

The rest of this paper is organized as follows. Section II
describes preliminaries. Section III explains in detail the
proposed diagnosis and debugging method. Section IV presents

2015 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-8719-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISVLSI.2015.16

113

2015 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-8719-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISVLSI.2015.16

113

experimental results and Section V provides summary and
conclusions.

II. PRELIMINARIES
We follow the arithmetic verification approach proposed in

[3], with the circuit modeled as a network of basic logic gates
(AND, OR, XOR, INV, etc.). Each gate is represented as a
pseudo-Boolean polynomial poly[X], with Boolean variables X
= {x1, ..., xn} and integer coefficients from Z2

n. The following
equations summarize algebraic representation of basic Boolean
operators:

 a = 1 � a

 a � b = a b

 a � b = a + b � a b (1)

 a � b = a + b � 2 a b

Definition 1 (Input Signature): The input signature, Sigin, is
a polynomial in primary input variables that uniquely
represents an integer function computed by the circuit, i.e., its
specification. For example, an n-bit binary adder with inputs
{a0,…,an�1,b0,…,bn�1}, is described by

. The input signature of a 2-bit
signed multiplier is Sigin = (�2a1+a0)(�2b1+b0) =
4a1b1�2a0b1�2a1b0+a0b0, etc. The integer coefficients
(weights) associated with the circuit signals are uniquely
determined by the intended circuit function (specification). For
example, in an adder, the coefficients of the primary inputs at
bit position i are c(ai) = c(bi) = 2i.

Definition 2 (Output Signature): the output signature,
Sigout, of the circuit is defined as a polynomial in the primary
output signals. Such a polynomial is uniquely determined by an
n-bit encoding of the output provided by the designer. For
example, the output signature of the 2-bit signed multiplier is
�8z3+4z2+2z1+z0. In general, an output signature of an
unsigned arithmetic circuit with n output bits is represented as
a linear polynomial, 1

02n iout iiSig z−
== � . The coefficients of the

primary outputs are also unique, defined by the known output
encoding.

Definition 3 (Cut Signature): The cut is a set of signals that
separates PI from PO. The signature of a cut is a polynomial
expression in signal variables of the cut that represents the
integer number computed by the circuit.

The selection of the cuts is an important issue in this
approach, as it affects the efficiency of finding the bugs. In the
worst case, two cuts may only differ by a single gate. For
illustration purpose we assume that the cuts are determined by
the topological ordering of signals w.r.t. PI, but other choices
exist (determining the best set is part of the future work).

Example 1: Figure 1 shows a two-bit adder, with Sigin =
2a1+2b1+a0+b0, Sigout = 4r2+2r1+r0, and “topological” cuts,
labeled f0,...,f3. The meaning of �i in the figure will be
explained in Section III.C. This circuit will be used as a
running example in the paper.

As shown in [3], in a bug-free arithmetic circuit, the
expressions for any two cuts, although expressed by different

polynomials, always evaluate to the same value, i.e., f(cuti) =
f(cutj), for any {i, j}. This fundamental property of the
arithmetic circuit serves as basis of the proposed diagnostics
and debugging approach.

III. BUG IDENTIFICATION
Our debugging method consists of: computing cut

signatures by forward rewriting, backward rewriting, and
comparing the pairs of signatures for each cut to identify and
fix the bugs.

A. Forward (PI-PO) rewriting
The forward (PI-PO) rewriting starts by dividing the initial

polynomial, Sigin, by the polynomials describing the logic gates
connected to the PI signals. The goal is to replace the input
variables associated with the PI gates with an expression
involving the corresponding gate outputs. This produces an
expression in the new set of variables, moving away from PI.
While in principle this can be done one gate at a time, one can
eliminate several gates at once to speed up the process. To do
this division efficiently, knowledge of the signal coefficients
(weights) is needed. We explain how to calculate the required
coefficients of the newly introduced variables using the
structures shown in Figure 2.

Fig. 1. Two-bit adder circuit with topological cuts.

Figure 2(a) shows a half-adder (HA) circuit, consisting of a
pair (XOR, AND) with common variables. Using the notation
in the figure and the algebraic representation of the logic gates
given in Eq.(1), the computation of the output coefficients of
the half-adder circuit with inputs (a,b) and outputs (m,n) is
performed as follows: Sigin(HA) = c1a+c1b

 Sigout(HA) = c2m+ c3n = c2(a+b-2ab) + c3ab
Since Sigin(HA) = Sigout(HA), we have:

c1a+c1b – c2(a+b–2ab) – c3ab = 0.
By regrouping the variables as follows

a(c1 - c2) + b(c1 - c2) + ab(2c2 – c3) = 0
and solving the above equation for c2 and c3, we obtain:

c2 = c1 and c3 = 2c1.
The second structure shown in Fig. 2(b) consists of an XOR

gate and an OR gate. Using similar approach, we obtain: c2 = –

1 1
0 02 2n ni ii ii iinSig a b− −

= == +� �

114114

c1 and c3 =2c1. Similarly, the structure in Fig. 2(c), consisting
of an OR and an AND gate, produces the coefficients: c2 = c1
and c3 = c1.

Coefficients of the individual gates can be derived
similarly. It can be shown that the inputs to an OR or XOR gate
must have the same coefficients, c1= c2, otherwise the algebraic
equation for this gate will not be satisfied; the coefficient c3 of
the output is equal to those of the input. In contrast, the input
coefficients c1, c2 of an AND gate can be different, and the
output coefficient c3 = c1· c2.

c2 = c1
c3 = 2c1

c2 = -c1
c3 = 2c1

c2 = c1
c3 = c1

(a) (b) (c)
Fig. 2. Calculation of signal coefficients.

Computing cut signatures: The pseudo code of the
algorithm for forward rewriting equation for each cut is shown
in Algorithm 1. The input to this algorithm is the circuit with
its input signature, and its output is a set of cut equations.
Equation of the first cut is the same as the specification, i.e.,
f(cut0) = Sigin. Obtaining cuti from cuti-1 works as follows. Let xj
be an output signal of gate gj in cuti and poly(gj) be the
polynomial expression describing its logic function (c.f.
Eq.(1)), so that xj = poly(gj). For each gate gj in cuti we add
variable xj to the current cut and subtract the algebraic
expression poly(gj) representing this gate, without changing the
arithmetic function of the cut. Equation (2) shows the
computation of f(cuti) from f(cuti-1).

() () ()()1 1
igates cut

i i j j jjf cut f cut c x poly g∈
− == + −�

 (2)

Here, i is the index of the cut, and cj is the coefficient of gate j
of cuti. Lines 3-7 of Algorithm 1 describe the computation of
each cut. For simplicity, we write fi instead of f(cuti). Each fi is
initialized with fi-1; using the structure in Fig. 2, for each gate j
of cuti, the gate coefficient is calculated so as to eliminate the
gate inputs (line 6); finally, equation of cuti is computed (line
7), based on Eq. (2).

Algorithm Forward (PI-PO) rewriting (Sigin, Circuit)
1 Compute all cuts of the Circuit;
2 f0 = Sigin;
3 for i = 1 to # of cuts
4 fi = fi-1;
5 for j=1 to #of gates of cuti
6 cj = compute coefficient of gj;
7 fi = fi + cj(xj - poly(gj));
Algorithm 1. Forward (PI-PO) rewriting

Example 2: Consider again the circuit in Fig. 1. By

applying the forward (PI-PO) rewriting algorithm, we obtain
the following equations for each cut:

0 1 1 0 02 2f b a b a= + + +

1 1 1 0 0 1 1 1 1

1 0 0 0 0 0 0 0

2 2 4() 2((
2)) 2() ((2))

f b a b a e a b d a b
a b c a b r a b a b

= + + + + − + − +
− + − + − + −

04 2 2e d c r= + + +
2 0 14 2 2 4() 2((2))f e d c r g dc r d c dc= + + + + − + − + −

1 0 4 4 2e g r r= + + +
3 1 0 2

2 1 0

4 4 2 4(())
4 2 4

f e g r r r e g eg
r r r eg

= + + + + − + −
= + + +

Note that such computed f3 is different than the expected
output signature, 4r2+2r1+r0. Specifically, it contains the term
4eg, associated with variables of cut2. We call such a term a
Residual Expression (RE). In a correct circuit, RE should be
zero. This can be proved by a straightforward rewriting of 4eg
up to the PI variables:

4eg = 4(a1b1)(dc) = 4(a1b1)(a1+b1-2a1b1)(a0b0) = 0

Then, f3 = 4r2+2r1+r0, indicating that the circuit is correct.
The reason for the existence of a residual expression in a
correct circuit is that the polynomial division used by forward
rewriting does not take into account the Boolean nature of the
circuit signals. To avoid RE one would need to divide the
polynomials by a set of polynomials <x2-x>, called ideals, for
each signal x in the circuit, to guarantee that x=0,1. This
method, often employed by symbolic algebra approach, is too
costly and inefficient for this work.

B. Backward (PO-PI) rewriting
The backward (PO-PI) rewriting is conceptually simpler,

basically a reversed symbolic simulation. Starting at the PO
with Sigout, it creates a new cut signature by replacing an output
signal xj of gate gj with its corresponding algebraic expression:
xj � poly(gj). Here the signal coefficients are known, provided
by the binary encoding of the PO signals.

Example 3: The cut expressions for the two-bit adder in
Fig. 1 computed in PO-PI fashion are as follows:

2 1 0 1 04() 2 4 4 4 2f g e eg r r g e eg r r= + − + + = + − + +
1 04 4(cd) 4e() 2(c 2)f e cd d cd r= + − + + − +

04 2 2 4e d c r ecd= + + + −
0 04 2 2 4f e d c r ecd= + + + −

1 1 1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1 1 1

4(a) 2(2a) 2(a) (
2a) 4(a)(a)(2a)

b a b b b a b
b b b a b b

= + + − + + +
− − + −

1 1 0 02 2a b a b= + + +
The computed signature at the PI matches the expected

specification, Sigin, so the circuit is correct. Note that the
backward rewriting will never produce a residual expression.
This is because the algebraic model (1) of Boolean gates
correctly represents the binary value of the gate signal. This
convenience comes at a cost of a potentially exponential
explosion of the signature size during backward rewriting.

C. Computing the signature difference (�i)
At this point, a pair of expressions is generated for each cut

of the circuit: one computed by the forward and the other by

3 2 1 04 2f r r r= + +

115115

the backward rewriting. The difference �i between the two
expressions is defined as follows:

�i = fi,BACK - fi,FOR; 0 � i � cuts (3)

Here, i is the index of cuti, fi,BACK is the signature of cuti in the
PO-PI direction, and fi,FOR is the signature of cuti computed by
the PI-PO rewriting. If the circuit contains no bug, the value of
�i at each cut is equal to zero; otherwise, the circuit contains a
bug. The expression of �i will be used to identify and to correct
the bug.

Example 4: Consider the adder circuit in Examples 2 and 3
again. The values of parameter �i for each cut of the circuit are
shown in Fig. 1. As can be seen, �3, �2 and �1 are non-zero
polynomials. However, as explained in Example 3, 4eg and
4ecd are zero functions (expressions that evaluate to zero), so
�3, �2 and �1 also reduce to zero.

D. The Debugging Algorithm
In this phase, the circuit is analyzed and verified against the

given specification to either confirm its correctness or to find
and locate the bug. In principle, the circuit is correct (satisfies
its specification) if the signature obtained by backward
rewriting matches the given input signature (specification).
Alternatively, the signature obtained by the forward rewriting
should match the given output signature, provided that the
residual expression RE generated during this rewriting is
proven to be zero (as explained earlier, this can be done by a
local backward rewriting of the RE expression up to PI). In this
paper we consider a particular type of a bug, namely gate
replacement, i.e., using a wrong gate in the circuit. In practice,
in the presence of a bug, the size of the computed signature
may become prohibitively large, and the goal is to locate the
cut at which the bug (faulty gate) resides. If the bug is located
at some cuti, then the value of Δi for this cut will be nonzero.
This is illustrated by the following example.

Example 5: Let us intentionally insert a bug into the two-
bit adder circuit in Fig. 1, by replacing the AND gate with
inputs (c,d) with an OR gate. The resulting buggy circuit is
shown in Fig. 3. The cut equations for this circuit are as
follows.

Forward (PI-PO) rewriting:

0 1 1 0 02 2f b a b a= + + +
1 04 2 2f e d c r= + + +
2 1 04 4 2f e g r r= + − +
3 2 1 04 2 4f r r r eg= − + +

Backward (PO-PI) rewriting:

2 1 04 4 4 2f e g eg r r= + − + +
1 04 6 6 8 4 4 4f e d c cd ec ed ecd r= + + − − − + +

0 1 1 1 1 0 0 0 0 0 0 11

0 0 0 0 1 1

6a 6 8a a 4a 8a a
 8a 12a a
f b b b b b

b b b b
= + − + + + −

− +
The values of parameter Δi for each cut of the buggy circuit

are calculated using Eq. (2) and shown in Fig. 3. The type and
the location of the bug can be obtained by assessing the value
of Δi for each cut. Assume initially that each cut has only a

single bug (the constraint to be removed later). Table I shows
the difference in the signatures between the cut with the correct
gate and the cut with the wrong gate. As an example, consider
the entry (a+b-2ab) in the 1st row (AND) and 2nd column (OR)
of the table. It reflects the difference between the correct AND
gate (ab) and the wrong OR gate (a+b-ab). That is, if in a
given cut, an AND gate is replaced with an OR gate, then Δi =
(a+b-ab)-ab =a+b-2ab, where a, b are the gate inputs.
Conversely, if for some cut computed by the algorithm, �i
=a+b-2ab, this means that it contains an OR gate while it
should contain an AND.

Fig. 3. Two-bit adder with a bug: OR instead of AND

The remaining entries in the table give expressions for
different bugs for a single-gate replacement. To detect the
location of the bug in a given cut we need to check if �i
contains any of the expressions in Table I (replaced by the
appropriate variable names). If this is the case, the location of
the bug is detected and can be corrected as specified in the
table. Otherwise, either the bug originates at a different cut, or
it has a different nature, not considered in this model.

TABLE I. EXPRESSIONS CAUSED BY GATE REPLACEMENT ERROR

Buggy
Correct AND OR XOR

AND a+b-2ab a+b-3ab
OR -a-b+2ab -ab

XOR -a-b+3ab ab

Table I can be readily extended to other types of logic
gates, such as the complex And-Or-Invert gates used in
standard cell implementations.

The pseudo code of the Debugging Algorithm is shown in
Algorithm 2. The equation of each cut is first computed in a
PI-PO direction (line 1) and then by PO-PI rewriting (line 2).
Then, �i is calculated for each cut. If �0 =0, the circuit is
correct, otherwise �i of other cuts are assessed and their
expressions are checked against those in Table I (lines 3-8).
The detected bugs at each cut are stored in the set Bug-list,
which consists of the potential bug locations.

3 2 1 04 2f r r r= + +

116116

The expression of each �i is then modified by adding to it
expression (fi,FOR - fi+1,FOR), where fi,FOR and fi+1,FOR are the
expressions obtained by forward rewriting of cuti and cuti+1,
respectively (lines 9-11). This is done to account for the
residual expression generated during the forward rewriting
between cuti and cuti+1, since during the forward rewriting, the
residual expression that is based on the variables of cuti
actually appears in cuti+1. Note that only those terms of
expression (fi,FOR - fi+1,FOR) that belong to cuti are added to �i.
The new �i is examined again to check for the buggy
expressions (lines 12-13).

Algorithm Debugging
1 Scan forward (PI-PO) and write equation for each cuti: fi,FOR;
2 Scan backward (PO-PI) and write equation for each cuti: fi,BACK;
3 For each cuti
4 compute Δi = fi,BACK- fi,FOR;
5 If (Δ0 == 0)
6 Return "No Bug";
7 If Δi contains expression in Table I
8 add detected bug to Bug_list;
9 If (bug_list is empty)
10 For each cuti
11 Δi = Δi + (fi,FOR- fi+1,FOR);
12 If Δi contains an expression in Table I
13 add detected bug to Bug_list;
14 If (Bug_list is empty)
15 Return "Bug cannot be detected by our method";
16 For each member of Bug_list
17 Correct the circuit;
18 Compute Δ0;
19 If (Δ0 == 0)
20 Return "Bug is detected and corrected";
Algorithm 2. Pseudo code of the Debugging Algorithm

The Bug-list shows all potential bug locations. If after
modifying the �i expressions the Bug-list remains empty, this
means that our debugging algorithm cannot detect the bug
(lines 14-15). To detect the exact location of the bug and
correct the circuit, the first bug of the Bug-list is replaced with
the corresponding correct gate from Table I. Then the circuit is
verified by re-computing �0. If Δ0 ≠ 0, we consider the next
bug from the list and to correct it in the buggy circuit (lines 19-
20). This process is repeated until the circuit becomes correct,
i.e., until �0 = 0.

Example 6: Continuing with Example 5, we compute �i
for all the cuts, trying to match their variables with one of the
expressions in Table I. Recall that only the signals from the
given cut must be used in the matching. At cut3, with signals
{r2,r1,r0}, �3 =4r1-4eg; but 4r1 does not match any of the
expressions in the table. At cut2, with signals {e,g,r1,r0}, we
have �2 =4r1-4eg. Here we find that -4eg matches an
expression in the table (-ab), at the OR/XOR entry of the table.
However, cut2 does not have any XOR gate, so this cannot be
the source of the bug. At cut1, with signals {e,d,c,r0}, we have
�1 =4d+4c-8dc-4ec-4ed+4ecd. Here 4d+4c-8dc matches the
buggy expression (a+b-2ab) with coefficient 4, indicating that
an OR gate was used instead of an AND gate. As shown in Fig.
4, there is an OR gate at cut1 with inputs {c, d} so a bug is
detected. This bug is then corrected by replacing the OR with

an AND. The other terms (-4ec, -4ed) match the expression in
the table (OR-XOR gate replacement). But at cut1 there are no
gates with inputs {e, c} or {e, d}; hence no additional bug is
reported. In a similar fashion, we can verify that there are no
bugs in cuto. Therefore, the only bug detected is at cut1, caused
by the OR gate in place of an AND. To correct the circuit, we
just need to replace the OR gate with inputs (c, d) with an AND
gate with the same inputs.

IV. EXPERIMENTAL RESULTS
The algorithm has been implemented in C#. The

experiments were conducted on a PC with Intel 1.80-GHz Core
i7 processor and 6 GB of memory under Windows 8. We tested
gate-level circuits of arithmetic functions: F1 = A+B and F2 =
A×B, with bit-widths ranging from 32 to 128 bits. Several bugs
(erroneous gates) were inserted in the middle of each circuit.
Note that the bugs located near PI are easiest to detect (there is
no residual expression) and the bugs inserted near POs are
most difficult to detect (the signature with backward rewriting
may explode in size). Table II and III show the results for the
two circuits containing multiple bugs.

TABLE II. DEBUGGING OF F1 = A + B WITH MULTIPLE BUGS

Bit-width # Gates # Bugs Memory CPU time (sec)

32 414
1 4.2 MB 1.46
3 4.2 MB 1.56
5 4.2MB 1.61

64 810
1 4.6 MB 3.40
3 4.6 MB 3.51
5 4.6 MB 3.58

128
 1,662

1 6.3 MB 6.70
3 6.3 MB 6.92
5 6.3 MB 6.98

Our method can detect and correct every inserted bug in all
the instances of the tested circuits in a reasonable time. The
table demonstrates a linear CPU time dependence in the
number of bugs (for a small number of bugs performed in this
experiment).

TABLE III. DEBUGGING OF F2 = A×B WITH MULTIPLE BUGS

Bit-width # Gates # Bugs Memory CPU Time (sec)

32 8,062
1 8.9 MB 18.32
3 9.5 MB 23.50
5 11.2 MB 30.78

64 32,512
1 85 MB 184.50
3 91 MB 189.43
5 95 MB 194.45

128 131,072
1 122 MB 1927.40
3 131 MB 2027.56
4 143 MB 2136.86

V. CONCLUSIONS
The goal of this work was to provide a proof of concept for

identifying and correcting bugs caused by gate replacement in
gate-level arithmetic circuits. Despite its preliminary nature,

117117

the initial results demonstrate the validity and potential of the
proposed approach for solving practical problems. The
limitation of the method is generation of cuts as a means to
locate the bugs. Determining the best set of cuts to improve the
efficiency of the method is the major goal of our future work.
One possibility is to adopt a “binary search” approach, by
sampling the circuit with selected cuts and checking if their
signature is correct. This may need to be supported by random
backward simulation to help qualify the cut as correct or
incorrect. The next cut in the sequence will then be placed half-
way between the faulty one and the PO and the search for bugs
will continue in this area in a similar fashion. The method is
applicable to locating multiple bugs associated as long as they
correspond to disjoint sets of variables.

ACKNOWLEDGMENT
This work was supported by a grant from the National

Science Foundation, award No. CCF-1319496.

REFERENCES
[1] M.F. Ali, S. Safarpour, A. Veneris, M.S. Abadir, "Post-Verification

Debugging of Hierarchical Designs," IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 871-876, 2005.

[2] Y. Chen, S. Safarpour, A. Veneris, J.M. Silva, "Spatial and temporal
design debug using partial MaxSAT," Great Lakes symposium on VLSI
(GLVLSI), pp. 345-350, 2009.

[3] M. Ciesielski, C. Yu, W. Brown, D. Liu, “Verification of Gate-level
Arithmetic Circuits by Function Extraction,” ACM Design Automation
Conference (DAC-2015), 2015.

[4] Y. Yang, S. Sinha, A. Veneris, R. Brayton, "Automating Logic
Rectification by Approximate SPFDs," Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 402-407, 2007.

[5] M. Abramovici, P.R. Menon, D.T. Miller, “Critical path tracing-an
alternative to fault simulation,” Design Automation Conference (DAC),
1983, pp. 214–220.

[6] R.E. Bryant, Y-A. Chen, “Verification of Arithmetic Functions with
Binary Moment Diagrams,” Design Automation Conference (DAC), pp.
535–541, 1995.

[7] A. Smith, A. Veneris, M.F. Ali, A. Viglas, “Fault diagnosis and logic
debugging using boolean satisfiability,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 24, no. 10, pp.
1606–1621, 2005.

[8] H. Mangassarian, A. Veneris, S. Safarpour, M. Benedetti, D. Smith, “A
performance-driven QBF-based iterative logic array representation with
applications to verification, debug and test,” IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 240–245, 2007.

[9] S. Safarpour, A. Veneris, “Abstraction and refinement techniques in
automated design debugging,” Seventh International Workshop on
Microprocessor Test and Verification (MTV), , pp. 88–93, 2006.

[10] S. Safarpour, H. Mangassarian, A. Veneris, M.H. Liffiton, K.A.
Sakallah, “Improved design debugging using maximum satisfiability,”
Formal Methods in Computer Aided Design (FMCAD), pp. 13–19,
2007.

[11] Y. Chen, S. Safarpour, J. Marques-Silva, A. Veneris, “Automated design
debugging with maximum satisfiability,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no.
11, pp. 1804–1817, 2010.

[12] B. Le, H. Mangassarian, B. Keng, A. Veneris, “Non-solution
implications using reverse domination in a modern sat-based debugging
environment,” Design, Automation & Test in Europe Conference
(DATE), pp. 629–634, 2012.

[13] M. Kubo, M. Fujita, “Debug methodology for arithmetic circuits on
FPGAs,” IEEE International Conference on Field-Programmable
Technology (FPT), pp. 236–242, 2002.

[14] S. Yang, H. Shim, W. Yang, C-M Kyung, “A new RTL debugging
methodology in FPGA-based verification platform,” Asia-Pacific
Conference on Advanced System Integrated Circuits, pp. 180–183,
2004.

[15] W. Li, Z.J. Song, A.W. Ruan, C.Q. Li, D.S. Yu, “A two-mode
debugging system for vlsi designs using xilinx FPGA,” International
Conference on Computational Problem-Solving (ICCP), pp. 84–88,
2012.

[16] M.K. Ganai, A. Gupta, “Efficient BMC for multi-clock systems with
clocked specifications,” Asia and South Pacific Design Automation
Conf. (ASP-DAC), pp. 310–315, 2007.

[17] B. Keng, S. Safarpour, A. Veneris, “Bounded model debugging,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29, no. 11, pp. 1790–1803, 2010.

[18] B. Keng and A. Veneris, “Path directed abstraction and refinement in
SAT-based design debugging,” Design Automation Conference (DAC),
2012, pp. 947–954.

[19] B. Keng, A.G. Veneris, “Path-Directed Abstraction and Refinement for
SAT-Based Design Debugging,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 32, n. 1o, pp. 1609-
1622, 2013.

[20] M.H. Haghbayan, B. Alizadeh, A.M. Rahmani, P. Liljeberg, H.
Tenhunen, “Automated formal approach for debugging dividers using
dynamic specification,” IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 264–
269, 2014.

[21] V. Athavale, S. Ma, S. Hertz, S. Vasudevan, “Code coverage of
assertions using rtl source code analysis,” Design Automation
Conference (DAC), pp. 1–6, 2014.

118118

