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Abstract—The paper describes an algebraic approach to func-
tional verification of arithmetic circuits specified at bit level. The
circuit is represented as a network of half adders, full adders, and
inverters, and modeled as a system of linear equations. The proof
of functional correctness of the design is obtained by computing
its algebraic signature using standard LP solver and comparing
it with the reference signature provided by the designer. Initial
experimental results and comparison with SMT solvers show that
the method is efficient, scalable and applicable to large arithmetic
designs, such as multipliers.

I. I NTRODUCTION

With the increased size and complexity of integrated circuits
(IC) and systems on chip (SoC), design verification becomes a
dominating factor of the overall design flow. Of particular im-
portance (and difficulty) is verification of arithmetic datapaths
and their components, such as multipliers. Unlike gate-level
logic designs, which can be handled using Boolean methods,
arithmetic designs require treatment on higher abstraction lev-
els. Techniques based on decision diagrams or SAT solvers that
work at the bit level are not scalable for complex arithmetic
systems as they require “bit-blasting”, flattening of the entire
design into bit-level netlists. Modern verification methods use
SMT solvers and symbolic algebra techniques, but they suffer
from lack of adequate models that can harness the inherent
bit-level nature of arithmetic circuits.

The work described in this paper aims at overcoming some
of these limitations. It presents a novel approach to functional
verification of bit-level arithmetic circuits using linearalgebra
techniques. The proof of correctness is obtained by modeling
the arithmetic circuit as a network of half/full adders and
computing its algebraic signature using a standard LP solver.
The computed signature is then compared to the reference
signature provided by the designer.

II. PREVIOUS WORK

Several approaches have been proposed to check an arith-
metic circuit against its specification at a higher level of
abstraction. Different variants of decision diagrams and canon-
ical graph-based representations have been proposed for this
purpose, including BDDs [1], BMDs [2], TEDs [3] and others.
BDDs have been used extensively in logic synthesis, symbolic
simulation and SAT but their application to verification of
arithmetic circuits is limited due to high memory requirements.
BMDs and TEDs provide more efficient representation of

arithmetic circuits but require word-level information about
the design, which is often not available or is hard to extract
from bit-level netlists.

Computer symbolic algebra methods have been applied to
model arithmetic designs as polynomials over finite rings [4].
Their applicability to verification of arithmetic circuitsis also
limited as it relies on a word-level representation of the datap-
aths. An approach to verification of bit-level implementations
using theory of Grobner basis over fields has been proposed by
[5] and adopted by others. A technique based on term rewriting
was proposed [6] for RTL equivalence checking, using a
database of rewrite rules for typical multiplier implementation
schemes. However, the method cannot be automated for non-
standard implementations.

In [7] a gate level network of an addition circuit (a basic
component of the multiplier) is modeled as a network of half
adders, calledarithmetic bit-level(ABL) network. ABL com-
ponents are modeled by polynomials over unique ring, and the
normal forms are computed w.r.t. the Grobner basis over rings
Z/2n using modern computer algebra algorithms. In our view
this model is unnecessarily complicated and does not scalable
to practical designs. A simplified version of this techniquehas
been recently proposed whereby the expensive Grobner base
computation is replaced by direct generation of polynomials
representing individual outputs in terms of the primary inputs
[8]. However, no general method for deriving such (potentially
very large) polynomials and comparing them in a systematic
way against the specification has been proposed. Our paper
addresses this issue using efficient linear algebra techniques.

Another approach to solving arithmetic verification prob-
lems is based on SMT (Satisfiability Modulo Theories). SMT
techniques combine SAT with specialized solvers for some
well-defined theories, such as Boolean logic, linear integer
arithmetic, theory of equality of uninterrupted functions, and
others [9] [10]. While the application of SMT solvers to
property and model checking is unquestionable, their use in
functional verification of custom arithmetic circuits has not
been yet addressed. This paper proposes a new theory that
can enhance capabilities of SMT solvers.

III. A LGEBRAIC MODEL

It can be shown that any (logic or arithmetic) circuit
can be expressed as a network of half-adders (HA), full-
adders (FA) and inverters. Each arithmetic or logic operator
is then modeled with a set of linear equations that relate the
input and output signals. This section describes modeling of
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the arithmetic network and its components using algebraic
equations.

A half-adder (HA) with binary inputsa, b and outputsS
(sum) andC (carry out) is represented as

a+ b = 2C + S (1)

Similarly, a full adder (FA) with inputsa, b, cin and outputs
S andC is represented as

a+ b+ cin = 2C + S (2)

Logic gates can be similarly represented by algebraic equa-
tions by deriving their functions from a half adder. Specifically,
XOR(a, b) is simply a sum output,S, of the half adder
HA(a, b), and theAND(a, b) is the carry-out output,C, of
HA(a, b). Equations for anOR gate, d =OR(a, b), can be
similarly derived from the carry out (AND) output of theHA by
inverting its inputs and outputs,(1−a)+(1−b) = 2(1−d)+S,
resulting ina+ b = 2d−S. Combining this equation with the
equation (1) forHA givesC+S = d. As a result, anOR(a, b)
gate can be modeled with the following equations involving
two half adders:

{

a+ b = 2C + S
C + S = d

(3)

Figure 1 shows theHA model for basic logic gates (AND ,
OR, XOR). The correctness of the equations can be veri-
fied with the attached truth table. Finally, the inverter gate
y =INV(x) can be trivially modeled by the following equation:
x+ y = 1.

a b

HA1

C S

C S

HA2

C S
d

a b C S d
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0 1

Fig. 1. Modeling of logic gates usingHA operators:a+b = 2C+S;C+S =
d, whereS =XOR(a, b), C =AND(a, b) andd =OR(a, b).

Using these models, an arithmetic circuit can be represented
by a system of linear equations, with variablesx representing
inputs (xI ), outputs (xO) and internal signals (xS). There is
one equation for eachHA, FA, XOR gate orAND gate, and a
pair of equations (3) for anOR gate (c.f. Figure 1).

Algebraic equations representing the network are then com-
bined in order to eliminate the internal variables from the
equations and to represent the outputs of the circuit solelyin
terms of the primary inputs. The resulting expression is called
Algebraic Signatureof the design, denotedSig(N). Formally,
algebraic signature is obtained by finding a linear combination
of the network equations that results in an expression that
relates the input and output variables.

The algebraic signature is then compared to theReference
Signatureof the network,Ref(N), which provides the ex-
pected relationship between primary inputs and outputs of

the network (the golden model). The reference signature is
basically the difference between then-bit encoding of the
output word (output signature) and a linear combination of
input signals (input signature).

Reference signature is provided by the designer and can
be obtained directly from the specification of the design. For
example:
7-3 counter: The input signature of the 7-3 counter is simply
the sum of the input bits,x1, . . . , x7. With the output encoded
in three bits,x8, x9, x10 the reference signature is

Ref(N) = (4x8+2x9+x10)−(x1+x2+x3+x4+x5+x6+x7)
(4)

n-bit adder: For an n-bit binary adder, NA, with
inputs {a0, . . . , an−1, b0, . . . , bn−1} and outputs
{S0, . . . , Sn−1, Cn}, the reference signature is given
by:

Ref(NA) = 2nCn +

n−1
∑

i=0

2iSi − (

n−1
∑

i=0

2iai +

n−1
∑

i=0

2ibi) (5)

2× 2-bit unsigned multiplier : Since the multiplier is a non-
linear circuit, we first need to convert its primary inputs
{a0, a1, b0, b1} into new variables (partial product terms),ppI ,
as follows:

A ·B = (2a1 + a0).(2b1 + b0)
= 4a1b1 + 2a1b0 + 2a0b1 + a0b0
= 4pp3 + 2pp2 + 2pp1 + pp0

(6)

The variablesppi are primary inputs to the multiplier. As-
suming that the multiplier’s result is encoded in 4 bits,
{z0, z1, z2, z3}, the reference signature is given by:

Ref(NM2) = (8z3+4z2+2z1+z0)−(4pp3+2pp2+2pp1+pp0)
(7)

The reference equation for signed multiplier can be derived
similarly.

We shall now illustrate the idea of computing the algebraic
signature using the following example.
Example 1. Figure 2 represents a 7-3 counter, a circuit
that counts the number of 1s at the inputs{x1, . . . , x7} and
encodes the result in a 3-bit wordS2, S1, S0 = {x8, x9, x10}.

The following equations can be derived for this network
using theFA model described above.















x1 + x2 + x3 − 2x11 − x12 = 0
x4 + x5 + x6 − 2x13 − x14 = 0
x12 + x14 + x7 − 2x15 − x10 = 0
x11 + x13 + x15 − 2x8 − x9 = 0

(8)

The algebraic signature of the 7-3 counter is obtained by
multiplying the individual rows of equation 8 by coefficients
α = {-1, -1, -1, -2}, respectively, and adding them to produce
the following expression:

Sig(N) = (4x8+2x9+x10)−(x1+x2+x3+x4+x5+x6+x7)
(9)

As we can see, the computed algebraic signature is identical
to its reference signature (4) proving that the design is correct,
i.e., it performs the expected function.
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Fig. 2. Arithmetic network of a 7-3 counter.

IV. M ATHEMATICAL FORMULATION

Let n be the total number of signals in the network, each
represented by a variable, andm be the number of linear
equations in the system. The network can be represented in
matrix form as

Ax = b (10)

whereA is anm×n matrix,x is ann-vector representing the
signals, andb is a constant vector of sizem. Vectorx of signal
variables is further partitioned into the set of input signals xI ,
output signalsxO, and internal signalsxS so the above system
of equations can be written as:AIxI + AOxO + ASxS = b.
AI , AO, AS are sub-matrices ofA restricted to the columns
associated with input, output and internal signals, respectively.
For the 7-bit counter of Fig. 2 we havexI = [x1, · · · , x7]

T ,
xO = [x8, x9, x10]

T , xS = [x11, x12, x13, x14, x15]
T , andb=0.

Matrix A is given as follows:

A =









1 1 1 0 0 0 0 0 0 0 −2 −1 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −2 −1 0
0 0 0 0 0 0 1 0 0 −1 0 1 0 1 −2
0 0 0 0 0 0 0 −2 −1 0 1 0 1 0 1









(11)
Similarly, the reference signature can be represented in this

system as

Ref(N) = [rO,−rI ]
T · [xO, xI ] (12)

wherexO andxI are the sets of variables representing output
and input signals, andrO, rI are integer signature vectors
associated with these variables. For the 7-3 counter example,
with xO = [x8, x9, x10]

T andxI = [x1, · · · , x7]
T , we have

Ref(N) = [4 2 1 ,−1 −1 −1 −1 −1 −1 −1]·[xO, xI ] (13)

Given the reference signatureRef(N), provided by the
user, and its corresponding reference vector[rO,−rI ], the sys-
tem computes the algebraic signature vectorr = [rO,−rI , rS ]

of the network. The goal is to determine if the computed al-
gebraic signatureSig(N) = rTx matches the given reference
signatureRef(N) = [rO,−rI ]

T · [xO, xI ]
As explained in Section III, signatureSig(N) = rTx is

obtained as a linear combinationα of the rows ofAx. Our
goal is to compute vectorα such that

[AO, AI , AS ]
Tα = [rO,−rI , rS ] (14)

This is done by first solving the following linear system for
α using standard LP solver:

{

AT
Oα = rO

AT
I α = −rI

(15)

Here rS is relaxed, i.e., the internal variables are not taken
into account. If this system has no solution, i.e., there is
no linear combination of rows ofAx that will produce an
algebraic signature whose inputs and outputs match those of
the reference signatureRef(N), the circuit isincorrect (w.r.t.
that signature). If the system has a solution, the signature
vector rS associated with internal variables is computed as
follows:

rS = AT
Sα (16)

Ideally we are interested in having the internal variables
eliminated (rS = 0) as a condition for satisfying the reference
signature. Applying this approach to the 7-3 counter circuit,
we obtainαT = [-1 -1 -1 -2], from which the signature vector
can be calculated asr = ATα. The computedr = rO and
rI match those of the reference equation andrs = AT

Sα = 0;
that is, all the internal signals have been eliminated from the
signature.

But what if the computed signatureSig(N) contains inter-
nal signals, i.e., ifrS 6= 0? We refer to such an expression
as aresidual expression, RE(N) = Sig(N)−Ref(N). Does
the existence ofRE(N) mean that the system does not satisfy
the reference signature and the design is incorrect? It can be
shown that this is not necessarily the case and thatrS = 0 is
a sufficient but not a necessary condition for the design to be
correct. In fact, a sufficient and necessary condition for circuit
correctness is thatRE reduces to zero for all the variable
valuations that are produced by the network. In this case the
network signature matches exactly the reference signatureand
the design is correct. This is illustrated with the following
example.
Example 2.Consider a 2×2 signed multiplier network, shown
in Figure 3. The combination ofHA3 and HA4 models anOR

gate. Inputs to the network are partial product termsppi, gen-
erated from the actual inputs of the multiplier,a1, a0, b1, b0,
by a standard partial product generator. Hence, the expected
input signature for the network is:

SigI(N) = (−2a1 + a0)(−2b1 + b0)
= 4a1b1 − 2a1b0 − 2a0b1 + a0b0
= 4pp3 − 2pp2 − 2pp1 + pp0

(17)

Hence the reference signature for this design is:Ref(N) =
−8z3 + 4z2 + 2z1 + z0 − 4pp3 + 2pp2 + 2pp1 − pp0, where
the first four terms are the output signature, obtained directly
from the encoding of the output bits.
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Fig. 3. Signed2× 2 multiplier network.

The algebraic signatureSig(N) computed by the system is:

Sig(N) =
−8z3 + 4z2 + 2z1 + z0 − 4pp3 + 2pp2 + 2pp1 − pp0
+16x9 − 4x8 + 4x17

(18)
We note that the signature contains a residual expression

RE = −16x9 + 4x8 − 4x17. However, it can be shown that
this expression always evaluates to zero. Namely,x9=0 since
it is the carry-outC output of HA4 modeling the OR gates,
which is always zero (refer to the truth table in Figure 1).
The remaining variables,x8, x17, are two equivalent outputs
S of HA2 andHA3 that share the same inputs. Hencex8=x17,
which reducesRE to zero. Such an analysis of internal
equivalences allows one to determine whether the residual
expression evaluates to zero. If it does, the network performs
the desired function expressed by the reference signature
and the circuit is considered correct. Otherwise the circuit is
incorrect, i.e., it does not perform the function describedby
the reference signature.

V. EXPERIMENTAL RESULTS

The arithmetic verification technique described in the paper
has been implemented as a prototype program written inC.
The program usesGLPK package [11] to solve the linear
system needed to compute an algebraic signature of the
network.

A detailed flow of the verification procedure based on
algebraic signature computation is shown in Fig. 4. The input
to the system is the description of the arithmetic networkN ,
composed of arbitrary logic gates,HA andFA operators, along
with the reference signature provided by the designer. The
system computes a complete signature of the network and
reports if there is a non-empty residual expressionRE(N).
If RE 6= 0, additional constraints need to be extracted from
the network and imposed onRE in an attempt to prove that

it is zero. These constraints come in two flavors: 1) signal
equalities, caused by fanout of internal signals, e.g.,x8 = x17

in Example 2; and 2) Booleanconstants, such asx9=0 in
Example 2.

Fig. 4. Flowchart of the functional verification system.

Note that by construction (equation 15) the signature vector
of a correctly designed circuit will always match its reference
signature, otherwise the system has no solution and the circuit
is declared incorrect.

We conducted a set of experiments on a number of arith-
metic circuits, including large integer multipliers. First, a bit-
level structural verilog code was generated for each multiplier
using a generic multiplier generator software. (courtesy of the
University of Kaiserslauten). The verilog code was parsed to
transform the multiplier circuit to a network ofHA, FA and
basic logic gates from which a system of linear equations was
generated, as described in Section IV. Finally, our program
with link to GLPK was used to compute the algebraic signature
for the network, given the expected reference signature.

Since multipliers are non-linear networks, we concentrated
on the part of the designs which uses partial products as
its inputs. Equation 17 illustrates the generation of partial
product,aibj , for a 2-bit area multiplier. Similar expressions
can be readily obtained for Booth-recoded products. Such
recoded product generator can be easily proved using Boolean
methods.

Table I shows our results for a set of signed integer multi-
pliers up to 256× 256 bits. The experiment was conducted
on a 2 GHz machine running Linux, with Intel(R) Dual
Core(TM) T3200 processor and 3GB RAM. Since most of the
research in this field has been done in the context of property
checking rather than strictly functional verification, we could
only compare our results to those in [12], for arithmetic proof
(AP) of integer multipliers. The table gives the size of the
multiplier (in the number of bitsn of each operand); the
number of linear equations (constr); the CPU time to compute
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the signature and the CPU time for arithmetic proof (AP) of
integer multipliers, reported in [12]. TheAP results were
computed on a comparable 64-bit 2 GHz Power5 machine,
and reported only for 24, 53 and 64 bit integer multipliers.

The computed signatures were free of residual expressions
after imposing simple Boolean constraints (constants 0) related
to the OR gate configuration discussed earlier.

Size (n) This work AP
mult n× n [12] Z3 Yices

Constr. CPU (sec) sec sec sec

3 21 0.00 - 0.23 0.02
4 44 0.00 - 466.36 0.05
8 216 0.00 - MO TO

16 944 0.02 - MO TO
24 2184 0.04 7 MO TO
30 3450 0.07 MO TO
32 3936 0.09 - MO TO
53 8268 0.77 480 MO TO
64 12096 1.14 840 MO TO

128 48768 17.09 - MO TO
192 110016 45.23 - MO TO
256 195840 151.95 - MO TO

TABLE I
CPU TIME FOR COMPUTING ALGEBRAIC SIGNATURE OFn-BIT

INTEGER SIGNED MULTIPLIERS. (MO = OUT OF MEMORY 3 GB;
TO = TIMEOUT AFTER 1800SEC)

The runtime complexity of the procedure to compute al-
gebraic signature of the network is less thenO(n2) in terms
of the number of gates in a gate-level implementation of the
design, c.f. Figure 5. In principle, given a networkN described
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Fig. 5. Runtime complexity of the computation of algebraic signature.

by a linear systemAx = b, checking if the network satisfies
the reference signatureRef(N) can be cast as a SAT problem.
Specifically, we need to show that(Ax = b)∧ (Ref(N) 6= 0)
is unsatisfiable (unSAT). We performed this test for the
multiplier circuits using two SMT solvers, Yices and Z3, that
support Linear Integer Arithmetic as one of their theories.The
results are shown in the last two columns of Table I. The SMT
solvers were not able to solve this problem for multipliers with
more than 8 bits. Z3 runs out of memory (3 GB) while Yices
is unable to complete the computation in 30 minutes.

VI. CONCLUSIONS ANDFUTURE WORK

The purpose of this work was to show a potential of the
proposed algebraic technique to verify functionality of arith-

metic circuits. The method is based on computing algebraic
signature and comparing it with the reference signature that
uniquely defines behavior of the design. If the computed signa-
ture contains non-zero residual expressionRE, the signature
computation must be followed by a proof thatRE reduces to
zero. This requires extracting constraints that are not properly
captured by the linear model. Alternatively, such constraints
can be imposed on the linear system directly. In this case the
correct design should have no residual expression. In fact this
was the case with the multipliers presented in Section V. We
believe that such constraints are not hard to extract and are
related to only a few types of configurations, such as constant 0
and equivalence of signals derived from a fanout, as discussed
earlier. This issue is currently under investigation.

The described technique is also applicable to property
checking, by representing the property by its algebraic sig-
nature and checking if it is consistent with the signature of
the network. The feasibility of the resulting linear systemwill
indicate whether such a consistency is maintained or not.

Finally, the method is limited to designs with known
reference signature and such a signature must be a linear
expression. This is certainly the case for portions of the designs
composed of half adder networks (such as Wallace trees) often
encountered in complex arithmetic designs. Application to
other types of circuits needs to be examined.
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