ALGEBRAIC APPROACH TOARITHMETIC DESIGN VERIFICATION

Mohamed Abdul Basith Tarig Ahmad, André Rossif, and Maciej Ciesielski
*ECE Department, University of Massachusetts Amherst
email: {basith,tbashir,ciesie@ecs.umass.edu
fLab-STICC, Universi de Bretagne Sud, Lorient, France
email: andre.rossi@univ-ubs.fr

Keywords: Formal verification, Equivalence checkingarithmetic circuits but require word-level information cal
Arithmetic bit level, SMT the design, which is often not available or is hard to extract
from bit-level netlists.
_ Abstract—The paper describes an algebraic approach to func-  Computer symbolic algebra methods have been applied to
tional verification of arithmetic circuits specified at bit level. The model arithmetic designs as polynomials over finite rinds [4

circuit is represented as a network of half adders, full adders, ad Thei licabili ificati f arith ic circuiis al
inverters, and modeled as a system of linear equations. The proof eir applicability to verification of arithmetic circuits also

of functional correctness of the design is obtained by computing limited as it relies on a word-level representation of theaga
its algebraic signature using standard LP solver and comparing aths. An approach to verification of bit-level implemeriat

it with the reference signature provided by the designer. Initial ysing theory of Grobner basis over fields has been proposed by
experimental results and comparison with SMT solvers show that [5] and adopted by others. A technique based on term regritin
the method is efficient, scalable and applicable to large arithmetic ) . . )
designs, such as multipliers. was proposed [6] for RTL equivalence checking, using a
database of rewrite rules for typical multiplier implemesidn
|. INTRODUCTION schemes. However, the method cannot be automated for non-

With the increased size and complexity of integrated ciscuiStandard implementations. . L .
In [7] a gate level network of an addition circuit (a basic

IC) and systems on chip (SoC), design verification becomes a N
((10r)ninating factor of thepoflerall)desig% flow. Of particular-i component of the multiplier) is modeled as a network of half

e . e . . adders, callecrithmetic bit-level(ABL) network. ABL com-
portance (and difficulty) is verification of arithmetic dp#dhs . . .
. . . onents are modeled by polynomials over unique ring, and the
and their components, such as multipliers. Unlike gate“e\Pormal forms are computed w.rt. the Grobner basis ovesrin
logic designs, which can be handled using Boolean metho b T 9

arithmetic designs require treatment on higher abstnadtio- /2 using modern computer alge_bra algorithms. In our view
Wls model is unnecessarily complicated and does not dealab

els. Techniques based on decision diagrams or SAT sohas tto practical designs. A simplified version of this technidnaes

work at the bit level are not scalable for complex arithmeti{):een recently oroposed whereby the expensive Grobner base
systems as they require “bit-blasting”, flattening of théiren y prop Y P

design into bit-level netlists. Modern verification metkagse Cgr?s:éi?izn :rs1 dri(\alﬁjli(;??)utt)yu?;r?rfttgr?r:‘segu&l oiir%c:i/nqmlal
SMT solvers and symbolic algebra techniques, but they su b 9 P P Yutsp

from lack of adequate models that can harness the inher r]t However, no gen_eral method for (_jenvmg SL.jCh (potdiytia .
. . SR very large) polynomials and comparing them in a systematic
bit-level nature of arithmetic circuits.

The work described in this paper aims at overcoming som&Y against the specification has been proposed. Our paper

of these limitations. It presents a novel approach to foneti a%grestﬁes this |ssus ltjsmgle_fflmen_ttrllmeatt_r alge_?_ra tt_enbslq b
verification of bit-level arithmetic circuits using lineatgebra nother approach 1o solving anthmetic veritication prob-

techniques. The proof of correctness is obtained by mogglelip?mhS IS based org_SM'gé?au;S}ablhty .Mlcl)dudlo Treonefs). SMT
the arithmetic circuit as a network of half/full adders andcnidues combine With Specialized SOIVers 1or some

computing its algebraic signature using a standard LP solvveve”'deInGd theories, such as Boolean logic, linear intege

The computed signature is then compared to the referer?c{thmetg’ tggoryv\?;.leql:ﬁllty of lgnltr)terru?teSdMq_mctllomdt
signature provided by the designer. others [9] [10]. e he appiication o SOIVers 1o

property and model checking is unquestionable, their use in
functional verification of custom arithmetic circuits hasetn

Il. PREVIOUSWORK been yet addressed. This paper proposes a new theory that

Several approaches have been proposed to check an agin enhance capabilities of SMT solvers.

metic circuit against its specification at a higher level of
abstraction. Different variants of decision diagrams astbn-
ical graph-based representations have been proposedigor th
purpose, including BDDs [1], BMDs [2], TEDs [3] and others. It can be shown that any (logic or arithmetic) circuit
BDDs have been used extensively in logic synthesis, symbotian be expressed as a network of half-adders),( full-
simulation and SAT but their application to verification ofidders §A) and inverters. Each arithmetic or logic operator
arithmetic circuits is limited due to high memory requirerte is then modeled with a set of linear equations that relate the
BMDs and TEDs provide more efficient representation dfiput and output signals. This section describes modeling o

IIl. ALGEBRAIC MODEL



the arithmetic network and its components using algebrate network (the golden model). The reference signature is

equations. basically the difference between thebit encoding of the
A half-adder @A) with binary inputsa, b and outputsS output word (output signature) and a linear combination of
(sum) andC (carry out) is represented as input signals (input signature).

Reference signature is provided by the designer and can

e+b=20+5 (1) be obtained directly from the specification of the desigm. Fo
Similarly, a full adder €A) with inputsa, b, c;, and outputs example:
S andC' is represented as 7-3 counter. The input signature of the 7-3 counter is simply
atbten =20+ S @ the sum of the input bitsgy, ..., z7. With the output encoded

in three bits,xg, zg, 219 the reference signature is

Logic gates can be similarly represented by algebraic equa-
tions by deriving their functions from a half adder. Speaeillig Ref(N) = (dzs+2z9+x10)— (1 +22 23+ Ta+25+26+27)
XOR(a,b) is simply a sum output,S, of the half adder , ] ) (,4)
HA(a,b), and theAND(a,b) is the carry-out output(, of NPt adder: For an n-bit binary adder, N, with
HA(a,b). Equations for anor gate,d =OR(a,b), can be MPUts  {ao.....an—1,bo,....bp—1} ~ and — outputs
similarly derived from the carry ou@D) output of theta by 150+ -+ Sn—1,Cn}, the reference signature is given
inverting its inputs and outputé] —a)+(1—b) = 2(1—d)+S, PY:
resulting ina+b = 2d — S. Combining this equation with the n—1 n—1
equation (1) foHA givesC + S = d. As aresult, aoR(a,b)  Ref(Na) =2"Cp+ Y _2'S; = (D> 2'a; + Y _2'b;) (5)
gate can be modeled with the following equations involving i=0 i=0 i=0
two half adders:

n—1

2 x 2-bit unsigned multiplier: Since the multiplier is a non-

{ a+b=2C+S5 ®) linear circuit, we first need to convert its primary inputs
C+S5=d {agp, a1, by, b1} into new variables (partial product termg);,
Figure 1 shows theiA model for basic logic gatesagp, —as follows:
OR, XOR). The correctness of the equations can be veri- A- B = (2a1 + ap).(2by + by)
fied with the attached truth table. Finally, the inverteregat = da1by + 2a1bo + 2a0by + agbo (6)
Y :lNV(:i) can be trivially modeled by the following equation: = 4pps + 2pps + 2pp1 + ppo
z+y=L . . . -
The variablespp; are primary inputs to the multiplier. As-
al bl suming that the multiplier's result is encoded in 4 bits,
HA, {20, 21, 22, 23 }, the reference signature is given by:
Cl s 8 g g g g Ref(Nar2) = (823+422+221+20) — (4pp3+2pp2+2pp1+ppo)
1/0j0|1]|1 (")
s The reference equation for signed multiplier can be derived
o110 1]1 i
HA similarly.
2 1]1j1]0]1 We shall now illustrate the idea of computing the algebraic
C| S signature using the following example.
dl Example 1. Figure 2 represents a 7-3 counter, a circuit
Fig. 1. Modeling of logic gates usinga operatorsu-+b = 20+5;C+S =  that counts the number of 1s at the inp{ts,...,z7} and
d, where S =Xx0R(a, b), C' =AND(a, b) andd =OR(a, b). encodes the result in a 3-bit wois}, Sy, Sy = {xs,z9, 10}

The following equations can be derived for this network
Using these models, an arithmetic circuit can be repredeniging thera model described above.

by a system of linear equations, with variablesepresenting

inputs (), outputs £o) and internal signalsaz{s). There is T+ 22+ 23— 2011 — 212 =0
one equation for eachA, FA, XOR gate OrAND gate, and a T4+ 5+ 26 — 2013 — 214 =0 8)
pair of equations (3) for amRr gate (c.f. Figure 1). Tig + 214 + 27 — 2215 — 210 = 0

Algebraic equations representing the network are then com- Ty + 213 + 215 — 2208 — 29 =0

bined in order to eliminate the internal variables from the e algebraic signature of the 7-3 counter is obtained by
equations and to represent the outputs of the circuit safely mtiplying the individual rows of equation 8 by coefficient

terms of the primary inputs. The resulting expression itedal , - {-1, -1, -1, -3, respectively, and adding them to produce
Algebraic Signaturef the design, denoteflig(N). Formally, ihe following expression:

algebraic signature is obtained by finding a linear cominat
of the network equations that results in an expression th@tg(N) = (dxg+2x9+x10)— (21 +T2+23+T4+25+T6+27)
relates the input and output variables. 9)

The algebraic signature is then compared to Rederence  As we can see, the computed algebraic signature is identical
Signatureof the network,Ref(N), which provides the ex- to its reference signature (4) proving that the design iseobr
pected relationship between primary inputs and outputs idaf., it performs the expected function.



T1X2T3 TaZ5T6 L7 of the network. The goal is to determine if the computed al-

L ! gebraic signatureig(N) = 72 matches the given reference
FA, FA, signatureRef(N) = [ro, —r7)T - [vo, 1]
< < As explained in Section lIl, signaturfig(N) = rTz is
1S C1S obtained as a linear combinatien of the rows of Az. Our
| T14 .
H goal is to compute vecta such that
vy bl [A0, A1, As)"a = [ro, 11, 7s] (14)
e FAs This is done by first solving the following linear system for
C| S « using standard LP solver:
ALa =17
T o} o
15 { AT — (15)
FA
* Here rg is relaxed, i.e., the internal variables are not taken
L cC|l S into account. If this system has no solution, i.e., there is
Ts| ol T10 no linear combination of rows ofiz that will produce an
Sy S So algebraic signature whose inputs and outputs match those of

the reference signatutRe f (), the circuit isincorrect (w.r.t.

that signature). If the system has a solution, the signature
vector rg associated with internal variables is computed as
follows:

Fig. 2. Arithmetic network of a 7-3 counter.

rs = ALa (16)
IV. MATHEMATICAL FORMULATION
Ideally we are interested in having the internal variables

Let n be the total number of signals in the network, eacliminated ¢ — 0) as a condition for satisfying the reference
represented by a variable, amd be the number of linear gionatre. Applying this approach to the 7-3 counter circui
equa_tnons in the system. The network can be representeq,\)g obtaina = [-1 -1 -1 -2], from which the signature vector
matrix form as can be calculated as = AT«. The computed- = ro and

Az =b (10)  ; match those of the reference equation and- A% = 0;
that is, all the internal signals have been eliminated from t
signature.

But what if the computed signatur®ig(/N') contains inter-
nal signals, i.e., ifrg # 0? We refer to such an expression
as aresidual expressianRE(N) = Sig(N) — Ref(N). Does
the existence oRFE(N) mean that the system does not satisfy
the reference signature and the design is incorrect? It ean b
shown that this is not necessarily the case andithat 0 is
a sufficient but not a necessary condition for the design to be
correct. In fact, a sufficient and necessary condition foruit
correctness is thaRE reduces to zero for all the variable

1110000 0 0|-2 -1 0 o o | valuations that are produced by the network. In this case the
A= 8 8 8 é (1] (1) (1) 8 8 010 0 -2 -1 0 | network signature matches exactly the reference signande
the design is correct. This is illustrated with the follogin

000O0/-2 -1 0|1 0 1 0 1
(11)" example.

Similarly, the reference signature can be representedsn tfxample 2.Consider a 22 signed multiplier network, shown
system as in Figure 3. The combination afA; andHA, models anor
gate. Inputs to the network are partial product tegms gen-
Ref(N) = [ro,—r)" - [zo, 21] (12) erated from the actual inputs of the multiplier,, ag, b1, bo,

. ) by a standard partial product generator. Hence, the exgecte
wherezo andx; are the sets of variables representing outpr/put signature for the network is:

and input signals, andp, r; are integer signature vectors )

associated with these variables. For the 7-3 counter exampl Sigr(N) ~ 51_2;” +2a0)b(_2b21 +be) , 17

with 2o = [xg, 79, z10]T andz; = [z1,-- -, 27]T, we have = 4a1b1 = 24100 — 24901 + aobo a7
= 4pps — 2pp2 — 2pp1 + ppo

where A is anm x n matrix, x is ann-vector representing the
signals, and is a constant vector of size. Vectorz of signal
variables is further partitioned into the set of input signa,
output signalscp, and internal signalsg so the above system
of equations can be written ad;z; + Apxo + Aszg = b.
Ar, Ap, As are sub-matrices ofd restricted to the columns
associated with input, output and internal signals, rebdy.
For the 7-bit counter of Fig. 2 we have = [z, -+, 27]7,
zo = |28, 29, 210|T, x5 = [T11, T12, T13, T14, T15] T, @andb=0.
Matrix A is given as follows:

0 0 0

Ref(N)=[421,-1-1-1-1-1~-1—1]-[z0, z/] (13)
Hence the reference signature for this desigriisf (N) =
Given the reference signatutBef(N), provided by the —8z3 + 429 + 221 + 29 — 4pps + 2pp2 + 2pp1 — ppo, Where
user, and its corresponding reference veptgr —r;|, the sys- the first four terms are the output signature, obtained thirec
tem computes the algebraic signature veeter [ro, —rr,rs] from the encoding of the output bits.



pp3 Pp2 pp1 PPo it is zero. These constraints come in two flavors: 1) signal

1 T2} T3 x4 equalities caused by fanout of internal signals, egs,= =17
in Example 2; and 2) Booleanonstants such aszy=0 in
T14) T15 Example 2.
HA,
Reference Signature
335I C S [-r,r.]
HA3
C| S
T Ts5 Solve
L7 8 Ala=-r
Modify A AOT a=r,
by addi
HA, HA, Boolean”
constraints
cls cls P °
Z10 T17
A
Tg| T11 Tie| Ti2} Te Z13 ‘ Design s ‘ ,SCTE?EQ
z3 22z 20

Fig. 3. Signed x 2 multiplier network.

Proof complete.
Design is correct.

Need to impose
Boolean constraints

The algebraic signaturgig(/N) computed by the system is:

Sig(N) =
—892(3 ‘2 420 + 221 + 20 — 4pp3 + 2pp2 + 2pp1 — ppo Fig. 4. Flowchart of the functional verification system.
+16.T9 — 41‘8 + 43317
(18) Note that by construction (equation 15) the signature vecto
We note that the signature contains a residual expressigina correctly designed circuit will always match its refeze
RE = —16z9 + 4zs — 4x17. However, it can be shown thatsjgnature, otherwise the system has no solution and theitirc
this expression always evaluates to zero. Nama)y0 since s declared incorrect.
it is the carry-outC' output of HA; modeling the OR gates, \we conducted a set of experiments on a number of arith-
which is always zero (refer to the truth table in Figure Linetic circuits, including large integer multipliers. Eira bit-
The remaining variables;s, 17, are two equivalent outputs jeve structural verilog code was generated for each miigtip
S of HA; andHA3 that share the same inputs. Heng&z17,  ysing a generic multiplier generator software. (courteisthe
which reducesRE to zero. Such an analysis of internalyniversity of Kaiserslauten). The verilog code was parsed t
equivalences allows one to determine whether the residgainsform the multiplier circuit to a network ofA, FA and
expression evaluates to zero. If it does, the network pexsor pasic logic gates from which a system of linear equations was
the desired function expressed by the reference signatgeherated, as described in Section IV. Finally, our program
and the circuit is considered correct. Otherwise the dirisui W|th ||nk to GLPK was used to Compute the algebraic Signature
incorrect, i.e., it does not perform the function descrilbgd for the network, given the expected reference signature.

the reference signature. Since multipliers are non-linear networks, we concentrate
on the part of the designs which uses partial products as
V. EXPERIMENTAL RESULTS its inputs. Equation 17 illustrates the generation of pérti

The arithmetic verification technique described in the papproduct,a;b;, for a 2-bit area multiplier. Similar expressions
has been implemented as a prototype program writtea. in can be readily obtained for Booth-recoded products. Such
The program usesLPK package [11] to solve the linearrecoded product generator can be easily proved using Boolea
system needed to compute an algebraic signature of thethods.
network. Table | shows our results for a set of signed integer multi-

A detailed flow of the verification procedure based opliers up to 256x 256 bits. The experiment was conducted
algebraic signature computation is shown in Fig. 4. Thetinpan a 2 GHz machine running Linux, with Intel(R) Dual
to the system is the description of the arithmetic netwdtk Core(TM) T3200 processor and 3GB RAM. Since most of the
composed of arbitrary logic gatesa andFA operators, along research in this field has been done in the context of property
with the reference signature provided by the designer. Thhecking rather than strictly functional verification, weutd
system computes a complete signature of the network amwly compare our results to those in [12], for arithmeticgiro
reports if there is a non-empty residual expressibBE(N). (AP) of integer multipliers. The table gives the size of the
If RE # 0, additional constraints need to be extracted fromultiplier (in the number of bitsn of each operand); the
the network and imposed oRFE in an attempt to prove that number of linear equationsdnstr); the CPU time to compute



the signature and the CPU time for arithmetic proof (AP) ahetic circuits. The method is based on computing algebraic
integer multipliers, reported in [12]. Thel P results were signature and comparing it with the reference signaturé tha
computed on a comparable 64-bit 2 GHz Power5 machingiquely defines behavior of the design. If the computedasign
and reported only for 24, 53 and 64 bit integer multipliers. ture contains non-zero residual expressiof, the signature
The computed signatures were free of residual expressiamsnputation must be followed by a proof thA&¥ reduces to
after imposing simple Boolean constraints (constantsl@jee zero. This requires extracting constraints that are ngbgmty

to the oRrR gate configuration discussed earlier.

Size ) This work AP
mult n x n [12] Z3 | Yices
Constr. | CPU (sec) | sec sec sec
3 21 0.00 - 0.23| 0.02
4 44 0.00 - | 466.36 [ 0.05
8 216 0.00 - MO TO
16 944 0.02 - MO TO
24 2184 0.04 7 MO TO
30 3450 0.07 MO TO
32 3936 0.09 - MO TO
53 8268 0.77 | 480 MO TO
64 12096 1.14 | 840 MO TO
128 | 48768 17.09 - MO TO
192 | 110016 45.23 - MO TO
256 | 195840 151.95 - MO TO

TABLE |

CPUTIME FOR COMPUTING ALGEBRAIC SIGNATURE OFn-BIT
INTEGER SIGNED MULTIPLIERS (MO = OUT OF MEMORY 3 GB;
TO =TIMEOUT AFTER 1800SECQ)

The runtime complexity of the procedure to compute al-
gebraic signature of the network is less th@twn?) in terms
of the number of gates in a gate-level implementation of t
design, c.f. Figure 5. In principle, given a netwa¥kdescribed

160

= N
] Iy
S 3
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3

CPU Time (sec)

N
3

N
S

o
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15
No:of gates (n) x10°

Fig. 5. Runtime complexity of the computation of algebraic atgne.

captured by the linear model. Alternatively, such conatgmi
can be imposed on the linear system directly. In this case the
correct design should have no residual expression. In lfiégt t
was the case with the multipliers presented in Section V. We
believe that such constraints are not hard to extract and are
related to only a few types of configurations, such as conétan
and equivalence of signals derived from a fanout, as diseclss
earlier. This issue is currently under investigation.

The described technique is also applicable to property
checking, by representing the property by its algebraie sig
nature and checking if it is consistent with the signature of
the network. The feasibility of the resulting linear systeiif
indicate whether such a consistency is maintained or not.

Finally, the method is limited to designs with known
reference signature and such a signature must be a linear
expression. This is certainly the case for portions of treghes
composed of half adder networks (such as Wallace trees) ofte
encountered in complex arithmetic designs. Application to
other types of circuits needs to be examined.
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