
Automatic Word-level Abstraction of Datapath
Cunxi Yu, Maciej Ciesielski

ECE Department, University of Massachusetts, Amherst, USA

ycunxi@umass.edu, ciesiel@ecs.umass.edu

Abstract—Abstracting word information from gate-level designs
is essential for formal verification, technology mapping and
hardware security applications. In this paper, we present a novel
method to abstract the word-level information from arithmetic
gate-level circuits using a computer algebraic approach. The
proposed technique translates the gate-level circuit into algebraic
domain and applies algebraic rewriting to extract the arithmetic
function. During the iterative rewriting, intermediate Pseudo-
Boolean expressions are examined to identify word-level can-
didates. The proposed algorithm is able to abstract the word
components from candidates and to reason about the word
operation from the internal expressions. Successful experiments
were performed on gate-level datapaths, including multipliers of
up to 128-bit widths.

Keywords— Word-level abstraction; Reverse engineering; Formal
verification; Arithmetic Datapaths.

I. INTRODUCTION

One of the most challenging problems encountered in hard-
ware design is functional verification of arithmetic datapaths.
Many high-level verification techniques have been developed
for high-level descriptions such as Register transfer level
(RTL), or system-level, SystemC or SystemVerilog. However,
hardware verification is still typically performed on low-level
design representations, with gate-level netlists. The reason
for this is that most high-level components, such as word
declaration, modularization, function selection, etc., are flatten
into netlists of Boolean gates by logic synthesis and technology
mapping. Boolean logic techniques based on Binary Decision
Diagrams (BDDs) or Binary Moment Diagrams (BMDs) and
satisfiability (SAT) solvers cannot handle complex arithmetic
designs on such a low level. For this reason, the gate-level
datapath verification problem is challenging and remains open.

A straight-forward approach to formal verification problem
is Boolean satisfiability (SAT). Several SAT solvers have been
developed to solve the Boolean decision problem. Most of
them are implemented using the computationally expensive
DPLL decision procedure [1], which makes solving non-linear
decision problems expensive [2]. Abstracting the word-level
information from gate-level netlists, while maintaining the use-
ful information about the control logic is a well known method
that enable the high-level formulation. This approach, called
reverse engineering [3], can provide significant improvement
in performance and scalability. However, few works discuss
the abstraction of gate-level designs.

In this paper, we present a novel method to abstract the
word-level information from gate-level datapaths using a Com-

puter Algebra approach. The proposed method is able to
abstract high-level components from a set of gate-level netlists
and generate corresponding word-level descriptions. At the
same time, it is combined with a verification technique that
enables scalable datapath verification. Our approach solves the
problem in three steps: 1) Identify the word candidates during
the function extraction process; 2) Classify word candidates
as linear and non-linear expressions. 3) Abstract the word in-
formation and generate the correspondence between the words
and gate-level netlist, and reason about the word operation.

II. RELATED WORK

One of the most successful abstraction techniques is
Counterexample-Guided Abstraction Refinement (CEGAR)
[4]. It has been shown to be an effective paradigm in a va-
riety of hardware and software verification scenarios [5][4][6].
Clarke et. al. [4] successfully demonstrated how to automate
abstraction and refinement in the context of model checking
for safety properties of hardware and software systems. In [7],
CEGAR-based correspondence checking is applied to micro-
processor datapaths. An automation tool UCLID [8] is able to
abstract words into uninterpreted entities, and prove properties
on the rest of the circuit. The authors of [9][10] introduced
effective verification of out-of-order microprocessor based on
UCLID. Moreover, term-level abstraction has been found to be
especially useful in microprocessor design verification, using
techniques such as term-level bounded model checking, cor-
respondence checking, refinement verification, and predicate
abstraction [11][12][13]. However, these techniques only apply
to bit-vector behavioral RTL description.

The work proposed in [14][3] is the most relevant to
ours. These present a variety of techniques to identify high-
level components, such as adders and subtractors, which is
applicable to arithmetic datapaths. The authors proposed two
techniques to identify candidate words: shape hashing and
bitslice. Shape hashing represents the backward reachable
gates in feasible depths from a given wire, while the bitslice
technique additionally finds similar wires by functional match-
ing. They also addressed the problem of reverse engineering
with extensive logic sharing using Quantified Boolean Formula
(QBF). However, this technique is not efficient for large non-
linear arithmetic operations since it requires bit-blasting. Ad-
ditionally, for long cascaded word operation such as Multiply-
Accumulator (MAC), it requires many word propagate itera-
tions. Our work aims at overcoming these limitations.

III. WORD-LEVEL ABSTRACTION

This section describes the implementation of our approach.
First, we briefly review the function extraction technique. We
then introduce an algorithm to identify word candidates and
finalize the abstraction.

A. Function Extraction

The function extraction method computes a unique bit-level
polynomial function implemented by the circuit directly from
its gate-level implementation. This is done by rewriting the
polynomial representing encoding of the primary outputs (the
output signature) into a polynomial expressed in terms of the
primary inputs (the input signature), using algebraic model of
the internal gates. The method, described in our earlier work
[2], uses an algebraic model of the circuit, with logic gates
represented by algebraic expressions, while treating the circuit
signals as strictly Boolean variables. The following algebraic
model is used to represent basic Boolean gates.

¬a = 1− a

a ∧ b = a · b

a ∨ b = a+ b− a · b

a⊕ b = a+ b− 2a · b

(1)

Functional correctness of the circuit is proved by succes-
sively rewriting the output signature, Sigout, into a signature
at the primary inputs (PI) and comparing it with the expected
input signature, Sigin. The rewriting process successively
applies Eq. (1), followed by an algebraic simplification of poly-
nomial terms to arrive at a unique algebraic expression. At each
step of the procedure, an intermediate polynomial generated
by the rewriting corresponds to a cut in the circuit, a set of
signals separating primary inputs from primary outputs. Each
intermediate polynomial is a pseudo-Boolean expression, a
multi-variate polynomials with Boolean variables. Specifically,
it represents an integer in Z2n with variables in Z2.

This paper proposes a mechanism to identify a word ex-
pression from the intermediate expression during the algebraic
rewriting. This rewriting is performed in reverse-topological
order: once a given variable (output of a gate) is substituted
by an algebraic expression of the gate inputs, it will be
eliminated from the current cut expression and will never be
considered again. That is, a variable is substituted for only
after substituting all signals in its logical cone. Hence, we
apply Pre-ordering before the abstraction, with the gate-level
netlist sorted in reverse-topological order.

B. Word-level Abstraction

The outline of this technique is shown in Figure 1. The
function of identifying the word-candidate expression is im-
plemented by checking each intermediate expression during
the algebraic rewriting. We define the cut as a word cut if the
intermediate expression is a word expression.

HDLs

if_wordExp() wordEqn

Eqn EqnUpdate()

yes

init

no

Function
Extraction

Fig. 1. Overview of function extraction based abstraction procedure.

Definition 1 Word expression: Assume a pseudo-Boolean
expression E(c1M1, c2M2, ..., cpMp) where Mi (i =
1, 2, ..., k) is a monomial and ci is a coefficient. If there exists
a subexpression Esub(ci1Mi1 , ...cinMin) such that it forms
a binary word with n ≥ 2, then this expression is a word
expression.

The procedure starts at the initial expression for Sigout.
In Figure 1, the function if wordExp() returns true if the
expression is a candidate word. In this case the program will
mark this cut as a word cut. Function EqnUpdate() finalizes the
word-abstraction; it returns the word equation that corresponds
to the gate expressions generated by rewriting between the
word cut and the starting cut at the current rewriting iteration.
The next expression starts with the updated word cut, i.e.
the abstracted word expression. This way, the correspondence
between the gate-level equations and the abstracted word
equations is established automatically.

In this work we assume that we have no knowledge of
the type of arithmetic operators present in the design. The
type of arithmetic operations we consider here includes the
finite-precision integer arithmetic operators. It can be classified
into linear or non-linear depending on the type of arithmetic
operation. Additionally, we classify the algebraic expressions
into single-word and multiple-word expression, based on the
number of possible words. For example, shifter is a linear
single-word expression; adder is a linear multiple-word expres-
sion; and multiplier is a non-linear multiple-word expression.
The method for identifying the word cut is shown in Algorithm
1.

• AssociateGraph (line 2): It builds a graph G(V,A) of
dependencies for each signal in the netlist. Each node in G
records the extended logic cone and a list of direct fanouts for
a given gate.

• Rewriting (line 4): The Sigout−Sigin rewriting technique
has been described in Section III-A and published in [2].

• Algebraic Decomposition (line 5): It searches for, and
removes variables that are shared by every term of the
expression (e.g. (ab + ac) → (b + c)). The goal of this
step is to make it easier to recognize the word signal that
have control signals. The reason for doing this is that if a
word w is controlled by a Boolean signal s, each term of the
pseudo-Boolean expression that is always multiplied by s.

Algorithm 1 Identify Word Cut

Input: Algebraic gate-level equations
Output: Word equations with word cut mark

1: n← #.eqns
2: G(V,A)← AssociateGraph()
3: while n 6= 0 do

4: Record intermediate expression as E
5: Extract common variables in E
6: Classify linear (non-linear) sub-expression in E into El(Enl)
7: if El can be abstracted as linear word then

8: Mark this iteration as word-cut

9: and generate word equation Wli1

10: if Enl can be abstracted as non-linear word then
11: Mark this iteration as word-cut

12: and generate word equation Wnli2

13: n← n− 1
14: return Wl1,2...,i1 ,Wnl1,2...,i2

The non-decomposable expression is also checked by step 8
or step 11, since the expression may also contain extractable
word(s).

i=5 i=4 i=3 i=2 i=1

 1 2 3 2 1

(a) (b)

2

1

3

1 2 3 4 5

N(i)

C(i) 16 8 4 2 1

L1 L2

L3

x
1

x
7
x
5x

3

i

N

Fig. 2. (a) Coefficients distribution of 3-bit multiplier. (b) Variables pairing
for expression {· · ·+ 4x1x5 + 2x1x3 + 2x5x7 + x3x7 + · · · }

• Finding word candidates (line 8, 11): The expression is
partitioned into a set of linear terms (El) and a set of non-
linear terms (Enl). First consider an expression, El containing
p linear terms. Let C = {c1, c2, ..., cp} be a set of coefficients
associated with the terms ei of the expression. It is easy to see
that if the coefficients of some sub-expression Esub of E form a
series of increasing powers of two, i.e., if for some ordering of
the elements of C, the coefficients satisfy the condition ck =
2ck−1, then the corresponding terms of Esub can potentially
form a word. That is, such a subexpression is a word candidate.
In the next section we explain how to identify and extract
the actual word from the expression in case when there are
multiple terms with the same coefficient ck.

The situation with non-linear expressions Enl (polynomials
containing nonlinear terms) requires more in-depth analysis
of the distribution of the coefficient values. We explain it here
with an example of an integer m×m-bit multiplier, see Figure
2 (a). Let i be a bit position of the result, where i = 1, ..., 2m−
1. Let ci = 2i−1 be the coefficient associated with column i
of the result, shown in Figure 2 (a) as a black dot. Note, that
depending on the bit position i there will be several coefficients
with same value ci. For the 3 × 3 multiplier we have: C =

{1, 2, 2, 4, 4, 4, 8, 8, 16}, each corresponding to a black dot.

We now define the term Ni as the number of coefficients
with value ci = 2i−1 for the bit position i. The value of Ni

for i = 1, ..., n, where n = 2m − 1 is odd, can be computed
by:

Ni =

{

i+ 1 if i ≤ (n− 1)/2

n− i if i > (n− 1)/2

In the case of the 3-bit multiplier, with n = 5 result bits, we
have: N = {1, 2, 3, 2, 1}, shown in Figure 2. Any expression
that matches this forms is a candidate expressions; two candi-
date expressions might contain the same term. It can be shown
that this analysis applies to any integer multiplier, regardless of
its internal structure. Similar formulas can be derived for other
nonlinear datapath operators, but (unlike for a linear ones) they
all have similar “uneven distribution” behavior, where there is
a larger number of the same coefficients in the middle bits
than in the boundary bits.

• Finalization (step 9, 12): At this point our algorithm will
generate a valid signature for the word being abstracted.
Continuing with a case of a general multiplier, consider a
subexpression {· · ·+ 4x1x5 + 2x1x3 + 2x5x7 + x3x7 + · · · }
(which contains product of two words, (2x1+x7)(2x5+x3)).
To determine if the sub-expression contains a word, we ex-
amine the term with the largest coefficient, 4x1x5, and try
to find the terms that together with 4x1x5 would form a
nonlinear expression, a product of some words. Specifically,
for the term 4x1x5 to form a word we need to find two
terms with coefficients 2 (in this case 2x1x3 and 2x5x7),
and one term with coefficient 1 (x3x7). To do that, have to
match the remaining bits (here x3, x7) with the variables with
largest coefficient we have just discovered (x1, x5). This is
done by analyzing the topology of the network represented by
the AssociateGraph, G. In this case we pair x7 with x1, and
x3 with x5, and declare that 4x1x5 + 2x1x3 + 2x5x7 + x3x7

contains two words: (2x1+x7) and (2x5+x3). This matching
is shown in Figure 2 (b). The same process is applied to linear
expressions as well.

C. Illustrative Example

We illustrate the concept of our abstraction using a simple
ALU design (Figure 3). The inputs A,B,C are 4-bit wide and
P is 8-bit wide, and fC is a majority function. M1,M2 are 4-
bit multipliers and ADD is an 8-bit adder. The output of two
multipliers are selected by the fC . Note that all components

in the ALU are gate-level. The output signature is F=

8∑

i=0

fi2
i.

The first identified word cut is C1. Using Algorithm 1, C1
is identified as a multi-word linear expression. The word of
word cut C1 is associated with M1,M2, fC , and primary
input P . The signals associated with P are all primary inputs
and the signals associated with W1 include M1,M2 and
fC . Hence, the word P and W1 can be easily abstracted in
cut C1. The next word cut is identified as C2. This word cut
is different than C1 since there is a MUX operation. The
function of cut C2 is (1 − fC)W2 + fCW3. Note that the

M1 M2

0 1

ADD

fC

A B C P

F

n1 n2 n3
9

88

8 8

4 4
4

w
1

w
3

w
2

c
1

c
2

Fig. 3. ALU design with multiplier M1,M2, adder ADD, and fC =
MAJ(n1, n2, n3)

expression is flattened to maximize the cancellations. Hence,
the expression of c2 in our process is W2 −W2fC +W3fC .
The step 5 in Algorithm 1 recognizes the decomposable
part −W2fC + W3fC , and returns −W2 + W3. Then, the
returned expression is identified in step 11 as a non-linear
multi-word. The word W2 and W3 come from two different
multipliers. Therefore, the associated graph is able to classify
these two words from the expression. As we mentioned in
step 5, the non-decomposable expression, in case W2, is a
word expression. This is the reason why our algorithm checks
both decomposable and non-decomposable sub-expressions.
The process stops when the rewriting reaches the PIs.

IV. EXPERIMENTAL RESULTS

The technique proposed in this paper was implemented in
C++. The input to the program is a gate-level netlist with a
known output signature (the binary encoding of the output
bits) [2]. The experiments were conducted on a PC with
Intel Processor Core i5-3470 CPU 3.20GHz x4 and 15.6 GB
memory. To evaluate our word-abstraction technique, we tested
the multiply-accumulate (MAC) design with bit-width ranging
from 8 to 128, with an enable control. The results are shown
in Table I. The enable function is the same as fC in Figure 3.

The function of MAC can be written on a word level as: F =
(A×B)·fC+P . It contains two word-level operations, addition
and multiplication. The first column in Table I shows the bit-
width of the design, and second column shows the number of
gates. The column labeled pre-ordering includes the CPU time
for ordering the netlist and parsing the netlist into expressions.
Columns addition and multiplication show the CPU time of
abstracting these two operations. Figure 4 shows the CPU time
as a function of the number of gates. The complexity of the
proposed algorithm is O(n) for addition (linear word cut) and
O(n2) for multiplication (non-linear word cut).

!"

#"

$!"

$#"

%!"

%#"

!" %" &" '" (" $!" $%" $&"

!
"
#
$%
&'

(
)*
+!

,
-
.
.
.
!

/0'1(2$34$567(*!

,$-....$

Fig. 4. MAC abstraction CPU time

size k
#.

gates

pre-

ordering
Addition Multiplication Total

8 529 0.01 s 0.01 s 0.22 s 0.24 s

16 2089 0.01 s 0.03 s 2.71 s 2.75 s

32 8281 0.03 s 0.11 s 50.7 s 51.00 s

64 32953 0.07 s 0.47 s 1028.9 s 1029 s

80 51432 0.12 s 0.76 s 3049.5 s 3050 s

96 74008 0.15 s 1.27 s 2.0 hrs 2.0 hrs

112 100681 0.21 s 1.62 s 3.7 hrs 3.7 hrs

128 131465 0.27 s 2.23 s 6.6 hrs 6.6 hrs

TABLE I. WORD-ABSTRACTION EVALUATION USING

MULTIPLY-ACCUMULATOR S = SECONDS, HRS = HOURS

V. CONCLUSION AND FUTURE WORK

In this paper we presented a novel computer algebraic
approach for abstracting the word-level information from gate-
level netlist. In contrast to [3][14], we address the problem of
abstracting words from a large non-linear gate-level arithmetic
circuit (MAC). This approach is currently not applicable to
designs with a non-arithmetic combinational logic attached
to the output, as it would be difficult to reason about word
association for such “noisy” signals. Additionally, we observe
that identifying candidate expression is very time-consuming
and it is not necessary that it be called in each iteration. In
the future, we will focus on abstraction with a “noisy” com-
binational logic and on improving the extraction performance.

REFERENCES

[1] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
Modulo Theories: From an abstract davis–putnam–logemann–loveland
procedure to DPLL (t),” JACM, vol. 53, no. 6, pp. 937–977, 2006.

[2] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, “Verification of
Gate-level Arithmetic Circuits by Function Extraction,” in DAC 2015.

[3] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, S. Seshia et al., “Wordrev: Finding Word-level Structures
in a Sea of Bit-level Gates,” in HOST 2013. IEEE, pp. 67–74.

[4] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided Abstraction Refinement,” in CAV 2000. Springer, pp. 154–169.

[5] T. Ball and S. K. Rajamani, “The SLAM project: debugging system
software via static analysis,” in ACM SIGPLAN Notices, vol. 37, no. 1,
2002, pp. 1–3.

[6] D. Kroening, A. Groce, and E. Clarke, “Counterexample Guided
Abstraction Refinement via Program Execution,” in Formal Methods

and Software Engineering. Springer, 2004, pp. 224–238.

[7] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah, “Refinement
Strategies for Verification methods based on Datapath abstraction,” in
ASP-DAC 2006. IEEE Press, 2006, pp. 19–24.

[8] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and Verifying
Systems using a Logic of Counter Arithmetic with Lambda Expressions
and Uninterpreted Functions,” in CAV 2002.

[9] S. K. Lahiri, S. A. Seshia, and R. E. Bryant, “Modeling and Verification
of Out-of-Order Microprocessors in UCLID,” in FMCAD 2002.

[10] e. a. Mneimneh, Maher, “Scalable hybrid verification of complex
microprocessors,” in 38th DAC. ACM, 2001, pp. 41–46.

[11] P. Manolios and S. K. Srinivasan, “Refinement Maps for Efficient
Verification of Processor Models,” in DATE 2005, pp. 1304–1309.

[12] H. Jain, D. Kroening, N. Sharygina, and E. Clarke, “Word level
Predicate Abstraction and Refinement for Verifying RTL verilog,” in
42nd DAC. ACM, 2005, pp. 445–450.

[13] e. a. Jain, Himanshu, “Word-level Predicate-abstraction and Refinement
Techniques for Verifying RTL verilog,” TCAD, 2008.

[14] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse Engineering Digital Circuits Using Functional
Analysis,” in DATE 2013, pp. 1277–1280.

