
Verification of Arithmetic Datapath Designs using Word-level

Approach - A Case Study

Cunxi Yu, Walter Brown, Maciej Ciesielski

ECE Department, University of Massachusetts, Amherst, USA

ycunxi@umass.edu, webrown@umass.edu, ciesiel@ecs.umass.edu

Abstract— The paper describes an efficient method to prove
equivalence between two integer arithmetic datapath designs
specified at the register transfer level. The method is illustrated
with an industrial ALU design. As reported in literature, solving
it using a commercial equivalence checking tool required case-
splitting, which limits its applicability to larger designs. We
show how such a task can be solved as a simpler verification
problem without case-splitting. We demonstrate both the word-
level and bit-level approach to this problem and show that
the method is scalable to large combinational datapath circuits.
Experimental results demonstrate the application of the method
to large combinational arithmetic circuits.

Keywords— functional verification; arithmetic circuits; RTL
transformations.

I. INTRODUCTION

One of the most challenging problems encountered in hard-
ware design is the functional verification of arithmetic data
paths. Boolean logic techniques based on Binary Decision
Diagrams (BDDs) and satisfiability (SAT) solvers cannot han-
dle complex arithmetic designs because they require “bit-
blasting”, i.e., flattening of the design into bit-level netlists.
Exhaustive simulation is infeasible as equivalence checking
between system-level and RTL or between different RTL
models using simulation is prohibitively long. Despite the
recent developments in formal verification tools, proving the
correctness of RTL synthesis of large datapath designs is still
beyond the capabilities of traditional formal tools.

In this paper we present a method to prove the correctness
of RTL datapath design w.r.t. its original RTL specification
using an integer ALU design taken from [1] as case-study. The
verification of this 16-bit integer ALU design was reported
to be solved using case-splitting and a commercial formal
equivalence checker from Synopsys, Hector. While the CPU
time of 8 sec for a 16-bit datapath circuit is sufficiently short,
it is not clear how it would scale to larger designs. Here, we
show how our method can solve the problem with virtually no
limit on bit-width size.

II. RELATED WORK

Previous work in this field is mostly related to symbolic
simulation and canonical diagram representations. Different

canonical representations have been proposed to check equiv-
alence of designs on the same (or comparable) abstraction lev-
els, including Binary Decision Diagrams (BDDs), Binary Mo-
ment Diagrams (BMDs), Taylor Expansion Diagrams (TED)
[2], and other hybrid diagrams [3]. The application of BDDs
is limited mostly to bit-level logic circuits because building
a BDD for a complex arithmetic circuit often requires an
excessive amount of memory. BMDs and TEDs offer a better
space complexity and can be useful if word-level information
is available.

Most of the work in register transfer level (RTL) verifi-
cation concentrates on verifying translation from high level
specification (such as C) to RTL [4]; some use data flow
graph (DFG) as a formal model for high-level specification [5].
Others use RTL to TLM (transaction level model) abstraction
for redesign and verification of RTL IPs [6]. Assertion-based
verification techniques (ABV) are also used for system-level
designs [7]. Industrial work in RTL verification typically
addresses verification of RTL protocol implementation against
its specification and uses temporal specification languages,
such as TLA, and TLC model checking [8].

RTL vs gate-level verification is typically solved by translat-
ing the RTL design into some representative gate-level design
and performing gate-level equivalence checking. These meth-
ods use a host of verification techniques, including SAT, SMT,
and ATPG, some of them relying on comparing “structurally
similar points”, which may not exist between the two designs.
For this reason, these tools are not scalable for large arithmetic
circuits. In general, RTL to gate-level verification is typically
formulated and solved as a SAT problem and is mostly based
on structural analysis of the design [9]. Other tools, such as
ABC, apply SAT to a “product design” constructed by creating
a miter of two designs and trying to prove it to be unSAT. Gate-
level verification of bit-level arithmetic circuits has been also
approached using computationally expensive computer algebra
methods [10] [11].

In this paper we concentrate on RTL-to-RTL verification
of integer arithmetic circuits, using an industrial integer ALU
design as a case-study, and apply a combination of word-level
canonical representation (TED) and symbolic rewriting. Term
rewriting techniques that have been used by some researchers
[12] are incomplete, as they rely on simple rewriting rules
(distributivity, commutativity, and associativity) and use non-
canonical representations.

III. RTL VERIFICATION OF DATAPATHS

Consider an integer arithmetic logic unit (ALU), shown in
Figure 1, taken from [1]. This architecture is used often in
implementing integer operations for standard graphics APIs.
The design consists of three word-level n-bit inputs, A, B, C,
representing unsigned integers. Each of the operands can be
optionally negated under the control of single-bit signals,
negA, negB , negC . These bits, together with other configu-
ration bits (enab, enc and a negation bit negy of one of the
local outputs), provide control for various arithmetic functions:
A ·B, −A ·B, A ·B + C, A ·B − C, etc.

A
N
D

A
N
D

1 0

NEG

1 0

NEG

1 0

NEG

1 0

NEG

negA neg
B

neg
C

F"1 F
B1

F
C1

en
AB

n
#

F
ABC1

neg
Y

F
Y1

A

F
AB1

F
ABen1

F
Cen1

Fig. 1. Integer ALU - initial RTL design

In [1] the description of the integer ALU design was sub-
jected to a number of algebraic and Boolean transformations
resulting in the modified design shown in Figure 2. While the
applied transformations can be shown to be mathematically
correct, it is important to formally verify if the resulting
RTL hardware implementation is indeed equivalent to the
original one. This must be done to ensure that unexpected bugs,
typically related to finite bit-widths, sign extension, or two’s
complement implementation of subtraction, did not creep into
the final implementation. In [1] this problem was solved for
bit-width n = 16 using Hector, a formal equivalence checking
tool from Synopsys. The approach taken there required case-
splitting and separately solving a number of individual cases,
determined by the combination of the control signals.

We approach this problem differently and perform verifica-
tion using symbolic representations for both RTL designs to
check if they are equivalent. Two versions of the proof are
considered here: 1) In the first method the symbolic equations
are derived for each design and a canonical TED representation
[2] is used to show that the two RTL implementations are
equivalent for arbitrary bit-width, while still considering two’s
complement representation for negative numbers; and 2) A
more convincing method considers a bit-level composition of
the RTL structure and shows that the equivalence can be proven
for large operand bit-widths, at least up to 256. Note: The bit-
level RTL structure should not be confused with a gate-level
model, since the arithmetic and logic operators are still defined

1 0

NEG

X
O
R

A
N
D

A
N
D

-XOR

X
O
R

A

negA
neg

B

neg
C

en
AB

en
�

neg
Y

negAneg
B

negABY
F
AB2 F

C2

F
Y 2

F
Aen2

F
Cen2

F
ABC2

negAB&

Fig. 2. Integer ALU - final RTL design

at the register transfer level. In a separate model (beyond the
scope of this paper) we can also demonstrate the correctness
of our approach to gate-level designs.

A. Word-level Verification

In this model, the unsigned word-level operand X is
represented simply as variable X (positive number) or as −X
(negative number), regardless of the number of bits (assuming
no overflow).

Original Design (FY 1)

The first level includes three identical modules, each com-
posed of a negator (NEG) and a multiplexer (MUX) to select
the operand in a positive or in a negated form. The output of
the first MUX, associated with operand A, is

FA1 = (1− negA)A+ negA(−A) = A · (1− 2 · negA)

Note that for negA = 0, FA1 = A; and for negA = 1, FA1 =
−A, as required. Similar expressions are derived for modules
with inputs B and C, and outputs FB1, FC1, respectively. Next
design level includes a multiplier followed by an enable signal
enAB , producing FABen1 = enAB(FA1 · FB1) and FCen1 =
enC · FC1.

The next level has an adder with inputs FAB1, FC1

FABC1 = FAB1 + FC1

The lowest level has a negator gate for FABC1, controlled by
negY

FY 1 = FABC1(1− 2 · negY)

The entire set of such equations is written into the TDS sys-
tem [13]1 and represented by a canonical, word-level diagram,

1TDS is a system for behavioral transformation of designs specified at
behavioral or RTL level. It transforms the initial design specifications into
an optimal DFG prior to high-level synthesis. It is used here to represent the
design in canonical form using Taylor Expansion Diagram (TED).

TED [2]. The diagram automatically represents the function in
normal factored form in terms of the primary inputs, as shown
in Figure 3(a).

FY1

e n _ a b

-1

A

n e g _ y

-1

FY2

-1

B

n e g _ a

n e g _ y

-1 2

C

n e g _ c

ONE

-1 2

e n _ c

-1 2

n e g _ b

-1 2

-1 2

FY1

e n _ c

c 0

n e g _ y

-1

FY2

a 0

a 1

2

b 0

b 1

2

n e g _ a

n e g _ b

-1 2

c 1

2

n e g _ y

n e g _ c

-1 2

e n _ a b

-12

ONE

-1 2-1 2

(a) (b)

Fig. 3. TED representation of the integer ALU design: (a) word-level model;
(b) bit-level model

Final Design (FY 2)

The transformed design is shown in Figure 2, where

negABC = negA ⊕ negB ⊕ negC

negABY = negA ⊕ negB ⊕ negY

Translation of the Boolean operator ⊕ (XOR) into an algebraic
expression can be done using the following relation:

x⊕ y = x+ y − 2 · x · y (1)

By applying this formula to the above equations, we obtain:

negAB = negA + negB − 2 · negA · negB

negABC = negAB + negC − 2 · negAB · negC

negABY = negAB + negY − 2 · negAB · negY

With this, the remaining part of the design can be described
by the following set of expressions:

FAen2 = enAB ·A

FAB2 = FAen2 ·B

FCen2 = enC · C

FC2 = FCen2 · (1− 2 · negABC)

FABC2 = FAB2 + FC2 − negABY

where negABY is a binary variable. The same signal is then
applied to an XOR to conditionally flip the bits of the word-
level signal FABC2 computed by the add/sub module. The
algebraic model for XOR shown in (1) does not apply to
such bit-wise operations on a word-level signal, and needs
to be suitably modified. Specifically, it can be modeled as
a MUX, shown in Figure 4. When negABY = 0, the output
of the adder (FAB2 + FC2 − 0) is passed to FY 2; and when
negABY = 1, the adder’s output, (FAB2+FC2−1), is bit-wise
complemented by an XOR. To model this, we use the standard
relation between the bit-wise complement and a word-level
complement/negation, −X = X + 1. This, as already shown
in [1], can be rewritten as −(X − 1) = X − 1 + 1, which, in
turn, implies that

−X = X − 1 (2)

We can now model the XOR and a MUX with inputs X and
−X , where X = FAB2 + FC2, as follows:

FY 2 = (1−negABY)X+negABY (−X) = X(1−2·negABY)

which is similar to the negator developed earlier.

Substituting X = FAB2 + FC2 in the above equation gives
the following model for the resulting MUX (c.f. Figure 4).

FY 2 = (FAB2 + FC2)(1− 2 · negABY)

! 1! 1
negABY

F
ABC2

negABY

F
Y 2 Y 2

F
AB2

+F
C2
−(F

AB2
+F

C2
)

Fig. 4. Modeling the word-level XOR as MUX.

B. Bit-level Verification

To perform RTL verification at the bit-level, we must con-
sider the bit composition of each of the word-level signals.
This is done by expressing each n-bit unsigned number X

by its binary encoding: X =
∑n−1

i=0
2ixi. The negative num-

ber (−X) is represented using two’s complement model as
−X = 2n −X . Specifically, we express the word-level input
A using binary encoding A = 2n−1an−1+ · · ·+2a1+a0, and
similarly for inputs B and C. The system of equations derived
in Section III-A, together with the binary-encoded inputs (and
intermediate signals, as needed) is then used to generate the
final canonical TED representation.

Figure 3(b) illustrates this approach for a simple case of
2-bit operands, and demonstrates that both designs represent
the same function, hence are equivalent. The 2-bit case is used
here for illustration only, since the generated TED diagrams for
larger cases would be too big for paper reproduction. However,
the results shown in Section IV clearly demonstrate that this
approach can be used to solve the equivalence verification
problem for this design at least up to 256-bit operands.

IV. RESULTS

In this paper, the TED representation was used simply
to illustrate the concept of symbolic RTL verification rather
than as a robust method to solve the equivalence verification
problem. Nevertheless, TED, in addition to providing the word-
level symbolic solution, can easily handle the Integer ALU
design with up to 26-bit operands (beyond which the internal
memory management is not efficient). The CPU runtime for
such solutions is shown in Table I. As we can see, the solution
can be obtained within fractions of a second. The experiments
were run on a PC with an Intel Processor Core i5-3470 CPU
3.20GHz x4 and 15.6 GB of memory.

An alternative, and a more efficient solution is based on an
approach that computes (i.e., extracts) the function performed
by the design by rewriting the symbolic expressions of a design
from the primary outputs to primary inputs. Such an approach
has been used in our earlier work [14] in the context of
arithmetic bit-level (ABL) networks, but applies verbatim here.
In this approach, the specification polynomial (called input
signature) of the given design is computed from the word-
level outputs (called output signature). It is expressed in terms
of the primary input variables: the operands A,B,C, control
signals negi, and other configuration signals. Such a computed
signature is then compared to the input signature obtained in a
similar manner from the other design. This is done by running
both designs on two cores of the same processor and checking
if FY 1 − FY 2 = 0. As shown in the table (column Function-
Extract), this approach is scalable: it can solve the bit-level
Integer ALU for operands with at least 256 bits in a matter of
seconds.

In comparison, in [1] a commercial combinational RTL
equivalence tool, Hector, was used to formally verify equiv-
alence of a 16-bit instance of this ALU design. Solving this
problem with Hector required 16-way case splitting (performed
by hand) and solving the 16 simpler problems corresponding
to some combinations of the configuration bits. The CPU time
of 8 seconds reported in [1] cannot be used to compare to our
results since the parameters of the computing platform were
not given. Larger design were not attempted in [1], claiming
an increased difficulty experienced by the solver.

Operand
size

TDS [13] Function-Extract
CPU (sec) Mem (MB) CPU (sec) Mem(MB)

4 0.01 3.4 0.01 2.4

8 0.03 4.5 0.03 4.0

16 0.06 8.9 0.11 9.6

26 0.19 18.2 0.32 22.0

32 - - 0.48 32.3

64 - - 1.93 124.8

128 - - 8.07 494.3

256 - - 34.66 1984.5

TABLE I. CPU TIME AND MEMORY USAGE FOR SOLVING INTEGER

ALU

V. CONCLUSIONS

The equivalence verification method presented here relies
on computing symbolic expressions for the circuit outputs.
It is applicable to solving equivalence checking problems
on different abstraction levels, from word-level to bit-level.
Although conceptually simple, this method has proven to be
efficient in solving problems that can be expressed as symbolic
polynomials with word-level or bit-level variables. Our current
work extends this concept to gate-level designs.

VI. ACKNOWLEDGMENT

This research is supported by a grant from the National
Science Foundation, Award No. CCF-1319496.

REFERENCES

[1] Drane Theo and Jain Himanshu, “Formal Verification and Validation
of High-level Optimizations of Arithmetic Datapath Blocks,” in SNUG

Awards 2011. Synopsys, 2011.

[2] M. Ciesielski, P. Kalla, and S. Askar, “Taylor Expansion Diagrams: A
Canonical Representation for Verification of Data Flow Designs,” IEEE

Trans. on Computers, vol. 55, no. 9, pp. 1188–1201, Sept. 2006.

[3] D.K. Pradhan and ed. I.G. Harris, Practical Design Verification,
Cambridge University Press, 2009.

[4] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver Technology for
System-level to RTL Equivalence Checking,” in Design, Automation &

Test in Europe Conference & Exhibition, 2009. DATE’09. IEEE, 2009,
pp. 196–201.

[5] Alfred Koelbl and Carl Pixley, “Constructing Efficient Formal Models
from High-level Descriptions using Symbolic Simulation,” International

Journal of Parallel Programming, vol. 33, no. 6, pp. 645–666, 2005.

[6] N. Bombieri, F. Fummi, V. Guarnieri, G. Pravadelli, and S. Vinco,
“Redesign and verification of rtl ips through RTL-to-TLM abstraction
and tlm synthesis,” in Microprocessor Test and Verification (MTV),

2012 13th International Workshop on. IEEE, 2012, pp. 76–81.

[7] H. Sohofi and Z. Navabi, “Assertion-based Verification for System-level
Designs,” in 15th International IEEE Symposium on Quality Electronic

Design (ISQED), , 2014, pp. 582–588.

[8] Robert Beers, “Pre-RTL Formal Verification: an Intel Experience,”
in Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE.
IEEE, 2008, pp. 806–811.

[9] H. Mangassarian, B. Le, and A. Veneris, “Debugging RTL using
Structural Dominance,” Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, vol. 33, no. 1, pp. 153–166, 2014.

[10] N. Shekhar, P. Kalla, and F. Enescu, “Equivalence Verification of
Polynomial Data-Paths Using Ideal Membership Testing,” IEEE Trans.

on Computer-Aided Design, vol. 26, no. 7, pp. 1320–1330, July 2007.

[11] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, A. Dreyer, F. Seelisch, and
G.M. Greuel, “Stable: A new QF-BV SMT Solver for Hard Verification
Problems combining Boolean Reasoning with Computer Algebra,” in
DATE, 2011, pp. 155–160.

[12] S. Vasudevan, V. Viswanath, R. W. Sumners, and J. A. Abraham,
“Automatic Verification of Arithmetic Circuits in RTL using Stepwise
Refinement of Term Rewriting Systems,” IEEE Trans. on Computers,
vol. 56, no. 10, pp. 1401–1414, 2007.

[13] M. Ciesielski, D. Gomez-Prado, Q. Ren, J. Guillot, and
E. Boutillon, “Optimization of Data-Flow Computation
using Canonical TED Representation,” IEEE Trans. on

Computers, Sept. 2009, pp. 1321–1333. TDS system online:
www.ecs.umass.edu/ece/labs/vlsicad/cadlab/tds/TDS.html

[14] M. Ciesielski, W. Brown, D. Liu, and A. Rossi, “Function Extraction
from Arithmetic Bit-level Circuits,” in VLSI (ISVLSI), 2014 IEEE

Computer Society Annual Symposium on. IEEE, 2014, pp. 356–361.

