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Abstract. The paper presents a new approach to functional, bit-level
verification of arithmetic circuits. The circuit is modeled as a network of
adders and basic Boolean gates, and the computation performed by the
circuit is viewed as a flow of binary data through such a network. The
verification problem is cast as a Network Flow problem and solved us-
ing symbolic term rewriting and simple algebraic techniques. Functional
correctness is proved by showing that the symbolic flow computed at
the primary inputs is equal to the flow computed at the primary out-
puts. Experimental results show a potential application of the method
to certain classes of arithmetic circuits.

Keywords: Formal verification, Functional verification, Arithmetic ver-
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1 Introduction

One of the most challenging problems encountered in hardware design is func-
tional verification of arithmetic circuits and datapaths. Boolean logic techniques,
based on BDDs, so successfully used in logic synthesis, cannot solve large arith-
metic problems as they require “bit-blasting”, i.e., flattening of the design into
bit-level netlists. Similarly, Boolean satisfiability (SAT) and Satisfiability Mod-
ulo Theories (SMT) solvers cannot handle complex arithmetic designs and re-
quire solving computationally expensive decision problems. On the other hand,
theorem provers, popular in industry, require a significant human interaction
and intimate knowledge of the design to guide the proof process. Typical ap-
proach in industry is to use a host of methods, including simulation-based and
formal methods, which requires large teams of experts with high degree of ex-
pertise. While datapath verification has reached certain level of maturity [1,2],
certain areas of arithmetic verification remain open for more research. According
to Slobodova [3] “Multiplication function is beyond the capacity of BDDs and
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SAT solvers”; it requires decomposition into smaller entities, while there is “No
automatic way of finding properties on the decomposition boundary”.

The work described in this paper addresses some of those issues. It focuses
on functional verification, i.e., proving correctness of arithmetic design w.r.t. its
intended function, rather than targeting a specific property or checking equiv-
alence between the implementation and specification. In this sense, functional
verification can be viewed as a more general problem, as it has to overcome
the issue of generating a complete set of properties that describe the intended
functionality. Our approach is based on modeling an arithmetic circuit as a net-
work of half adders and basic Boolean connectors and viewing the computation
performed by the circuit as a flow of binary data through the network. The ver-
ification problem is cast as a special case of a Network Flow problem and solved
using symbolic term rewriting and linear algebraic techniques.

1.1 Related Work

Several approaches have been proposed to check an arithmetic circuit against its
functional specification. Different variants of canonical, graph-based representa-
tions have been proposed, including Binary Decision Diagrams (BDDs), Binary
Moment Diagrams (BMDs), Taylor Expansion Diagrams (TED), and others [4].
Application of BDDs to verification of arithmetic circuits is somewhat limited
due to prohibitively high memory requirement for complex arithmetic circuits,
such as multipliers. BDDs are being used, along with many other methods, for
local reasoning, but not as monolithic data structure [3,1,2]. BMDs and TEDs
offer a linear space complexity but require word-level information of the design,
which is often not available or is hard to extract from bit-level netlists. A number
of SAT solvers have been developed to solve generic Boolean decision problems.
The one potentially relevant to our work is CryptoMiniSAT, which targets xor-
rich bio-informatics circuits by replacing traditional CNF formula with xors [5].
However, it is still based on a computationally expensive DPLL decision pro-
cess and does not scale with the design size. Several techniques combine linear
arithmetic constraints with Boolean SAT in a unified algebraic domain [6] or
use ILP to model the modulo semantics of the arithmetic operators [7] [8]. In
general, ILP models are computationally expensive and are not scalable. Some
techniques combine a word-level version of automatic test pattern generation
(ATPG) and modular arithmetic constraint-solving techniques for the purpose
of test generation and assertion checking [9]. SMT solvers integrate different
theories (Boolean logic, linear integer arithmetic, etc.) into a DPLL-style SAT
decision procedure [10]. However, in their current format, the SMT tools are not
efficient at solving decision problems that appear in arithmetic circuits.

A number of Computer Algebra methods have been introduced to model arith-
metic components as polynomials [11,12]. Automated techniques for extracting
arithmetic bit level (ABL) information from gate level netlists have been pro-
posed in the context of property and equivalence checking [13]. ABL compo-
nents are modeled by polynomials over unique ring, and the normal forms are
computed w.r.t. Grobner basis over rings Z/2n using modern computer algebra
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algorithms. In our view this model is unnecessarily complicated and not scalable
to practical designs. A simplified version of this technique replaces the expensive
Grobner base computation with a direct generation of polynomials representing
circuit components [15]. However, no practical method for deriving such large
polynomials and no systematic comparison against the specification have been
proposed. Our work addresses this issue using a more efficient network flow
model.

Industry also uses Theorem Provers, deductive systems for proving that an im-
plementation satisfies a specification, using mathematical reasoning. The proof
system is based on a large (and problem-specific) database of axioms and infer-
ence rules, such as simplification, rewriting, induction, etc. Some of the known
theorem proving systems are: HOL, PVS, and Boyer-Moore/ACL2. The success
of verification depends on the set of available axioms, rewrite rules, and on the
order in which they are applied during the proof process, with no guarantee for
a conclusive answer. Similarly, term rewriting techniques, such as [14], are in-
complete, as they rely on simple rewriting rules (distributivity, commutativity,
and associativity) and use non-canonical representations.

An entirely different approach to functional arithmetic verification has been
proposed in [16]. In this approach the arithmetic circuit, composed of adders and
connecting logic gates, is described by a system of linear equations. The resulting
set of linear equations is then reduced to a single algebraic expression (the “sig-
nature” of the circuit) using Gaussian elimination and linear algebra techniques.
If the resulting signature matches the input and output expressions (specified
by input bit positions and binary output encoding) and does not contain any
internal signals, then the circuit is considered functionally correct. The difficulty
of this method lies in proving the case when not all signals can be eliminated
and the signature contains a “residual expression”(RE), in those variables. In
this case, for the circuit to be functionally correct, the residual expression must
evaluate to zero. Proving this requires solving a separate and difficult Boolean
problem. Furthermore, such an expression is not unique and the method does
not offer means for choosing RE that would be easiest to solve.

1.2 Novelty and Contribution

In this work we follow the algebraic approach similar to [16], but solve the prob-
lem by modeling it as a computationally simpler network flow problem. Specif-
ically, the computation performed by the circuit is modeled as a flow of binary
data, represented as an algebraic, pseudo-Boolean expression. This representa-
tion provides important information about the circuit functionality and location
of possible bugs. The verification proof reduces to showing the equivalence be-
tween the input and output expressions. Any possible discrepancy between the
two expressions is captured in an algebraic expression, which, in contrast to
“residual expression” in [16], is unique and related to fanouts and other signals
that can be identified a priori. This feature greatly simplifies the final proof
which can be solved using purely algebraic methods.
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In contrast to theorem provers and traditional term rewriting techniques, the
proposed method is complete. It is based on a complete set of algebraic ex-
pressions describing internal circuit modules, used as the rewriting rules. The
result does not depend on the order in which the rules are applied; the order is
fixed and unique. The method does not require expertise in formal verification,
can be fully automated, and always terminates with a conclusive answer. Fur-
thermore, no assumption is made about any structural similarity between the
implementation and the specification, required by commercial verification tools.

2 Technical Approach

In this work we are concerned with a class of arithmetic circuits, i.e., combina-
tional circuits with binary inputs that compute a (signed or unsigned) integer
function; the result computed by the circuit is encoded in a finite number of bi-
nary outputs. The internal operators (circuit modules) are assumed to be binary
adders (single-bit half adders and full adders) and basic Boolean logic gates.
Such circuits are often referred to as Arithmetic Boolean Level (ABL) circuits
[13]. Techniques exist that can convert a gate-level arithmetic circuit into such
an ABL network, although a highly bit-optimized arithmetic circuits may con-
tain a sizable number of logic gates that cannot be mapped onto (half) adders.
Those gates will be modeled using arithmetic operators, such as half adders, and
described as linear equations, as described in Section 3.1.

2.1 Basic Terminology

The arithmetic function computed by the circuit is expressed as a polynomial in
terms of the primary inputs. We refer to such a polynomial as input signature,
denoted by Sigin(N), for some circuit N . Such a polynomial is unique, as it
uniquely describes an arithmetic function computed by the circuit; it can be
linear or nonlinear. For example, the input signature of a 7-3 counter NC , shown
in Fig. 2 is simply Sigin(NC) = x1 + x2 + x3 + x4 + x5 + x6 + x7. For a n-bit
binary adder NA with inputs {a0, · · · , an−1, b0, · · · , bn−1}, the input signature is

Sigin(NA) =
∑n−1

i=0 2iai+
∑n−1

i=0 2ibi, etc. The integer coefficients, called weights,
wi), associated with the corresponding signals, are uniquely determined by the
circuit structure and its specification. For the 7-3 counter the input weights are
wi = 1 for each signal xi, while for an adder, w(ai) = w(bi) = 2i for inputs ai, bi
at bit position i.

Input signature for non-linear networks can be similarly obtained. For exam-
ple, input signature of a 2-bit signed multiplier can be directly obtained from its
high-level specification: F = (−2a1+a0)(−2b1+b0) = 4a1b1−2a0b1−2a1b0+a0b0.
By substituting product terms by new variables, x3 = a1b1, x2 = a1b0, x1 =
a0b1, x0 = a0b0, we obtain a linear input signature of the multiplier network in
terms of these fresh variables: Sigin(M) = 4x3 − 2x2 − 2x1 + x0. Again, the
signal weights are uniquely defined by the specification.
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The result computed by an arithmetic circuit can also be expressed as a
polynomial in the output variables. This polynomial is always linear as it rep-
resents a unique binary encoding of an integer number computed by the cir-
cuit. We refer to such a polynomial as output signature. For example, the out-
put signature of a 2-bit signed multiplier M with outputs Z3, Z2, Z1, Z0 is
Sigout(M) = −8Z3 +4Z2 +2Z1 +Z0. In general, output signature of any arith-

metic circuit with n output bits Si is represented as Sigout(N) =
∑n−1

i=0 2i Si.
The output signal weights are also uniquely defined, in this case by the output
bit position.

We also introduce the notion of a cut in the circuit, defined as a set of signals
separating primary inputs from primary outputs. Each cut has its own algebraic
signature, defined similarly to the input and output signatures. Specifically, a
cut signature is a linear polynomial in the cut signals with coefficients specified
by the integer signal weights. The computation of those weights is one of the
basic steps of our verification procedure, to be described in detail in Section 3.4.

For nonlinear circuits, such as multipliers, the nonlinear part (contained be-
tween the primary inputs and the linear variables) is typically very shallow. This
is the case not only for simple array multipliers mentioned above, but also for
all signed and Booth-encoded multipliers and other circuits containing adder
network structures (typical of all arithmetic circuits). Such a nonlinear block
can be independently and easily verified using Boolean methods or word-level
diagrams (BMD or TED). In this work we assume that the boundary between
the linear and nonlinear blocks is known (as in the multiplier example above).

2.2 Overview of the Method

Since the input and output signatures describe the same circuit, albeit in differ-
ent sets of variables, in a functionally correct circuit the two signatures must be
equivalent, in the sense that they must evaluate to the same integer value for any
integer input vector. The proof goal of functional verification is then to show that
one signature can be transformed into the other using expressions of the internal
operators: adders and logic gates. This can be done by symbolically rewriting the
input signature, using the properly linearized internal logic and arithmetic oper-
ators, and checking if the polynomial obtained by such transformation matches
the output signature. This check can be easily done using canonical word level
diagrams, such as BMD or TED. The transformation can also be done in the op-
posite direction, from outputs to inputs, and the resulting expression compared
to the input signature. If the input signature is not known, it can be computed
directly from the output signature by such a backward transformation.

The presumed equivalence between the input and output signatures suggests
that the functional verification problem in an arithmetic circuit can be viewed as
a Network Flow Problem: the data is injected into input bits and flows through
the network to be collected at the output bits. The network modules act like
nodes in a transportation network, distributing data according to the edge ca-
pacities, here represented as signal weights. In the functionally correct circuit,
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the total flow into the inputs, described by the input signature, must be equal
to the flow at the output of the circuit, described by the output signature.

While conceptually the equivalence between the input and output signatures
can be determined by symbolic rewriting, it is actually accomplished by comput-
ing the signal weights. The concept of rewriting is presented here only to prove
the correctness of our method. In an actual implementation, the proof will be
accomplished by i) computing weights of the intermediate polynomials involved
in the transformation; ii) checking if such computed weights are compatible with
the input/output signatures; and iii) if the weights satisfy additional equivalence
relations required for functional correctness. The details of this procedure are
provided in Sections 3.4 and 3.5.

3 Arithmetic Network Model

For the presented network model to work, we have to make sure that each
network node (represented by circuit module) satisfies Flow Conservation Law
(FCL). As we will see in the next section, this is automatically guaranteed by
basic arithmetic operators, such as adders. Logic gates and fanouts are modeled
in a similar fashion, to make sure that each satisfies FCL.

3.1 Algebraic Models

This section describes algebraic models of the circuit modules used in our method.
They include: half-adders (ha), full-adders (fa), inverters (inv), buffers (buf),
and basic logic gates (and, xor, or). Each of them is modeled with a single
linear equation which satisfies FCL.
• A half-adder (ha) with binary inputs a, b, and a full adder (fa) with binary
inputs a, b, c0 and outputs S (sum) and C (carry out) are represented by the
following equations:

HA : a+ b = 2C + S; FA : a+ b+ c0 = 2C + S (1)

• Logic gates, and and xor, can be obtained directly from the ha using a linear
ha model: the xor(a, b) is derived from the sum output S, and the and(a, b)
from the carry-out output C of ha(a, b), as shown in Fig. 1(a). If only one gate
(say an and) is used/needed, the other output (in this case corresponding to an
xor) is left unconnected. We refer to such an unused signal as a floating signal.
The role of the floating signals in our model is to pick up the “slack” in the
flow, so that the used output always assumes the correct binary values and the
module satisfies the FCL.
• The or gate, R =or(a, b), can be similarly derived from the ha using deMor-
gan’s law, resulting in {a + b = 2C + S; C + S = R}. By combining the two
equations we obtain a general or model: a+ b = 2R− S, see Fig. 1(b). Here, S
represents an unused, floating signal. The set of equations for or can often be
simplified if C = a · b = 0, i.e., when inputs a, b to the ha are never both 1. This
happens often in arithmetic circuits whenever a, b come as reconvergent fanouts
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from the C and S outputs of another ha, where they cannot be both 1. In this
case the equation for the or gate, denoted as or∗, simplifies to a+ b = R, see
Fig. 1(c). In summary, the or gate is modeled as follows:

OR : a+ b = 2R− S; OR∗ : a+ b = R (2)

• An inverter gate y =inv(x) is modeled by the equation: x = 1− y. Similarly, a
buffer with input x and output y can be modeled by the simple equation x = y.
• Special attention must be given to fanouts, which can be viewed as trivial
modules. Such modules do not compute any arithmetic or logic function and
simply replicate the signal as needed. In its original form a fanout node may not
satisfy algebraic flow conservation law. For example, if signal x1 fans out into two
signals, x2, x3 then the equation x1 = x2 + x3, with a constraint x1 = x2 = x3,
does not satisfy the algebraic flow conservation law. To fix this problem, we
create a dummy fanout module, called FBox, with inputs x0, xs and outputs
x1, . . . xk for a fanout with factor k, as shown in Fig. 1(d). Here xs is a slack
variable added to compensate for the difference between x1 + . . . xk and x0. We
refer to such a variable as fanout slack. The equation satisfying FCL for the
FBox is: w0x0 + wsxs = w1x1 + . . . + wkxk, where wi is the weight associated
with signal xi.

Fig. 1 shows algebraic models for the basic modules, and the truth table to
verify the logical correctness of the models. It is easy to verify that each such
module satisfies the FCL.

a b

C S

a b

OR

2R −S

a b

OR∗

R

w0x0 wsxs

FB

w1x1 ...wkxk

a b C S R

0 0 0 0 0

1 0 0 1 1

0 1 0 1 1

1 1 1 0 1

(a) (b) (c) (d) (e)

Fig. 1. Modeling logic gates: (a) C =and(a, b), S =xor(a, b), derived from half-adder:
a+ b = 2C + S; (b) generic model for or: a+ b = 2R − S; (c) simplified xor* model:
a+ b = R ; (d) model of fanout box; (e) truth table for C, S, R.

3.2 Signature Rewriting

Before formalizing our verification model, we illustrate the verification approach
with an example of a 7-3 counter, shown in Fig. 2. The circuit counts the number
of 1s on the seven input bits and encodes the result in a 3-bit output word. Its
structure is described by the following set of linear equations.
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⎧
⎪⎪⎨

⎪⎪⎩

FA1 : x1 + x2 + x3 = 2x11 + x12

FA2 : x4 + x5 + x6 = 2x13 + x14

FA3 : x12 + x14 + x7 = 2x15 + x10

FA4 : x11 + x13 + x15 = 2x8 + x9

(3)

The input signature, Sigin = cut0 = x1+x2+x3+x4+x5+x6+x7 is rewritten into
an expression (cut signature) cut1 = (2x11 + x12)+ (2x13 + x14) using equations
for fa1: (x1+x2+x3 = 2x11+x12) and fa2: (x4+x5+x6 = 2x13+x14). Similarly,
expression for cut1 is rewritten into cut2 using equation for fa3, and then into
expression cut3 using fa4. The resulting expression cut3 = 4x8 + 2x9 + x10

matches exactly the output signature, Sigout = 4S2 +2S1 + S0, which indicates
that the circuit is correct (i.e., performs its intended function). Notice the weights

x1 x2 x3

FA1

2C S

x12

x4 x5 x6

FA2

2C S
x14

x7

FA3

2C S

x10

2x11 2x13

2x15

FA4

4C 2S
4x8 2x9

4S2 2S1 1S0

Sigin = cut0 = x1 + x2 + x3 + x4 + x5 + x6 + x7

cut1 = (2x11 + x12) + (2x13 + x14) + x7

cut2 = 2x11 + 2x13 + 2x15 + x10

cut3 = 4x8 + 2x9 + x10 = Sigout

Fig. 2. Arithmetic network model of a 7-3 counter

associated with individual signals in this network. The weight of each input signal
in this circuit is 1. The signature rewriting process gradually increases weights
of some of the signals, eventually producing higher weights at the output bits.
For example, one unit of x1, x2, x3 each, when applied to fa1, will produce one
unit of x12 generated at output S of the adder, and two units of x11 (denoted
in the figure as 2x11), generated at output C. This is a direct consequence of
equation (1) of the adder. Then, signals x11, x13, x15, each with weight 2, will
produce outputs x8 and x9 with weights 4 and 2, respectively. This is simply the
result of replacing the subexpression 2x11 + 2x13 + 2x15 = 2(x11 + x13 + x15) in
cut2 by 2(2x8 + x9), or, equivalently, of multiplying the equation (3) for fa4 by
constant 2.

In summary, the weights, which represent the amount of flow carried by the
signals play an important role in computing the flow in the network. The next two
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sections describe the process of computing the weights by propagating them from
the primary outputs to primary inputs, without actually performing signature
rewriting.

3.3 Weight Compatibility Constraints

As discussed in the preceding section, linear models of the arithmetic modules
used in the network naturally impose constraints on signal weights. We refer
to those rules as Weight Compatibility constraints. The weights which satisfy
the compatibility condition are unique, and are determined solely by the output
encoding and the network structure. These rules are simply a consequence of
linear equations modeling the internal modules (adders, gates, inverters, and
fanout boxes). Let wx denote the weight of signal x. Then, the fa equation
a+ b+ c0 = 2C + S imposes the following condition:

wa = wb = wc0 = wS ; and wC = 2wS

For the ha, the first constraint simply reduces to wa = wb = wS . Note that for
the and and xor gates, which use the fa/ha model, these rules will determine
weights of the floating signals, i.e., the S signal for the and gate and the C signal
for the xor gate.

Similar relation can be derived for the generic or gate, modeled by a + b =
2R− S, namely:

wa = wb = −wS , and wR = −2wS

The simplified or* gate, governed by the equation a + b = R, has only one
constraint, namely wa = wb = wR.

The first constraint in each group simply means that the input weights must
be the same. Changing any of the weights in a manner inconsistent with this
constraint, would correspond to multiplying individual signals by different con-
stants, which would invalidate the algebraic model (equations 1 and 2). The
same is true for the buffer: one must not multiply each side of the equation
by a different constant as this will change the relation between the two signals.
On the other hand, multiplying the entire equation for any given module by
a constant, will not change the relationship between the signals and will only
increase the flow carried by those signals. This happens during the process of
weight propagation, as shown in the 7-3 counter circuit.

Similarly, the compatibility constraints for an FBox are derived directly from
the FBox equation: w0x0 + wsxs = w1x1 + . . .+ wkxk.
For a known set of signal weights w0, w1, . . . , wk this will automatically determine
weight of the slack signal xs. The weight propagation procedure, described in
the next section, guarantees that such weights can always be computed and have
unique value.

In addition to the weight compatibility constraints, a connectivity rule needs
to be imposed on the connections between the modules to correctly propagate the
weights along the network wires. Such a rule is intuitively obvious: the weights
of the signals on the two ends of a wire (buffer) must be equal. This, too, can
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be justified by the mathematical model of the buffer, described by the equation
xi = xj . This trivially imposes the constraint that wi = wj .

3.4 Weight Propagation

Computation of signal weights is an important first step in our verification pro-
cedure. The weights are computed by traversing the network from primary out-
puts (where they are determined by the binary encoding) to primary inputs,
starting with the least significant bit, S0. The assignment of weights must sat-
isfy the compatibility conditions derived earlier. The weight assignment process
is illustrated with an example of a parallel prefix adder, with input signature
Sigin = 8(a3 + b3) + 4(a2 + b2) + 2(a1 + b1) + a0 + b0 + c0 and output signature
{16Cout + 8S3 + 4S2 + 2S1 + 1S0} imposed by the output encoding.

Fig. 3 shows the original gate-level design and Fig. 4(a) shows the network
flow model of the circuit, obtained from gate level netlist using ABL extrac-
tion technique. In this design, each or is represented by a simple or* model
(R = a + b), because it satisfies the simplifying conditions discussed earlier.
The signals S6, S7, C10, S11, shown at the bottom of the circuit, are the floating
signals coming from the output of has, which do not propagate any further.
The signals d9, d8, d7, d16, shown at the top of the circuit, are the fanout slack
variables, added as inputs to the FBoxes. In contrast to the input and output
signatures, the weights of the floating and fanout slack signals are not known a
priori and are computed during the weight propagation procedure.

Fig. 3. Gate-level parallel prefix adder

The procedure starts with the
least significant bit of the output,
S0. The weight 1 of signal S0, con-
nected to the S output of fa0,
matches the weight of that signal
generated by fa0. At the same time
weight 2 is imposed on signal d1 at
the C output of that adder (to be
denoted by 2d1). This assignment of
weights at fa0 is compatible with
the weight (1) of its inputs. If the
input weights were not known, this
would also impose weights =1 on
the inputs a0, b0, c0. Propagation of
2S1 upwards similarly satisfies the
weight compatibility at fa1 (whose
all inputs have weight 2) and im-
poses weight 4 on signal d16. Propa-
gation of 4S2 through ha7 generates
weights (4d7, 4d16) at the input to
ha7 and weight 8d18 at the C out-
put of ha7, see Fig. 4(a), etc. The procedure continues as long as the weights
satisfy the weight compatibility conditions.
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8a3 8b3

12d9

4a2

8d8

4b2 2a1 2b1

4d7 8d16
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16Cout

16C10

8S3 4S2 2S1 1S0

FA0

2 C 1 S

FA1

4 C 2 S

HA2

8 C 4 S

HA3

16C 8 S

HA4

8 C 4 S

HA5

16 C 8 S

OR*1

C 16 S

HA6

16 C 8 S

HA7

8 C 4 S

OR*3

C 16 S

OR*2

C 8 S

HA8

16 C 8 S

FB3

FB0 FB1 FB2

16d10

8d9

8d9

8d8

4d9

8d98d9 8d8 4d7

8d8

4d7

4d7

2d1

16d15

8d14

4d16

4d16

8d16

16d17
16d20

8d18

8d21

Sigin

cut0

cut1

cut2

cut3

cut4

cut5

cut6

Sigout

Fanout

d 1 6

4

d 8

ONE

2

Float

4

2

d 7

d 9

3

(a) (b)

Fig. 4. (a) Network flow for parallel prefix adder; (b) TED showing equivalence between
fanouts and floating signals

The floating and slack signals must be computed from the weights of already
computed signals. Consider, for example, Fbox3 associated with signal d16. The
weight of the right output signal, 4d16 has been already determined by back-
propagating 4S2, but the other output from this Fbox will not be known until
both inputs to ha6 have been determined. This is made possible by the com-
putation of weights originating at 16Cout, resulting in the following sequence of
weights:

16Cout → 16d20 → {8d14|8d16}
which fixes the left output of Fbox3 to 8d16. The slack variable for this fanout
box is then computed as the difference between the outgoing and incoming flow
associated with this signal, i.e., 8d16 +4d16 − 4d16 = 8d16. Other slack variables
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at the input to Fboxes and floating signals at the outputs of the adders are
resolved similarly, resulting in the weights shown in Fig. 4. In general, because
the graph representing the arithmetic network is acyclic (DAG), there always
exist an order which guarantees the resolution of the weights.

If at any point during the procedure the weights are incompatible, the circuit
cannot produce weights which are compatible with the input weights, i.e., it does
not compute the function specified by the input signature. An example in Section
3.6 illustrates this case. If the weights satisfy the compatibility conditions, the
computation eventually reaches the primary inputs, where the input weights are
compared with those in the input signature. If the weights at the primary inputs
match those in the input signature, the circuit is considered functionally correct.
Otherwise the circuit is faulty (either the network structure is wrong or the
specification, given as input signature, is incorrect). Hence we have the following
necessary condition for the circuit to implement the desired function:

For the circuit to compute the required function, the computed weights must
satisfy the compatibility condition and must match the weights of the inputs.

This equivalence check can be done readily using a canonical word-level dia-
gram, BMD or TED. The weight assignment for the parallel prefix adder example
is shown in Fig. 4(a). The computed weights match those of the primary inputs,
hence satisfying this necessary condition.

3.5 Proof by Flow Conservation

The final condition for functional correctness of the circuit is based on checking if
its model satisfies the Flow Conservation Law (FCL). In the arithmetic network
in which each module satisfies FCL, the flow into the input bits must be equal
to the flow at the output bits. However, by construction of our model, the total
input flow in addition to the flow into the primary inputs (expressed as input
signature) also contains slack variables of the fanout boxes, denoted by Δfn.
Similarly, the total output flow in addition to the flow out of the primary outputs
(expressed as output signature) also contains floating signals associated with
the unused variables, denoted Σfl. That is, in an arithmetic circuit which, by
construction, satisfies flow conservation law, we have:

Sigin +Δfn = Sigout +Σfl (4)

where Δfn and Σfl are the weighted sums of the slack fanouts and the floating
signals introduced in the network, respectively. In our example, Δfn = 8d16 +
12d9 +8d8 +4d7; and Σfl = 16C10 +8S11 +8S7 +4S6. Intuitively, for the input
signature to be equal to the output signature, the flow added by the fanouts
must be compensated by the flow removed by the floating signals. As a result,
if the input and output signatures match, the proof of functional correctness of
the network reduces to proving that

Δfn − Σfl = 0 (5)

In summary: The circuit is functionally correct if and only if: (i) there exists
a compatible assignment of weights consistent with the input signature Sigin;
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and (ii) the amount of the flow introduced by fanouts Δfn is equal to the flow
consumed by floating signals Σfl.

The first condition guarantees that the input signature can be rewritten into
an output cut whose weights match those of the output signature, while the sec-
ond condition satisfies the flow conservation law in this pseudo-Boolean network.

A naive way to solve this problem would be to express each of those terms
as a function of primary inputs and prove that the resulting expression is zero.
However, we only need to express Σfl in terms of the fanout variables. We
then need to prove that Σfl = Δfn in terms of the fanout signals only. We
perform this verification using TED. Figure 4(b) shows the TED for Δfn and
Σfl, both expressed in terms of fanout variables only, clearly indicating that
they are identical.

3.6 Debugging Faulty Circuits

The described method for functional verification can also help identify and lo-
calize bugs in a faulty circuit. Consider again the circuit in Fig. 2 but with wires
x12 and x13 swapped. The question is whether this circuit will still work as a
7-3 counter; and if not, what causes the malfunction and how can the bug be
identified. In this faulty configuration the equations for the affected adders, FA3

and FA4, are: {
FA3 : x13 + x14 + x7 = 2x15 + x10

FA4 : x11 + x12 + x15 = 2x8 + x9
(6)

With this, the following cuts are generated during the rewriting process, start-
ing with cut0:

⎧
⎨

⎩

cut1 : (2x11 + x12) + (2x13 + x14) + x7 (same as before)
cut2 : (2x11 + x12) + x13 + (2x15 + x10) (different)
cut3 : x13 − x12 + 4x8 + 2x9 + x10 (different)

(7)

In this arrangement, the weight of x12 does not match the weights of other
signals, 2x11, 2x15, at the input to FA4. Similarly, the weight of signal 2x13 does
not match the weights of x14 and x7, at the input to FA3. This violates the weight
compatibility discussed earlier. While the resulting expression of cut3 contains
the output signature 4x8 + 2x9 + x10, it also contains a “residual expression”
(x13−x12). This indicates that the circuit computes a function that differs from
the intended one by (x13 − x12), hence it is incorrect. (It can be easily shown
that x13 − x12 �= 0). The identification of such a residual expression is useful in
determining the source of the bug: it must be related to signals x13, x12.

4 Results

We tested our verification method on a number of signed multipliers up to 62 ×
62 bits. First, a structural verilog code was generated for each multiplier using
a generic multiplier generator software (courtesy of the University of Kaiser-
slautern). The verilog code was parsed to transform the multiplier circuit into a
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network of ha, fa and basic logic gates from which a set of equations was gen-
erated in the required format. The structure of those designs made it possible
to easily extract input signature required in our method. In general, however,
transformation of an arbitrary gate-level circuit into an ABL network is a known
difficult problem that can be computationally expensive; it may also result in
different configurations since such a mapping is not unique. This, however, does
not affect our approach; the different structures will only affect the effective-
ness of the method but not the result. Each mapping will have its own, unique
set of transformations and any of those will lead to the same conclusive answer
regarding the circuit functionality.

The results of our experiments are shown in Fig. 5. The CPU time includes
all phases of the process: preprocessing (which takes a negligible fraction of the
entire process, taking only 3 sec for the 62-bit multiplier); computing signal
weights; checking weight compatibility with input signature; creating symbolic
equation for Δfn − Σfl; generating script for TED; and using TED to check
the equivalence condition (5). The experiments were run on a PC with an Intel
i7 CPU @ 2.30GHz and 7.7 GB memory. Since most of the research in this

Fig. 5. CPU time for multipliers (a) in the number of bits (b) in number of equations

field has been done in the context of property checking rather than functional
verification, we could not find suitable data for comparison. the CPU runtimes
[1,2]. The runtime complexity of the procedure to compute algebraic signature
of the network is quadratic in the number of equations (or, equivalently in the
number of gates), c.f. Figure 5.

Comparison with SMT Solvers: In principle, the network can be described
by a system of linear equations Ax = b derived directly from the equations de-
scribing the network modules. The test for functional correctness can be obtained
by checking if the network Ax = b is compatible with the expected input and
output signatures. This can be modeled as satisfiability (SAT) problem as fol-
lows. Let Sigin(N) and Sigout(N) be the primary input and output signature
as defined in Section 3.1. Then, we need to show that: (Ax = b) ∧ (Sigin(N) �=
Sigout(N) is unsatisfiable (unSAT). We performed this test on a number of
multipliers using three SMT solvers that support Linear Integer Arithmetic:
MathSAT, Yices, and Z3. The results, reported in Table 1 show that the SMT
solvers were not able to solve the problem for multipliers larger than 8 bits,
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while our method can verify the functional correctness of multipliers up to 62
bits in several minutes. Z3 ran out of memory (3 GB), while Yices was unable to
complete the computation in 30 minutes. In some cases, MathSAT was “unable
to perform computation” and is not reported here. We also attempted to solve
the problem using BDDs, but (as expected) we were unable to build BDD for
multipliers larger than 14 bits, due to the memory explosion.

Table 1. Comparison with SMT solvers (MO=memory out with 3 GB, TO=timeout
after 1800 sec)

Design Z3 Yices Our method
(sec) (sec) (sec)

mult 3× 3 0.23 0.02 0.21

mult 4× 4 466.36 0.05 0.28

mult 8× 8 MO TO 0.57

mult 16× 16 MO TO 1.52

mult 24× 24 MO TO 3.63

mult 32× 32 MO TO 12.22

mult 40× 40 MO TO 31.57

mult 48× 48 MO TO 71.93

mult 56× 56 MO TO 157.24

mult 62× 62 MO TO 297.59

PrefixAdder(4b) 160.31 0.05 0.25

5 Conclusions

The goal of this paper was to present a novel idea of modeling the functional
verification of arithmetic circuits without resorting to expensive Boolean or bit-
blasting methods. As such, this approach has a potential application in formal
verification and could be used in conjunction with existing methods for functional
verification. Currently the method is applicable to designs with well defined input
signature, expressed as a multivariate (possibly nonlinear) polynomial in the
input variables. Typically such a signature is given as part of the specification;
otherwise it can be extracted from the design by transforming the known output
signature (binary encoding) backwards towards the inputs. In this sense, the
method is directly applicable to extract circuit functionality from its hybrid
arithmetic/gate-level structure.

An important application where this method can be particularly useful is the
identification and localization of bugs in the design. This can be accomplished
by analyzing areas containing incompatible weights, as illustrated in Section 3.6.
Typically this will happen due to miss-wiring, crossing, or missing wires, which
will result in incompatible weights. It seems that the module which violates
the weight assignment and the bit position that imposes a violating assignment
should provide important information about the bug location. We are not aware
of any other approach that can so efficiently address this debugging issue.
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The major limitation of this method is in generating ABL networks from an
arbitrary gate-level arithmetic circuit, which in general is a difficult problem.
Nevertheless, the method can be useful in verifying new arithmetic circuit ar-
chitectures based on novel computer architecture algorithms, were the design
is already specified in terms of adders and some connecting gates. The method
can be readily extended to sequential circuits by converting them to bounded
models, which is a part of the ongoing research effort. The extension to floating
point arithmetic will need to be investigated.
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