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Abstract— This paper presents a novel diagnosis and 
logic debugging method for gate-level arithmetic circuits. 
It detects logic bugs in a synthesized circuit caused by 
using a wrong gate (“gate replacement” error), which 
change the functionality of the circuit. The method is 
based on modeling the circuit in an algebraic domain and 
computing its algebraic “signature”. The location and type 
of the bug is determined by comparing signatures 
computed in both directions, using forward (PI to PO) and 
backward (PO to PI) rewriting. It will also perform 
automatic correction for the detected bugs. The approach 
is demonstrated and tested on a set of integer 
combinational arithmetic circuits. 

Keywords— Formal verification; Logic debugging; Arithmetic 
circuits. 

I. INTRODUCTION 
As today’s VLSI designs grow in complexity and size, 

design errors become more frequent and difficult to track [1]. 
The process of verifying the functional correctness of a design, 
determining the source of potential errors and correcting those 
errors, can take up to 70% of the overall design time [2]. 
Recent developments have automated most of the verification 
tasks, but debugging, i.e., error localization and correction, still 
remains a resource intensive, manually conducted process [4]. 
Efficient automated debugging techniques are necessary to 
complement and enhance the verification techniques. 

Traditional automated debugging solutions for hardware 
designs are based on simulation, critical path tracing [5], BDDs 
and *BMDs [6]. Recent automated debugging methods tend to 
rely on SAT solvers. In [7] error detection is facilitated by 
adding corrector models to the circuit implementation and 
mapping it into a Boolean formula in CNF. By solving the 
resulting SAT problem, a set of suspect error locations are 
obtained. This approach, however, is restricted by the 
performance and capacity of the available SAT solvers. Other 
techniques, such as those based on Quantified Boolean 
Formula (QBF) [8], abstraction and refinement in error 
localization [9], and maximum satisfiability [10], [11], are used 
to improve SAT-based debugging method. However, the 
performance of these methods and their capability to handle 
large designs remain limited by SAT. In order to reduce the 
number of SAT solver calls, the concept of reverse dominators 
was   introduced in [12] to allow for early pruning of non-
solution areas of the problem search space. FPGA-based 
debugging methodology, proposed in [13], [14], [15], locally 
modifies the circuit structure.  

The diagnosis problem for sequential circuits is typically 
structured as bounded model checking (BMC) [16], [17] and 
formulated as a SAT problem. In [17], resynthesis method 
guided by counterexamples performs gate-level circuit repair, 
based on error traces composed of input vectors and output 
responses. The method described in [18],[19] introduces an 
abstraction and refinement algorithm for design debugging 
built upon a time-windowing framework to manage excessive 
error trace lengths. Non-modeled portions of the trace are 
approximated using a path directed abstraction that represents 
structural circuit paths. Due to the inherent iterative nature of 
the algorithm, performance remains the crucial issue in this 
work. 

A debugging technique applicable to divider circuits is 
proposed in [20]. It is based on a “reverse-engineering” 
mechanism of extracting a high level arithmetic model, called 
Functional Bit Level Adder (FBLA), which may be difficult to 
obtain in synthesized circuits. Furthermore, these methods can 
only reason about the correctness of the quotient part of the 
result using iterative subtraction model, but not about the entire 
divider circuit. In [21] verification of RTL code to optimize 
assertion coverage is proposed. Their algorithm can be used to 
isolate only those statements that are covered by an assertion as 
the most likely location of the bug. However, the problem of 
generating assertions remains open.  

In this paper, we introduce a novel diagnosis and logic 
debugging method for gate-level arithmetic circuits. The 
proposed method is part of the functional verification approach 
proposed in [3]. It detects the logical bugs, caused by using a 
wrong gate (“gate replacement” bug) or inversion of an internal 
signal, that change the functionality of the circuit. It will also 
perform automatic correction for the detected bugs. The 
approach assumes a “single-gate” replacement error, caused by 
using a wrong gate, but it can correct multiple independent 
bugs. It consists of three phases: 1) the circuit is scanned 
forward from the primary inputs (PI) to primary outputs (PO) 
and an algebraic expression (signature) is derived for each cut 
(a set of signals that separate PI from PO); 2) the circuit is 
scanned backward from PO to PI and an algebraic signature is 
generated for each cut; 3) the difference between the two 
expressions, �i, at each cut is then computed. A non-zero �i for 
a given cut indicates inconsistency between the two 
expressions, showing that there is a bug located at this cut. The 
value of �i is then analyzed to determine the source of the bug 
and to correct it. Under certain conditions several bugs in the 
same cut can be corrected simultaneously. 

The rest of this paper is organized as follows. Section II 
describes preliminaries. Section III explains in detail the 
proposed diagnosis and debugging method. Section IV presents 

2015 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-8719-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISVLSI.2015.16

113

2015 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-8719-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISVLSI.2015.16

113



experimental results and Section V provides summary and 
conclusions. 

II. PRELIMINARIES 
We follow the arithmetic verification approach proposed in 

[3], with the circuit modeled as a network of basic logic gates 
(AND, OR, XOR, INV, etc.). Each gate is represented as a 
pseudo-Boolean polynomial poly[X], with Boolean variables X 
= {x1, ..., xn} and integer coefficients from Z2

n. The following 
equations summarize algebraic representation of basic Boolean 
operators: 

  a = 1 � a 

 a � b = a b 

 a � b = a + b � a b                                         (1) 

 a � b = a + b � 2 a b     

Definition 1 (Input Signature): The input signature, Sigin, is 
a polynomial in primary input variables that uniquely 
represents an integer function computed by the circuit, i.e., its 
specification. For example, an n-bit binary adder with inputs 
{a0,…,an�1,b0,…,bn�1}, is described by 

. The input signature of a 2-bit 
signed multiplier is Sigin = (�2a1+a0)(�2b1+b0) = 
4a1b1�2a0b1�2a1b0+a0b0, etc. The integer coefficients 
(weights) associated with the circuit signals are uniquely 
determined by the intended circuit function (specification). For 
example, in an adder, the coefficients of the primary inputs at 
bit position i are c(ai) = c(bi) = 2i. 

Definition 2 (Output Signature): the output signature, 
Sigout, of the circuit is defined as a polynomial in the primary 
output signals. Such a polynomial is uniquely determined by an 
n-bit encoding of the output provided by the designer. For 
example, the output signature of the 2-bit signed multiplier is 
�8z3+4z2+2z1+z0.  In general, an output signature of an 
unsigned arithmetic circuit with n output bits is represented as 
a linear polynomial, 1

02n iout iiSig z−
== � . The coefficients of the 

primary outputs are also unique, defined by the known output 
encoding. 

Definition 3 (Cut Signature): The cut is a set of signals that 
separates PI from PO. The signature of a cut is a polynomial 
expression in signal variables of the cut that represents the 
integer number computed by the circuit. 

The selection of the cuts is an important issue in this 
approach, as it affects the efficiency of finding the bugs. In the 
worst case, two cuts may only differ by a single gate. For 
illustration purpose we assume that the cuts are determined by 
the topological ordering of signals w.r.t. PI, but other choices 
exist (determining the best set is part of the future work).  

Example 1: Figure 1 shows a two-bit adder, with Sigin = 
2a1+2b1+a0+b0, Sigout = 4r2+2r1+r0, and “topological” cuts, 
labeled f0,...,f3. The meaning of �i in the figure will be 
explained in Section III.C. This circuit will be used as a 
running example in the paper.  

As shown in [3], in a bug-free arithmetic circuit, the 
expressions for any two cuts, although expressed by different 

polynomials, always evaluate to the same value, i.e., f(cuti) = 
f(cutj), for any {i, j}.  This fundamental property of the 
arithmetic circuit serves as basis of the proposed diagnostics 
and debugging approach. 

III. BUG IDENTIFICATION 
Our debugging method consists of: computing cut 

signatures by forward rewriting, backward rewriting, and 
comparing the pairs of signatures for each cut to identify and 
fix the bugs. 

A. Forward (PI-PO) rewriting 
The forward (PI-PO) rewriting starts by dividing the initial 

polynomial, Sigin, by the polynomials describing the logic gates 
connected to the PI signals. The goal is to replace the input 
variables associated with the PI gates with an expression 
involving the corresponding gate outputs. This produces an 
expression in the new set of variables, moving away from PI. 
While in principle this can be done one gate at a time, one can 
eliminate several gates at once to speed up the process. To do 
this division efficiently, knowledge of the signal coefficients 
(weights) is needed. We explain how to calculate the required 
coefficients of the newly introduced variables using the 
structures shown in Figure 2. 

 
Fig. 1. Two-bit adder circuit with topological cuts. 

Figure 2(a) shows a half-adder (HA) circuit, consisting of a 
pair (XOR, AND) with common variables. Using the notation 
in the figure and the algebraic representation of the logic gates 
given in Eq.(1), the computation of the output coefficients of 
the half-adder circuit with inputs (a,b) and outputs (m,n) is 
performed as follows:  Sigin(HA) = c1a+c1b  

 Sigout(HA) = c2m+ c3n = c2(a+b-2ab) + c3ab 
Since Sigin(HA)  = Sigout(HA), we have: 

c1a+c1b – c2(a+b–2ab) – c3ab = 0. 
By regrouping the variables as follows 

a(c1 - c2 ) + b(c1 - c2 ) + ab(2c2  – c3) = 0 
and solving the above equation for c2 and c3, we obtain: 

c2 = c1 and c3 = 2c1. 
The second structure shown in Fig. 2(b) consists of an XOR 

gate and an OR gate. Using similar approach, we obtain: c2 = –

1 1
0 02 2n ni ii ii iinSig a b− −

= == +� �
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c1 and c3 =2c1. Similarly, the structure in Fig. 2(c), consisting 
of an OR and an AND gate, produces the coefficients:  c2 = c1 
and c3 = c1. 

Coefficients of the individual gates can be derived 
similarly. It can be shown that the inputs to an OR or XOR gate 
must have the same coefficients, c1= c2, otherwise the algebraic 
equation for this gate will not be satisfied; the coefficient c3 of 
the output is equal to those of the input. In contrast, the input 
coefficients c1, c2  of an AND gate can be different, and the 
output coefficient c3 = c1· c2. 

c2 = c1 
c3 = 2c1 

c2 = -c1 
c3 = 2c1 

c2 = c1 
c3 = c1 

(a) (b) (c) 
Fig. 2. Calculation of signal coefficients.  

Computing cut signatures: The pseudo code of the 
algorithm for forward rewriting equation for each cut is shown 
in Algorithm 1. The input to this algorithm is the circuit with 
its input signature, and its output is a set of cut equations. 
Equation of the first cut is the same as the specification, i.e., 
f(cut0) = Sigin. Obtaining cuti from cuti-1 works as follows. Let xj 
be an output signal of gate gj in cuti and poly(gj) be the 
polynomial expression describing its logic function (c.f. 
Eq.(1)), so that  xj = poly(gj). For each gate gj in cuti we add 
variable xj to the current cut and subtract the algebraic 
expression poly(gj) representing this gate, without changing the 
arithmetic function of the cut. Equation (2) shows the 
computation of f(cuti) from f(cuti-1).  

( ) ( ) ( )( )1 1
igates cut

i i j j jjf cut f cut c x poly g∈
− == + −�

 
 (2)

Here, i is the index of the cut, and cj is the coefficient of gate j 
of cuti. Lines 3-7 of Algorithm 1 describe the computation of 
each cut. For simplicity, we write fi instead of f(cuti). Each  fi is 
initialized with fi-1;  using the structure in Fig. 2, for each gate j 
of cuti, the gate coefficient is calculated so as to eliminate the 
gate inputs (line 6); finally, equation of cuti is computed (line 
7), based on Eq. (2). 

Algorithm Forward (PI-PO) rewriting (Sigin, Circuit) 
1 Compute all cuts of the Circuit; 
2 f0 = Sigin; 
3 for i = 1 to # of cuts  
4      fi = fi-1; 
5      for j=1 to #of gates of cuti    
6            cj = compute coefficient of gj; 
7            fi = fi + cj(xj - poly(gj)); 
Algorithm 1. Forward (PI-PO) rewriting 

 
Example 2: Consider again the circuit in Fig. 1. By 

applying the forward (PI-PO) rewriting algorithm, we obtain 
the following equations for each cut:  

0 1 1 0 02 2f b a b a= + + +   

1 1 1 0 0 1 1 1 1

1 0 0 0 0 0 0 0

2 2 4( ) 2( (
2 )) 2( ) ( ( 2 ))

f b a b a e a b d a b
a b c a b r a b a b

= + + + + − + − +
− + − + − + −  

04 2 2e d c r= + + +  
2 0 14 2 2 4( ) 2( ( 2 ))f e d c r g dc r d c dc= + + + + − + − + −   

1 0  4 4 2e g r r= + + +  
3 1 0 2

2 1 0

4 4 2 4( ( ))
4 2 4

f e g r r r e g eg
r r r eg

= + + + + − + −
= + + +  

Note that such computed f3 is different than the expected 
output signature, 4r2+2r1+r0.  Specifically, it contains the term 
4eg, associated with variables of cut2. We call such a term a 
Residual Expression (RE). In a correct circuit, RE should be 
zero. This can be proved by a straightforward rewriting of 4eg 
up to the PI variables: 

4eg = 4(a1b1)(dc) = 4(a1b1)(a1+b1-2a1b1)(a0b0) = 0 

Then, f3 = 4r2+2r1+r0, indicating that the circuit is correct. 
The reason for the existence of a residual expression in a 
correct circuit is that the polynomial division used by forward 
rewriting does not take into account the Boolean nature of the 
circuit signals. To avoid RE one would need to divide the 
polynomials by a set of polynomials <x2-x>, called ideals, for 
each signal x in the circuit, to guarantee that x=0,1. This 
method, often employed by symbolic algebra approach, is too 
costly and inefficient for this work. 

B. Backward (PO-PI) rewriting 
The backward (PO-PI) rewriting is conceptually simpler, 

basically a reversed symbolic simulation. Starting at the PO 
with Sigout, it creates a new cut signature by replacing an output 
signal xj of gate gj with its corresponding algebraic expression: 
xj � poly(gj). Here the signal coefficients are known, provided 
by the binary encoding of the PO signals.  

Example 3: The cut expressions for the two-bit adder in 
Fig. 1 computed in PO-PI fashion are as follows: 

 
2 1 0 1 04( ) 2 4 4 4 2f g e eg r r g e eg r r= + − + + = + − + +  
1 04 4(cd) 4e( ) 2(c 2 )f e cd d cd r= + − + + − +  

04 2 2 4e d c r ecd= + + + −  
0 04 2 2 4f e d c r ecd= + + + −  

1 1 1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1 1 1

4(a ) 2( 2a ) 2(a ) (
2a ) 4(a )(a )( 2a )

b a b b b a b
b b b a b b

= + + − + + +
− − + −

1 1 0 02 2a b a b= + + +  
The computed signature at the PI matches the expected 

specification, Sigin, so the circuit is correct. Note that the 
backward rewriting will never produce a residual expression. 
This is because the algebraic model (1) of Boolean gates 
correctly represents the binary value of the gate signal. This 
convenience comes at a cost of a potentially exponential 
explosion of the signature size during backward rewriting. 

C. Computing the signature difference (�i) 
At this point, a pair of expressions is generated for each cut 

of the circuit: one computed by the forward and the other by 

3 2 1 04 2f r r r= + +
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the backward rewriting. The difference �i between the two 
expressions is defined as follows: 

�i = fi,BACK  -  fi,FOR;   0 � i � cuts (3)

Here, i is the index of cuti,  fi,BACK is the signature of cuti in the 
PO-PI direction, and fi,FOR is the signature of cuti computed by 
the PI-PO rewriting. If the circuit contains no bug, the value of 
�i at each cut is equal to zero; otherwise, the circuit contains a 
bug. The expression of �i will be used to identify and to correct 
the bug.  

Example 4: Consider the adder circuit in Examples 2 and 3 
again. The values of parameter �i for each cut of the circuit are 
shown in Fig. 1. As can be seen, �3, �2 and �1 are non-zero 
polynomials. However, as explained in Example 3, 4eg and 
4ecd are zero functions (expressions that evaluate to zero), so 
�3, �2 and �1 also reduce to zero. 

D. The Debugging Algorithm 
In this phase, the circuit is analyzed and verified against the 

given specification to either confirm its correctness or to find 
and locate the bug. In principle, the circuit is correct (satisfies 
its specification) if the signature obtained by backward 
rewriting matches the given input signature (specification). 
Alternatively, the signature obtained by the forward rewriting 
should match the given output signature, provided that the 
residual expression RE generated during this rewriting is 
proven to be zero (as explained earlier, this can be done by a 
local backward rewriting of the RE expression up to PI). In this 
paper we consider a particular type of a bug, namely gate 
replacement, i.e., using a wrong gate in the circuit. In practice, 
in the presence of a bug, the size of the computed signature 
may become prohibitively large, and the goal is to locate the 
cut at which the bug (faulty gate) resides. If the bug is located 
at some cuti, then the value of Δi for this cut will be nonzero. 
This is illustrated by the following example. 

Example 5: Let us intentionally insert a bug into the two-
bit adder circuit in Fig. 1, by replacing the AND gate with 
inputs (c,d) with an OR gate. The resulting buggy circuit is 
shown in Fig. 3. The cut equations for this circuit are as 
follows. 

Forward (PI-PO) rewriting: 

0 1 1 0 02 2f b a b a= + + +   
1 04 2 2f e d c r= + + +   
2 1 04 4 2f e g r r= + − +  
3 2 1 04 2 4f r r r eg= − + +  

Backward (PO-PI) rewriting:  

 
2 1 04 4 4 2f e g eg r r= + − + +  
1 04 6 6 8 4 4 4f e d c cd ec ed ecd r= + + − − − + +

0 1 1 1 1 0 0 0 0 0 0 11

0 0 0 0 1 1

6a 6 8a a 4a 8a a
      8a 12a a
f b b b b b

b b b b
= + − + + + −

− +  
The values of parameter Δi for each cut of the buggy circuit 

are calculated using Eq. (2) and shown in Fig. 3. The type and 
the location of the bug can be obtained by assessing the value 
of Δi for each cut. Assume initially that each cut has only a 

single bug (the constraint to be removed later). Table I shows 
the difference in the signatures between the cut with the correct 
gate and the cut with the wrong gate. As an example, consider 
the entry (a+b-2ab) in the 1st row (AND) and 2nd column (OR) 
of the table. It reflects the difference between the correct AND 
gate (ab) and the wrong OR gate (a+b-ab). That is, if in a 
given cut, an AND gate is replaced with an OR gate, then Δi = 
(a+b-ab)-ab =a+b-2ab, where a, b are the gate inputs. 
Conversely, if for some cut computed by the algorithm, �i 
=a+b-2ab, this means that it contains an OR gate while it 
should contain an AND. 

 
Fig. 3. Two-bit adder with a bug: OR instead of AND 

The remaining entries in the table give expressions for 
different bugs for a single-gate replacement.  To detect the 
location of the bug in a given cut we need to check if �i 
contains any of the expressions in Table I (replaced by the 
appropriate variable names). If this is the case, the location of 
the bug is detected and can be corrected as specified in the 
table. Otherwise, either the bug originates at a different cut, or 
it has a different nature, not considered in this model. 

TABLE I.  EXPRESSIONS CAUSED BY GATE REPLACEMENT ERROR 

Buggy
Correct AND OR XOR 

AND  a+b-2ab a+b-3ab 
OR -a-b+2ab  -ab 

XOR -a-b+3ab ab  
 

Table I can be readily extended to other types of logic 
gates, such as the complex And-Or-Invert gates used in 
standard cell implementations. 

The pseudo code of the Debugging Algorithm is shown in 
Algorithm 2. The equation of each cut is first computed in a 
PI-PO direction (line 1) and then by PO-PI rewriting (line 2). 
Then, �i is calculated for each cut. If �0 =0, the circuit is 
correct, otherwise �i of other cuts are assessed and their 
expressions are checked against those in Table I (lines 3-8). 
The detected bugs at each cut are stored in the set Bug-list, 
which consists of the potential bug locations. 

3 2 1 04 2f r r r= + +
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The expression of each �i is then modified by adding to it 
expression (fi,FOR - fi+1,FOR), where fi,FOR and fi+1,FOR are the 
expressions obtained by forward rewriting of cuti and cuti+1, 
respectively (lines 9-11). This is done to account for the 
residual expression generated during the forward rewriting 
between cuti and cuti+1, since during the forward rewriting, the 
residual expression that is based on the variables of cuti 
actually appears in cuti+1. Note that only those terms of 
expression (fi,FOR - fi+1,FOR) that belong to cuti are added to �i. 
The new �i is examined again to check for the buggy 
expressions (lines 12-13). 

Algorithm Debugging 
1   Scan forward (PI-PO) and write equation for each cuti: fi,FOR; 
2   Scan backward (PO-PI) and write equation for each cuti: fi,BACK; 
3   For each cuti  
4 compute Δi = fi,BACK- fi,FOR; 
5 If (Δ0 == 0)  
6  Return "No Bug"; 
7 If Δi contains expression in Table I 
8  add detected bug to Bug_list; 
9    If (bug_list is empty) 
10 For each cuti  
11        Δi = Δi + (fi,FOR- fi+1,FOR); 
12        If Δi contains an expression in Table I  
13               add detected bug to Bug_list;  
14  If (Bug_list is empty) 
15 Return "Bug cannot be detected by our method"; 
16  For each member of Bug_list 
17 Correct the circuit; 
18 Compute Δ0; 
19 If (Δ0 == 0) 
20  Return "Bug is detected and corrected"; 
Algorithm 2. Pseudo code of the Debugging Algorithm 

 

The Bug-list shows all potential bug locations. If after 
modifying the �i expressions the Bug-list remains empty, this 
means that our debugging algorithm cannot detect the bug 
(lines 14-15). To detect the exact location of the bug and 
correct the circuit, the first bug of the Bug-list is replaced with 
the corresponding correct gate from Table I. Then the circuit is 
verified by re-computing �0. If Δ0 ≠ 0, we consider the next 
bug from the list and to correct it in the buggy circuit (lines 19-
20).  This process is repeated until the circuit becomes correct, 
i.e., until �0 = 0. 

Example 6: Continuing with Example 5, we compute �i 
for all the cuts, trying to match their variables with one of the 
expressions in Table I. Recall that only the signals from the 
given cut must be used in the matching. At cut3, with signals 
{r2,r1,r0}, �3 =4r1-4eg; but 4r1 does not match any of the 
expressions in the table. At cut2, with signals {e,g,r1,r0}, we 
have �2 =4r1-4eg. Here we find that -4eg matches an 
expression in the table (-ab), at the OR/XOR entry of the table. 
However, cut2 does not have any XOR gate, so this cannot be 
the source of the bug. At cut1, with signals {e,d,c,r0}, we have 
�1 =4d+4c-8dc-4ec-4ed+4ecd. Here 4d+4c-8dc matches the 
buggy expression (a+b-2ab) with coefficient 4, indicating that 
an OR gate was used instead of an AND gate. As shown in Fig. 
4, there is an OR gate at cut1 with inputs {c, d} so a bug is 
detected. This bug is then corrected by replacing the OR with 

an AND. The other terms (-4ec, -4ed) match the expression in 
the table (OR-XOR gate replacement). But at cut1 there are no 
gates with inputs {e, c} or {e, d}; hence no additional bug is 
reported. In a similar fashion, we can verify that there are no 
bugs in cuto. Therefore, the only bug detected is at cut1, caused 
by the OR gate in place of an AND. To correct the circuit, we 
just need to replace the OR gate with inputs (c, d) with an AND 
gate with the same inputs. 

IV. EXPERIMENTAL RESULTS 
The algorithm has been implemented in C#. The 

experiments were conducted on a PC with Intel 1.80-GHz Core 
i7 processor and 6 GB of memory under Windows 8. We tested 
gate-level circuits of arithmetic functions: F1 = A+B and F2 = 
A×B, with bit-widths ranging from 32 to 128 bits. Several bugs 
(erroneous gates) were inserted in the middle of each circuit. 
Note that the bugs located near PI are easiest to detect (there is 
no residual expression) and the bugs inserted near POs are 
most difficult to detect (the signature with backward rewriting 
may explode in size). Table II and III show the results for the 
two circuits containing multiple bugs. 

TABLE II.  DEBUGGING OF F1 = A + B WITH MULTIPLE BUGS 

Bit-width # Gates #  Bugs Memory  CPU time (sec)

32 414 
1 4.2 MB 1.46 
3 4.2 MB 1.56 
5 4.2MB 1.61 

64 810 
1 4.6 MB 3.40 
3 4.6 MB 3.51 
5 4.6 MB 3.58 

128 
 1,662 

1 6.3 MB 6.70 
3 6.3 MB 6.92 
5 6.3 MB 6.98 

 

Our method can detect and correct every inserted bug in all 
the instances of the tested circuits in a reasonable time. The 
table demonstrates a linear CPU time dependence in the 
number of bugs (for a small number of bugs performed in this 
experiment). 

TABLE III.  DEBUGGING OF F2 = A×B WITH MULTIPLE BUGS 

Bit-width # Gates # Bugs Memory CPU Time (sec)

32 8,062 
1 8.9 MB 18.32 
3 9.5 MB 23.50 
5 11.2 MB 30.78 

64 32,512 
1 85 MB 184.50 
3 91 MB 189.43 
5 95 MB 194.45 

128 131,072
1 122 MB 1927.40 
3 131 MB 2027.56 
4 143 MB 2136.86 

 

V. CONCLUSIONS 
The goal of this work was to provide a proof of concept for 

identifying and correcting bugs caused by gate replacement in 
gate-level arithmetic circuits. Despite its preliminary nature, 
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the initial results demonstrate the validity and potential of the 
proposed approach for solving practical problems. The 
limitation of the method is generation of cuts as a means to 
locate the bugs.  Determining the best set of cuts to improve the 
efficiency of the method is the major goal of our future work. 
One possibility is to adopt a “binary search” approach, by 
sampling the circuit with selected cuts and checking if their 
signature is correct. This may need to be supported by random 
backward simulation to help qualify the cut as correct or 
incorrect. The next cut in the sequence will then be placed half-
way between the faulty one and the PO and the search for bugs 
will continue in this area in a similar fashion. The method is 
applicable to locating multiple bugs associated as long as they 
correspond to disjoint sets of variables. 
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