ANALYTICAL APPROACH TO CUSTOM DATAPATH DESIGN

Serkan Askar

Maciej Ciesielski

Department of Electrical & Computer Engineering
University of Massachusetts, Amherst, MA 01003
{saskar, ciesiel} @ecs.umass.edu

Abstract— This paper addresses the problem of layout design au-
tomation of datapath cells. We present a novel approach to tran-
sistor placement problem for custom datapath designs and demon-
strate that it can be applied to practical designs. Our approach is
based on an analytical model which employs a mixed integer lin-
ear programming (MILP) technique. The novelty and originality
of the method is the efficient management of the complexity of the
underlying mathematical model. Our prototype tool automatically
handles transistor merging, folding, and intra-cell component shar-
ing.

I. INTRODUCTION

Layout generation for high-performance datapaths has been typ-
ically done manually due to stringent requirements imposed on
area and performance of such circuits. So far, datapath layout did
not enjoy the benefits of design automation due to high correla-
tion between quality of layout and circuit performance. However,
as the complexity of datapath structures grows the requirement
on turnaround time becomes critical, which makes datapath lay-
out automation inevitable.

Datapaths are characterized by highly regular layout structures.
Typical datapath floorplan consists of an array of bit slices and
words of identical bit cells. Since each bit slice is replicated a
number of times (determined by the datapath width) with very
little or no modification, layout generation of such regular struc-
tures reduces to a careful design, often by means of hand-crafting,
of individual cells.

This paper addresses the problem of automating layout design
of datapath cells. Specifically, it concentrates on the transistor
placement problem. Although placement and routing are tightly
interrelated, they are often performed as separate design phases
in order to manage enormous design complexity. Furthermore,
modern multi-layer routing technology makes it possible to route
layout structures with diffusion-limited placement, provided that
sufficient spacing for contacts is provided to facilitate the subse-
quent routing. Due to high repetition of datapath cells the task of
datapath layout optimization reduces to minimizing the area of in-
dividual cells, subject to routability and performance constraints.

Several techniques and algorithms have been proposed in the
past to automate transistor placement. These algorithms can be
broadly classified as deterministic and stochastic. Among the de-
terministic algorithms, force directed, eigenvalue, and geometry-
based constructive methods have been used extensively [1], [2],
[3], [4]- Stochastic methods are represented by simulated anneal-
ing and genetic algorithms, which are known for their ability to
handle multi-dimensional cost function [5]. Place & route tools,
such as KOAN/ANAGRAM [6] and PUPPY [7], designed specif-
ically for analog devices, are best examples of layout techniques
based on simulated annealing.

Our approach to custom datapath layout is based on a deter-
ministic analytical model using mathematical programming tech-
niques. We present a novel approach to transistor placement prob-
lem and demonstrate that it can be applied to practical datapath
designs. Our method is based on an analytical approach which

This work was supported by a grant from Compaq’s Alpha Development Group

employs a mixed integer linear programming (MILP) technique.
MILP has been previously proposed for floorplanning and cell
placement [8] and is known to suffer from computational com-
plexity problem. The novelty and originality of our method is the
efficient management of the complexity of the underlying mathe-
matical model.

II. DATAPATH DESIGN PROBLEM

A number of constraints is imposed on the design of datapaths,
whether it is done manually or automatically. These constraints
must properly capture the requirements imposed by the global dat-
apath floorplan, component geometries, and technology require-
ments. This section provides a brief overview of the constraints
and objectives in the automated design of custom datapath.

A. Bit-slice Constraints

Figure 1 shows an outline of a typical datapath cell in a vertical
orientation. The width (pitch) of the bit-slice is fixed, typically
delimited by VDD/VSS power supply rails. Signal nets are con-
nected to the cell components by means of bristles. Vertical bristles
are data lines, providing wiring between different functional cells
within the same bit slice. Horizontal bristles provide control lines
between functionally identical cells of different bit-slices. Data
lines run in parallel to the power rails. Control lines span the
width of the datapath in the direction perpendicular to the power
rails. The physical location of the bristles is typically known prior
to placement of components in the cell.

§§j\§§\\§§.§£i‘3?§@

Height
tobe
minimized

Control lines
S(horizontal bristles)

Boundary reflection S35
line

PITCH (fixed), X0

Fig. 1. Representation of a datapath cell

B. Component Geometry Constraints

Each component represents a single transistor or a chain of tran-

sistors to be placed as one entity (called placeable component).
Physical constraints imposed on placeable components allow for
certain degree of freedom, including multiple shapes and orienta-
tions.
Multiple instances and transistor folding: Each placeable
component can take one of several predefined shapes (in our case
limited to rectilinear polygons). These different shapes come from
different chaining of transistors or from transistor folding, resulting
in rectangles with different aspect ratios. The aspect ratios of the
folded components are computed in our preprocessing program
and considered in the MILP model as different instances of the
component. The best instance of the component is automatically
selected during the placement procedure.

L-shape components: Our formulation handles both the rect-
angular and L-shaped components. An L-shaped component is
modeled as a pair of abutting rectangles, as shown in Figure 4.
Orientation: Each component, including L-shaped components,
can assume one of two possible orientations. The orientation which
minimizes overall cost function will be automatically selected by
the program.

Merging: Device merging is a widely used technique to improve
both area and performance of custom designs. If two components
with the same diffusion type share a common net, they can be
combined in a single diffusion area. Merging, which has additional
advantage of minimizing the number of placeable components, is
handled automatically in our tool in a preprocessing step.
Sharing: In a typical organization of a datapath, horizontally ad-
jacent cells are identical copies of each other, reflected with respect
to the vertical boundary line. Component sharing is a technique
that allows two component areas (diffusions or poly gates) that
belong to components from adjacent cells to be merged, if they
share the same independent net. Independent nets are the global
control or clock signal nets which are carried by the horizontal
bristles. In this case the components can be pushed beyond the
cell boundary line to be shared with the component of the other
cell. Our model automatically supports the component sharing.

C. Design Objectives

The primary objective is to minimize the layout area of the dat-
apath cell. For a fixed datapath pitch, this is equivalent to mini-
mizing the height of the cell. Performance and internal routability
of the datapath components is considered as a secondary objec-
tive. It is achieved by minimizing some measure of interconnect
complexity of the internal signal nets. In case of a single-well tech-
nology, the number of diffusion wells must also be minimized, as
this improves yield and reduces the number of well plugs required.
All these objectives are considered in our analytical model.

III. APPROACH TO DATAPATH DESIGN AUTOMATION

In order to manage the complexity of the transistor placement
problem the entire design process is divided into the following
phases: 1) initial relative placement, 2) component merging and
grouping, 3) geometric placement, and 4) final post-processing and
compaction.

A. Initial Relative Placement

The goal of this phase is to derive a relative initial placement
of components that will facilitate modeling of the subsequent geo-
metric placement problem. Specifically, initial relative placement
provides an important information about relative values of X,Y
coordinates of component centers which significantly simplifies the
generation of non-overlapping constraints (see Section IV). Signal
connectivity is the sole factor considered in this step, while compo-
nent geometries are temporarily ignored. Standard force-directed
technique [9] is used to compute the locations of the component
centers, based on the connectivity of components to other com-
ponents, bristles, and power rails. In order to avoid trivial solu-
tion the location of some components must be temporarily fixed.
This is achieved by selecting a minimum number of fixed compo-
nents, called anchors, and allocating then to each corner of the
physical design space. Their location will be relaxed during the
subsequent geometric placement, subject to the relative positions
derived in the initial placement. Anchors are selected heuristically
by analyzing the following factors: component area and geometry;
connections to bristles, power rails and other components; and
sharability across the cell boundaries. Fig. 2 shows a result of an

initial relative placement, where components 1, 9, 2, and 10 have
been selected as anchors.

B. Component Grouping

An important step in our procedure is the grouping of compo-
nents into disjoint subsets (groups). This step is dictated by a need
to limit the number of integer variables in our MILP formulation,
described in Section IV-E. According to this formulation, an inte-
ger variable @;; represents a selection of a relative position for a
pair of components (4, j). By combining components into groups,
only one integer variable is needed to represent the relative position
of all components in the group w.r. to the components in another
group, hence significantly limiting the total number of variables
needed. The components inside each group remain related to each
other. In addition, we also apply component merging, described in
Section II-B, which reduces the number of placeable components
and further minimizes the number of integer variables.

Component grouping and merging is based on the initial rela-
tive placement, component connectivity, and electrical affinity (for
example, the P and N transistors of an inverter can form a group).
Its main goal is to limit the total number of integer variables so it
can be efficiently handled by an MILP solver. Fig. 2 shows group-
ing and merging of components according to their initial placement
and connectivity.

Grouped

Merged

Fig. 2. Initial relative placement with component grouping

C. Geometric Placement

The goal of this phase is to generate non-overlapping place-
ment of components, taking into consideration their geometries
and physical design rules. The inter-component connectivity is
addressed implicitly by maintaining the relative positions of the
components determined in the first phase. The objective is to
minimize the height of the cell layout. MILP model, described in
the next section, is used to solve this problem efficiently.

D. Compaction

Compaction is a final post-processing step intended to reduce
the number of P/N diffusion islands (if applicable) and to simplify
routability. It may also help reduce the height of the layout [2].

IV. MILP FORMULATION OF GEOMETRIC PLACEMENT
A. Component Modeling

Each rectangular component i is modeled as a pair of spatially
related squares, whose coordinates of top/right corners are de-
noted by (X;,1,Y:1) and (X, 2,Y;2), as shown in Fig. 3. The
width W; and height H; of component ¢ are defined as its dimen-
sions perpendicular and parallel to the poly line, respectively. The
size of each squares is equal to d; = min(W;, H;). The coordi-
nates of each component are defined by the coordinates of its first
(top/right-most) square.An integer variable R; is introduced for
each component ¢ to represent its geometric orientation. R;=0
if the component is placed horizontally, and R;=1, if it is placed

vertically (see Fig. 3). Square components do not require integer
variables to represent their orientation. The following constraints

Fig. 3. Model of a component in two different orientations

properly model a rectangular component as a function of its ori-
entation

Xi,l - Xi,z = (Di —_ di) * (1 —_ Rq,) (1)
Yi1—Yio = (D; —d;) * R; (2)

where D; = max(W;, H;) and d; = min(W;, H;).

B. Boundary Constraints

Each component must be placed within the boundaries of the
cell, determined by its fixed pitch, Xy, and variable height, Y,
(to be minimized). Let Ap; be a distance from the boundary of
component % to the respective boundary of the datapath cell. The
boundary constraints are given as follows:

Xi1 < Xo— Ay, (3)
Xi2 > di + D, (4)
Yi1 < Yo— Ay, (5)
Yio > di + Ay, (6)

where Ay, , Api, are the required margins for the vertical and

horizontal boundary lines, respectively. If component i is sharable
across vertical reflection line, Ay;, is negative to allow for inten-
tional diffusion overlap. Otherwise Ay;, is positive, and its value
is determined by the respective spacing design rule.

C. L-shape Components

An L-shape component is modeled as a pair of rectangles at-
tached to each other, with the same poly orientation. The poly
orientation parameter P; for component 7 is defined as follows:

p_{ B if H; = D;
*7 1 1—R; otherwise

@ (b)

Fig. 4. Modeling of an L-shaped component: a) original component; b)
component in vertical orientation, P; = 1; ¢) component in horizontal
orientation, P; = 0

Since P; and R; are related, there is no need to define a new
integer variable. The following constraints model the rotation of
an L-shaped component .

Xin—Xj1 = Wix P — (H; — Hi) x (1 - F)) (7)
Yin =Y = Wix(1-P;)— (H; — Hi) x P (8)

where ¢ and j are the smaller and bigger rectangle, respectively. In
the above equations, P; is used to force the same poly orientation
for both rectangles. Refer to Fig. 4, where ¢ = 2,5 = 1, and
P, = R;.

D. Folding and Components with Multiple Instances

Each component is allowed to assume several different shapes
(instances), one of which is chosen in the final placement. For com-
ponents with two instances, an integer variable S; (instance selec-
tion parameter) is introduced for component 7. The model handles
multiple instances at a cost of adding new integer variables, needed
to represent the selection and linearize the constraints. The details
are omitted for simplicity.

E. Nomn-overlapping Constraints

To satisfy non-overlapping constraints, the distance between two
components must be greater than or equal to the required diffu-
sion spacing, specified by the design rules. Since the 1-D relative
positions of the components are known from the initial placement
phase (one for each physical dimension), these constraints can be
written as a set of linear inequality constraints. An integer vari-
able Q;,; is introduced for the each pair of components (4, 5), to
represent their relative placement. It determines whether the X or
Y spatial relation is active. The non-overlapping constraints take
the following form:

X2 — X1
Y2 —Yi1

dj % Qi+ Lx (1= Qi)+ Dsep 9)
dj* (1= Qi)+ L*Qij + Dsep (10)

Here L is a sufficiently large positive number, and Agep is the
required spacing between the components. With this formulation,
fixing variable @Q;,; fixes the spatial relation between components
7 and j to either horizontal or vertical one. As shown in Fig. 5,
Qi,;=0 means that component j will be placed above component
i, and for @; ;=1 component j will be placed to the right of com-
ponent ¢.

2
2

Q=0 (X1:%0) ' (X;,%,)

Fig. 5. Modeling the non-overlapping constrains with integer variables Q; ;

F. Optimization Problem

The final objective is to minimize the cell height Y, subject to
the set of linear constraints defined above. We solve this problem
using a commercial integer linear programming tool.

1While there are eight different orientations for such a constructed L-shaped
component, this mode allows for only two orientations.

G. Complexity Issues

A typical transistor placement problem for a datapath cell in-
volves 20-50 original components (transistors or predefined black
boxes). After component merging, the size of the typical problem
reduces to less than 20 placeable components, and is further di-
vided into groups. To make our approach computationally feasible,
we impose limit on the number of integer variables in our MILP
formulation. We observed that MILP can run efficiently (and gen-
erate result within several minutes) if it is limited to about 60
integer variables. This number is problem-specific and can vary
for different optimization problems. We control the complexity of
the underlying optimization problem in several ways, including the
merging and grouping of components, discussed earlier in Section
III-B. Both of these techniques effectively reduce the total number
of integer variables to the desired level, allowing the optimization
program to complete within a few minutes. We should empha-
size that the placement is carried out for all components at once,
while restricting relative positions of components by their group
membership. When needed, the component grouping is relaxed
and the optimization problem repeated with the relative positions
(Qi,; variables) of all components ezcept the ones related to the
group in question, fixed. This is done iteratively during the final
post-processing step, and often significantly improves the result.

V. RESULTS

We implemented the analytical technique described in this paper
as a set of loosely integrated experimental tools, including force-
directed initial placement and MILP-based geometric placement.

We tested our programs on several datapath circuits made avail-
able by Compaq’s Alpha Development Group. The complexity of
those circuits ranged from 10 to 30 transistors, with the number
of placeable components being 9 to 15. We compared our results
with those obtained manually by an experienced layout designer.
We are not aware of any other synthesis tool for custom datapath
design for the purpose of fair comparison.

Table I gives the comparison of final (routed) results with the
best results obtained manually. The cell height is given in A. All
generated layouts were routable but some required minor mod-
ifications to accommodate poly/metal contacts and to facilitate
routing.

Height CPU time
& [min]
Circuit | # of | Custom Our Our
name trans. | design | approach | approach
PGK9 26 66 78.5 1:40
PB7 11 42 42 0:20
CS15 47 155.5 150 2:30
MU9 37 77.5 90 4:20
TABLE I
RESULTS

It is important to emphasize that the manually generated re-
sults include additional techniques and all possible “tricks of the
trade”. Specifically, in manual designs it is allowed to custom fold
transistors and components in the best possible way to fit them in
the available layout slots, while our methods can only deal with
the finite number of predefined component instances. This was the
case with example MUY in the table, where only one instance of
each component was provided as input to our program.

Example PGK9 suffers from a poor choice of anchoring. The
sensitivity of our method to anchoring heuristics is an important
problem that needs to be addressed.

In the CS15 example, our automatically generated placement
was routable after minor modifications involving placing poly and
metal contacts required for routing. Asseen in the table, our result
compares favorably with the manual one, while taking only several
minutes to compute.

All of our initial results are within acceptable area overhead,
while the development time is significantly lower; they take just a
few minutes per design, which compares favorably with the speed
of about 10 components per day for manual designs.

VI. CONCLUSIONS

This paper addresses our first attempt at automating datapath
layout design. It currently concentrates on transistor placement,
ignoring for now the important routing issues. As a result, all ex-
amples required some form of modification to accommodate rout-
ing (mostly by means of providing space for poly/metal contacts).
The purpose of this first round of experiments was to validate our
analytical approach. Our approach is able to handle designs with
up to 50 components in less than 10 minutes. We had impressive
time reduction within acceptable limits of area overhead compared
to manual designs. Our method seems to give superior results for
larger circuits, where human limitations at handling large design
complexity becomes apparent. We are now in the process of gath-
ering and evaluating the invaluable feedback from the designers so
we can incorporate it in the future editions of our program.

Future work in this project will focus on the several issues. 1)
The most important one is to develop a systematic way to include
routability measures in our analytical model. 2) We need to de-
velop better anchoring heuristics. 3) The grouping concept needs
to be further explored to help reduce the number of integer vari-
ables. 4) We will also examine iterative improvement to MILP
solutions by means of iterative group relaxation as this will allow
us to handle larger designs and obtain better results.

We are confident that our analytical approach combined with
proper post-processing and iterative improvement will create au-
tomatically routable and fully acceptable layouts competitive with
those obtained by human designers.

VII. ACKNOWLEDGEMENT
Authors would like to thank Sam Levitin, Ken Slater and Alan

Cave, of Compaq Alpha Development Group, for their invaluable
feedback and support.

REFERENCES

[1] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,
Teubner Series, 1990.
[2] D. Vahia and M. Ciesielski, “Transistor level placement for full custom datapath

Wiley-

cell design,” International Symposium on Physical Design, 1999.

[3] H. Onodera, Taniguchi Y., and Tamaru K., “Branch-and-bound placement for
building block layout,” Proceedings of 28th Design Automation Conference, pp.
433-439, 1991.

[4] C Cheng and E. S Kuh, “Module placement based on resistive network opti-
mization,” IEEE Transactions on CAD, pp. 218-225, 1984.

[56] C. Sechen, “Chip-planning, and global routing of macro/custom cell integrated
circuits using simulated annealing,” ACM/IEEE Design Automation Conference,
1988.

[6] J. Cohn, “KOAN/ANAGRAM II: New tools for device-level analog placement
and routing,” IEEE Journal on Solid-State Circuits, pp. 330-342, 1991.

[7] E. Charbon, “A constraint-driven placement methodology for analog integrated
circuits,” Proceedings of CICC, pp. 2821-2824, 1992.

[8] S. Sutanthavibul, E. Shragowitz, and J. B. Rosen, “An analytical approach to
floorplan design and optimization,” IEEE Transactions on CAD, pp. 761-769,
1991.

[9] N. A. Shervani, Algorithms for VLSI Physical Design Automation, Kluwer Aca-
demic Publishers, 1993.

