
Retiming Arithmetic Datapaths using Timed Taylor Expansion Diagrams

Daniel Gomez-Prado1 Dusung Kim1 Maciej Ciesielski1 Emmanuel Boutillon2

1University of Massachusetts Amherst, USA. {dgomezpr,ciesiel,dukim}@ecs.umass.edu
2Lab-STICC, Université de Bretagne Sud, France. emmanuel.boutillon@univ-ubs.fr

Abstract - This paper describes an extension to the

Taylor Expansion Diagrams (TED), called Timed TEDs,

which makes it possible to represent sequential arithmetic

datapaths. Timed TEDs enable register and clock period

minimization while performing factorizations and common

sub expression eliminations in the data flow graph (DFG).

Specifically, timed TEDs allow a wider range of retiming

options as the computations in the DFG can be modified

while performing retiming. In this paper we discuss the

formalism of timed TEDs and the restrictions it imposes

on the TED variable ordering.

1 Introduction

It is known that certain data flow operations in a design

can be optimized by performing retiming [1]. Retiming is

an important step of scheduling in high level synthesis; it

can decrease the clock period of the design [2], its switch-

ing activity [3], power consumptions and its area [4]. A

classic example of retiming is an n-tap FIR filter, which

in its original version as shown in Figure 1(a) has a com-

binational delay of one constant multiplier and n adders,

with n + 1 being the number of filter taps. After retiming,

the critical path delay of the filter is reduced to 1 multiplier

and 1 adder, as shown in Figure 1(b). This reduction in the

critical path obtained through retiming allows the circuit to

be clocked at higher speeds.

(a)

(b)

Figure 1. 4tap FIR filter: a) original; b) re

timed.

Although retiming has been extensively studied, it has

been applied to fixed Data Flow Graphs (DFGs). This

work focuses on retiming of Taylor Expansion Diagrams

(TEDs). TED captures the functional description of a DFG

and optimizes it, in order to minimize the hardware im-

plementation [5]. TED enables structural changes such as

factorization and common sub expression elimination to

occur in the DFG. In this work, the TED is enhanced by

inserting registers into the basic data structure to enable

retiming. We refer to such a representation as Timed TED.

We will show that such a retiming and the resulting de-

lay optimization can be efficiently captured using the TED

model.

2 Previous work

Taylor Decomposition System (TDS) is a framework to

optimize data flow graphs (DFGs) using a canonical data

structure, called Taylor Expansion Diagram (TED). TDS

offers a systematic way to transform the initial specifi-

cation, written in C or C++, into a DFG that addresses

the constraints of hardware implementation and explores

a larger space of architectural solutions. Its applications

to high-level synthesis can be found in [6, 7, 5]. TED

is a compact, graph-based data structure that provides

an efficient way to represent word-level computation in

a canonical, factored form. It is particularly suitable for

computation-intensive applications, such as signal and im-

age processing, with computations modeled as polynomial

expressions. The basic formalism of TED is described in

detail in [6].

Briefly, a multi-variate polynomial expression,

f(x, y, ...), is represented using Taylor series expansion

w.r.t. variable x around the origin x = 0 as follows:

f(x, y, · · · ) =
m

∑

k=0

xk

k!
fk(0, y, · · · ) (1)

where fk(0, y, · · · ) are the successive derivatives of f

w.r.t. x, evaluated at x = 0. The individual terms of the

expression are then decomposed iteratively with respect

to the remaining variables on which they depend (y, · · · ,
etc.), one variable at a time.

The resulting decomposition is stored as a directed

acyclic graph, called TED. Each node of the TED is la-

beled with the name of the variable at the current decom-

position level and represents the expression rooted at this



F = A*B + A*C

B

C

A

1

F

A CB A

t2

t 1

A B A C

t1

t2

t3

A B C

t1

t2

c) 3 cycles, 1 Mpy, 1 Add d) 2 cycles, 1 Mpy, 1 Addb) 2 cycles, 2 Mpy, 1 Adda) Canonical TED representation

Figure 2. Behavioral transformations: (a) Canonical TED representation. (b),(c),(d) Functionally

equivalent DFGs.

node. The top node of the TED represents the main func-

tion f(x, y, . . . ) and is associated with the first variable,

x. Each term of the expansion at a given decomposition

level is represented as a directed edge from the current de-

composition node to its respective derivative term. Each

edge is labeled with a pair (∧p, w), where ∧p represents

the power of the corresponding variable and w represents

the edge weight (multiplicative constant) associated with

this term. An edge with a pair (∧0, w) corresponds to an

additive edge, and it is drawn with a dotted line. An edge

with a pair (∧1, w) is a linear (multiplicative) edge and it

is drawn with a solid line. Explicit labels on the edges

are dropped for additive and linear edges; similarly, edges

with weight 0 are not shown as they correspond to empty

terms. The final reduced, normalized and ordered TED is

canonical for a given variable order [6].

The construction of a TED is illustrated in Figure 2(a)

for expression F = AB + AC, where variables A, B, C

are word-level signals of arbitrary bit-width. The ex-

pression encoded in the graph is computed as a sum of

two paths from TED root to terminal node 1: A · B and

A ·B0 ·C = A · C, i.e., AB + AC. In fact, TED encodes

such an expression in factored form, F = A(B+C), since

variable A is common to both paths. This is manifested in

the graph by the presence of the subexpression (B + C),
rooted at node B, which can be factored out. It is this fea-

ture of the TED structure that makes it particularly applica-

ble to factorization and common subexpression extraction

of algebraic expressions.

To illustrate the concept of data flow transformations

supported by TED consider the simple computation F =
AB + AC, and the two possible schedules of a DFG de-

rived directly from this expression, Figures 2(b) and (c).

The two DFGs have the same structure and differ only in

the scheduling of arithmetic operations. The DFG in Fig.

2(b) has minimum latency and requires two multipliers and

one adder. The one in (c) needs only one multiplier and

one adder, at a cost of the increased latency. In contrast,

Figure 2(d) shows a solution that can be obtained by trans-

forming the original specification F = AB + AC into

F = A(B + C), which results in a different DFG. This

DFG requires only one adder and one multiplier and can

be scheduled in two control steps. Such an implementa-

tion cannot be obtained from the initial DFG by simple

structural transformation and requires functional transfor-

mation (in this case factorization) of the original expres-

sion which preserves its original behavior. The solution

with best hardware cost can then be chosen for the final

hardware implementation.

3 Timed TEDs

We will now show how the TED structure can be en-

hanced to handle sequential designs by introducing reg-

isters. The resulting TED is called Timed TED. A timed

TED is a TED with register information annotated on its

nodes and edges using a register label nR, where n is the

number of registers.

3.1 Registers annotation in the nodes

Recall that a node in a TED represents a primary input

(symbolic word-level variable). The label nR associated

with a node, denots that the given input has n registers, or

that it is delayed by n clock cycles. For instance, func-

tion F = (a × 1)1R shown in Figure 3(a) represents the

multiplication of constant node (ONE) with a primary input

a delayed one clock cycle. This is equivalent to function

F = a1R as shown in Figure 3(b).

(a) (b) (c)

Figure 3. Timed TED Representation. (a) An
notated node. (b) After Normalization. (c)

Annotated edge.



Variables that represent constant values, called constant

nodes, can take an arbitrary number of registers and still

represent the same functionality (delaying the constant

does not change its value). Therefore we normalize the

TED representation by removing all registers at constant

nodes. That is, after any operation in the TED, the regis-

ters left at constant nodes can be safely removed.

3.2 Registers annotation in the edges

Labels in the TED edges are extended to carry regis-

ter information; that is, each edge is labeled with a triple

(∧p, w, nR). The label nR associated with an edge means

that the entire function rooted at the node below that edge

is delayed by n clock cycles. That is, the labeled edge

denotes n registers positioned at the output of the corre-

sponding function. This is shown for function F = a1R in

Figure 3(c), where the output of the multiplication of node

a with the constant node 1 has been retimed once.

Similarly to dropping additive and multiplicative edge

labels mentioned earlier, weight labels equal to 1 and reg-

isters labels equal to 0R are also dropped for simplicity.

For instance, the additive edge with weight of 1 and 1

register shown in Figure 4(b), is labeled as 1R instead of

(∧0, 1, 1R); it is implicit from the dotted line that it is an

additive edge with ∧0 and because there is no weight in-

formation it is implicitly set to one.

It should be observed that the TEDs shown in Figures

3(b) and 3(c) produce the same DFG: the primary input a

connected to the output F through a register. This is true

for all nodes connecting to node ONE through a multiplica-

tive edge with weight 1, as the function represented by the

node and the node itself are the same.

3.3 Forward and Backward register propagation

We will refer to a node with non-zero register label as a

retimed node, and to an edge with non-zero register label

as a retimed edge.

Theorem 3.1 A register at the root of a TED node can be

retimed backward by propagating the register to the node

itself and to all its children edges.

Proof Let’s denote by F an arbitrary TED function rooted

at node a with a register on top of it; and let’s denote by

G the TED function rooted at node a. Let’s define by ()nR

the lineal operator retime . Then F can be composed in

terms of G by:

F(a,··· ) = G1R
(a,··· ) (2)

Consider an abitrary decomposition of G, as the one shown

in Figure 4(a); then G can be described in terms of its Tay-

lor expansion as:

G = G(a=0)+a
∂G

∂a |a=0
+a2 ∂2G

∂a2 |a=0
+a3 ∂3G

∂a3 |a=0
(3)

replacing equation (3) in (2) and applying the properties of

a linear operator

F = G1R
(a=0) + a1R(

∂G

∂a
)1R
|a=0 + (a1R)2(

∂2G

∂a2
)1R
|a=0+

(a1R)3(
∂3G

∂a3
)1R
|a=0

(4)

equation (4) shows that register in equation (2) has been

propagated to node a and to its children edges, denoted as

partial derivates of G. Therefore, equation (4) corresponds

to a backward retiming as shown in Figure 4(b).

(a) (b)

Figure 4. Function G rooted at node a. (a)
Register at the root of node a. (b) Register

moved inside function G.

It can be proved that the retime operator ()nR is the con-

volution with the time delayed delta Dirac δ, which is by

definition a lineal operator. Therefore the retime operator

is guaranteed to be linear. It can also be shown that the

retime operator commutes with the TED function being

implemented. That is, applying the retime operator to the

primary inputs of a TED is equivalent to applying the re-

time operator to the output of a TED. Therefore, the guar-

antee that a register in a TED can be propagated backward

or forward is a direct consequence of the time invariant

function being implemented in the TED.

Corollary 3.2 A node with a register in all its children

edges and in itself can be retimed forward by moving all

those registers to the output of the node as a single register.

Proof Starting from Figure 4(b) we define the function F

at root node a as:

F = G1R
0 + a1RG1R

1 + (a1R)2G1R
2 + (a1R)3G1R

3 (5)

Since ()nR is a lineal operator we can rewrite the above

equation as:

F = (G0 + aG1 + a2G2 + a3G3)
1R (6)

Therefore, it is easy to prove that there exist a function G,

such that G(a=0) = G0 and ∂iG
∂ai |a=0

= Gi.

Both backward and forward register propagation (re-

timing) can be clearly observed in the TED data structure



by the displacement of the register label. Backward

retiming is shown by the movement of the register located

at the top of node a in Figure 4(a), to the registers located

in the node a and its edges, as shown in Figure 4(b).

Forward retiming is shown by the movement of the

registers in Figure 4(b) to the register in Figure 4(a).

To better understand retiming in TEDs, let’s take as an

example a synthetic polynomial given by:

F = d1R(b1R + a1R) + c1Ra1R + b1Rc1R (7)

The TED and DFG corresponding to equation (7) for the

variable ordering d, b, c, a are shown in Figures 5(a) and

6(a) respectively. At this point all registers are located at

the primary inputs. Recall from Section 3.2 that a constant

node is normalized, and it can be assumed to have as many

registers as needed; therefore node ONE can be retimed

forward as many times as needed. Forward retiming of

node ONE enables nodes a and then node c to be forward

retimed as shown in Figure 5(b). Its associated DFG is

shown in Figure 6(b). In this TED, it can be seen that node

b satisfies Corollary 3.2. Therefore node b can be forward

retimed as well, thus obtaining the TED shown in Figure

5(c). Its corresponding DFG is shown in Figure 6(c).

(a) (b) (c)

(d) (e) (f)

Figure 5. Step by step forward retiming in a

TED. (a) Initial TED. (b) Retiming nodes a and
c. (c) Retiming node b. (d) retiming node d.

(e) Swapping variables b and c from (c). (f)

Final retimed TED.

The effects of forward retiming can be observed by

looking at the changes in the TED from Figures 5(b) to

5(c). Similarly, backward retiming can be observed by

looking at the changes in the TED from Figures 5(c) to

5(b).

(a) (b) (c)

(d) (e) (f)

Figure 6. DFGs associated with the corre
sponding TEDs shown in Fig. 5

From the TED in Figure 5(c) two different approaches

can be taken to reach the TED show in Figure 5(f) which

generates the best DFG architecture as shown in Figure

6(f). The first approach could be to forward retime node

d as shown in Figure 5(d), and afterwards swap the vari-

ables b and c. The second approach could be to swap the

variables b and c as shown in Figure 5(e), and then forward

retime node d.

Therefore, the TED that produces the best DFG archi-

tecture for a given cost function can be obtained through

variable ordering and retiming, regardless of the initial or-

der of the TED or its initial register grouping. It is impor-

tant to note that existing retiming approaches can modify

the DFG shown in Figure 6(a) to the DFGs shown in Fig-

ures 6(b)(c) and (d), but to the best of our knowledge none

can get to the DFG shown in Figure 6(f), which is opti-

mal. Timed TED can discover this optimal solution be-

cause it can explore solution space not explored by other

tools. This is timed TED can perform retiming jointly with

factorization and common sub expression elimination.

3.4 Canonicity

Timed TED is canonical for a given variable order, but

in addition to the graph structure the labeling of registers

must be taken into consideration. Specifically, the canon-

ical form of TTED is defined as one in which all registers

are retimed to its fully backward (or forward) position in

the graph. Then, two TTEDs are equivalent if the underly-

ing TEDs are equivalent and the labeling of registers is the

same.



3.5 Implications of retiming on variable ordering

Theorem 3.3 A forward register propagation in the TED

data structure produces a set of boundaries in the variable

ordering space. That is, a node with variable x having a

set of children connecting through retimed edges to a set

of nodes yi cannot be reordered below the highest order

of the set of nodes yj . Similarly none of the nodes with

variables yi can be moved above node x.

Proof Given the multivariate polynomial F (X,Y1R) ∈
Cm, with X corresponding to a vector of none delayed

primary inputs, Y1R corresponding to a vector of delayed

primary inputs, and assuming the initial variable order of

the TED equal to (x1, · · · , xn, y1, · · · , yn). Then the Tay-

lor expansion of F , can be written as:

F = F (X, Y 1R)

=

m
∑

k1=0

xk1
1

k1!
· · ·

m
∑

kn=0

xkn

n

kn!

m
∑

j1=0

(y1R
1 )j1

j1!
· · ·

m
∑

jn=0

(y1R
n )jn

jn!

∂k1+...+kn+j1+...+jn

∂xk1
1 ...∂xkn

n ∂y
j1
1 ...∂y

jn

n

F(0)

=

m
∑

k1=0

xk1
1

k1!
· · ·

m
∑

kn=0

xkn

n

kn!

∂k1+...+kn

∂xk1
1 ...∂xkn

n





m
∑

j1=0

(y1R
1 )j1

j1!
· · ·

m
∑

jn=0

(y1R
n )jn

jn!

∂j1+...+jn

∂y
j1
1 ...∂y

jn

n

F(Y =0)





(8)

Because the decomposition of F through Taylor expan-

sion is done recursively, the most inner partial derivatives

are all of class C1 (once differentiable), that is, the inner

derivatives in equation (8) can be seen as a constant value.

Therefore, applying Theorem 3.1, we can propagate for-

ward the registers on primary inputs Y and rewrite equa-

tion (8) as:

F =

m
∑

k1=0

xk1
1

k1!
· · ·

m
∑

kn=0

xkn

n

kn!

∂k1+...+kn

∂xk1
1 ...∂xkn

n





m
∑

j1=0

y
j1
1

j1!
· · ·

m
∑

jn=0

yjn

n

jn!

∂j1+...+jn

∂y
j1
1 ...∂y

jn

n

F(Y =0)





1R

(X=0)

(9)

From equation (9), it can be observed that variable or-

dering as discussed in [8] cannot be done across the reg-

ister boundary. That is, two adjecent variables xn and y1

connected through a retimed edge cannot be swapped, be-

cause moving the partial derivatives inside or outside the

operator ()nR requires a retiming operation first. There-

fore, while the register is located in the edge (and no fur-

ther forward or backward retiming is done) the two vari-

ables xn and y1 cannot be swapped. This proves that if

a node with variable xi connects to a set of nodes with

variables yj , yk through a retimed edge, then xi cannot be

moved below the highest of the variables yj , yk; and that

variables yj , yk cannot be moved above variable xi.

As an example, let’s consider the TED shown in Figure

5(b). In this TED, node b connects through retimed edges

to nodes c and a; therefore node b cannot be moved be-

low those nodes. Similarly nodes a and c cannot be moved

above node b. It is important to note in this TED, that

nodes a and c can be swapped because they are not con-

nected through retimed edges.

Corollary 3.4 To remove all restrictions imposed on the

variable order by forward retiming, all registers have to

be backward retimed to the primary inputs.

Proof Forward retiming produces restrictions in the vari-

able order as shown in Theorem 3.3, therefore to remove

these restrictions we have to apply the backward register

propagation until all registers are located at the primary

inputs only.

Let’s consider the TED shown in Figure 5(b) again.

This TED has some restrictions in its variable order,

namely node b has to be above nodes a and c. Although

we could remove this restriction by forward retiming node

b as shown in 5(c), new restrictions arise. In the TED given

by Figure 5(c) node d has a fixed possition as it cannot be

moved below any other node in the TED. In certain cases

it is possible to remove all restrictions by fully forward

retiming the TED; this is true for the TED shown in Fig-

ure 5(d), but in general not all restrictions are removed as

forward retiming a TED does not guarantee to move all

register to the output of the TED. An example depicting

this, is shown in Figure 7(d), where the fully forward re-

timed TED has left registers along the edges of the TED. In

this case the approach of fully forward retiming has lead to

constraint even futher the variable order. In general, only

through backward retiming one can guarantee to remove

all restrictions on the variable order.

Corollary 3.5 A set of nodes zi that are connected with

each other through retimed edges, have a relative lock in

their variable ordering z1, · · · , zn.

Proof Let’s consider three adjacent variables zi, zj and

zk with ordering zi > zj > zk. By applying Theorem 3.3

to the pairs (zi, zj) and (zj , zk), it can be observed that

variable zj cannot be moved neither above zi nor below zk;

therefore the position of variable zj has a relative lock with

respect to variables zi and zk. Applying the same theorem

to all connecting pairs in zi we prove that the position of

variables in zi are locked relative to each other.

Let’s consider the effects retimed edges have on the

variable ordering space of the TEDs shown in Figure 7.

The TED shown in Figure 7(a) has 120 possible variable

orders; the TEDs shown in Figures 7(a) and 7(b) have 24

possible orders; and the TED shown in Figure 7(d) has

only 2 possible variable orders. In this last TED, the nodes



(a0, a1), (a1, a2) and (a2, a3) are connected with each

other through retimed edges, therefore these nodes have

a relative lock in their variable order. In fact, the varible

order of nodes a0, a1 and a2 is fixed. The variable order of

node a3 is not fixed as it can be swapped with node x. But

swapping node x with a3, causes x to be in a relative lock

with respect to variables a0, a1 and a2. Therefore, the only

two variable orders allowed for the TED in Figure 7(d) are:

a0 > a1 > a2 > a3 > x and a0 > a1 > a2 > x > a3;

3.6 Complexity

The complexity of constructing a Timed TED is equal

to the complexity of constructing a TED and then fully

forward retiming it; which is in practice polynomial in

time. The complexity of reordering a TTED, as it is for

TEDs, is an exponential problem (factorial in the number

of variables) [9]. It can be shown that finding the ordering

that minimizes some metric of the TTED is in worst case

O(n× n!), where n is the number of variables in the TED

representation.

4 Examples

4.1 Retiming for clock period minimization

The equation of the 4-tap FIR filter shown in Figure

1(a) is given by:

y = a0x + a1x
1R + a2x

2R + a3x
3R (10)

(a) (b)

(c) (d)

Figure 7. TEDs for the FIR filter.

Its TED and DFG are shown in Figures 7(a) and 8(a) re-

spectively. Given that there are no resource contraints, the

architecture generated by this DFG has a minimum clock

period of 1MPY and 3ADD operations. But the node x of

the TED in Figure 7(a) can be forward retimed as shown

in Figure 7(b).

(a) (b)

Figure 8. FIR transformation to reduce clock

period: (a) 1MPY and 3ADD operations. (b)

1MPY and 1ADD operations.

At this point, nodes a0, a1, a2 and a3 can take as many

registers as needed, because these nodes represent constant

values. Thus by assigning i registers to ai as shown in Fig-

ure 7(c), the TED can be forward retimed through nodes

a3, a2 and a1 as shown in Figure 7(d).

From the TED in Figure 7(d) the DFG in Figure 8(b) is

obtained. The architecture generated by this DFG (given

no resource constraints) has 1MPY and 1ADD operations.

This shows that clock period minimization can be achieved

through timed TED.

4.2 Retiming for register minimization

The TED and DFG, for the Bi-quadratic filter described

by equation (11), after forward retiming nodes x and y are

shown in Figures 9(a) and 10(a).

y = b0x + b1x
1R + b2x

1R + a1y
1R + a2y

2R (11)

Assuming no resource constraints, this DFG produces

an architecture which requires 4 registers and a clock pe-

riod of 1MPY and 3ADD operations. The TED in Figure

9(a) has a relative variable order lock between a1, a2 and

x; and b1, b2 and y; but there is no lock between variables

ai and bj , therefore we can swap varaibles a2 and b1 as

shown in Figure 9(b). From the bi-quadratic filter, nodes

ai and bj are constants, therefore we can forward retime

the TED in Figure 9(b) as to obtain the TED shown in 9(c).

The DFG associated with the TED in Figure 9(c) is

shown in Figure 10(b). If there are no resource constraints,

this DFG produces an architecture with 2 registers and a



clock period of 2MPY and 2ADD. It can be observed that the

register count has decreased, but the clock period has in-

creased (assuming the delay of a multiplier is greater than

the delay of an adder). This shows that register minimiza-

tion can be achieved through timed TED; and that regis-

ter and clock period minimization are different, but inter-

related objectives.

(a) (b) (c)

Figure 9. (a) Biquadratic TED. (b) After vari

able ordering. (c) After retiming.

(a) (b)

Figure 10. Biquadratic transformation to re
duce the number of registers: (a) 4 registers.

(b) 2 registers.

Although the implicit assumption that b0 6= 1 was made

in equation (11) to show there is a tradeoff between regis-

ter and clock period minimization, normaly constants ai

and bj are normaly scaled to have b0 = 1. This careful

selection of contants reduces the clock period of the DFG

in Figure 10(b) by 1MPY, so that its generated architecture

requires fewer registers and has a lower clock period than

the one obtained through the DFG in Figure 10(a).

5 Conclusions

We have extended the TED data structure to cope with

registers and handle sequential designs. This extension of

the data structure, called Timed TED, allows the devel-

opper to express the design specification at a higher level

of abstraction. One can specify as constraint that certain

computation is needed at n clock cycles and Timed TED

can be used to find an efficient DFG optimized for it. We

have proved that timed TEDs support backward and for-

ward retiming and that retiming can be done to perform

register and clock period minimization. Furthermore, we

have proved that retiming can be done jointly with vari-

able ordering under certain restrictions; therefore different

factorizations and decompositions can be attained. This

allows to explore a larger space and obtain other solutions

that are not reachable otherwise.

As future work we plan to deal with recursive equa-

tions, such as FII, and explore the potential of TTEDs for

doing loop unrolling to exhibit higher level of parallelism

and increase throughput.

6 Acknowledgements

This work was supported by the US National Science

Foundation, award no. CCF-0702506.

References

[1] C. E. Leiserson and J. B. Saxe, “Retiming synchronous cir-
cuitry”, in Algorithmica, 1991, vol. 6, pp. 5–35.

[2] Giovanni DeMichelli, Synthesis and Optimization of Digital
Circuits, 1994.

[3] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequen-
tial circuits for low power”, in in Proc. IEEE Int. Conf. Com-
puter Aided Design, 1993, pp. 398–402.

[4] Keshab K. Parhi, VLSI Digital Signal Processing Systems,
1999.

[5] D. Gomez-Prado, Q. Ren, M. Ciesielski, J. Guillot, and
E. Boutillon, “Optimizing Data Flow Graphs to Minimize
Hardware Implementations”, in Design Automation and Test
in Europe, DATE 09, April 2009, pp. 117–122.

[6] M. Ciesielski, D. Gomez-Prado, Q. Ren, J. Guillot, and
E. Boutillon, “Optimization of data-flow computation using
canonical ted representation”, IEEE Trans. on Computers,
vol. 28, no. 9, pp. 1321–1333, September 2009.

[7] M. Ciesielski, J. Guillot, D. Gomez-Prado, and E. Boutillon,
“High-level dataflow transformations using taylor expansion
diagrams”, IEEE Design & Test, vol. 26, no. 4, pp. 46–57,
July/August 2009.

[8] D. Gomez-Prado, Q. Ren, S. Askar, M. Ciesielski, and
E. Boutillon, “Variable Ordering for Taylor Expansions Dia-
grams”, in IEEE Intl. High Level Design Validation and Test
Workshop, November 2004, pp. 55–59.

[9] Daniel. Gomez-Prado, “Variable Ordering for Taylor Expan-
sion Diagrams”, Master’s thesis, University of Massacusetts
Amherst, 2006.


