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Abstract

This chapter presents several canonical, graph-based representations used in design and
verification of logic and arithmetic circuits on different levels of abstraction. In particular,
canonical diagram representations are described for Boolean, word-level, integer, and finite
field multiple-output functions. They include Binary Decision Diagrams (BDDs), a number of
Word-Level Decision Diagrams (WDDs), Binary Moment Diagrams (BMDs), Taylor Expan-
sion Diagrams (TEDs), and Finite Field Decision Diagrams (FFDDs).
All these diagrams are canonical and minimal with respect to a fixed variable order of their
input variables. As such, they support equivalence verification of two combinational designs
by checking isomorphism of their graph representations. While BDDs have been used exten-
sively in representing and verifying bit-level designs, such as control and random logic, several
WDDs and BMDs find important applications in verifying arithmetic designs with bit-level in-
puts and integer outputs. TEDs and FFDDs further extend these forms by allowing inputs and
outputs to take integer or multiple (finite-field) values. Of particular interest is application of
these structures to verification of designs with significant arithmetic component. These com-
putations can often be expressed as multi-variate polynomials and require efficient abstract
models for their representation.
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1 Introduction
Having matured over the years, formal design verification methods, such as theorem proving,
property and model checking, and equivalence checking, have found increasing application in
industry. Canonical graph-based representations, such as Binary Decision Diagrams (BDDs) [1],
Binary Moment Diagrams (BMDs) [2] and their variants, play an important role in the development
of sofware tools for verification. While these techniques are quite mature at the structural level, the
high-level verification models are only now being developed. The main difficulty is caused by the
fact that such verification must span several levels of design abstraction. Verification of arithmetic
designs is particularly difficult because of the disparity in the representations on the different levels
and the complexity of logic involved.
This chapter addresses verification based on canonical data structures. It presents several canon-
ical, graph-based representations that are used in formal verification, and in particular in equiva-
lence checking of combinational designs specified at different levels of abstraction. These repre-
sentations are commonly known under the term “decision diagrams”, even though not all of them
are actually decision-based forms. They are graph-based structures whose nodes represent the vari-
ables and the directed edges represent the result of the decomposition of the function with respect
to the individual variables. Particular attention is given to arithmetic and word-level representa-
tions.
An important common feature of all these representations is canonicity, which is essential in com-
binational equivalence checking. A form is canonical if representation of a function in that form
is unique. Canonical graph-based representations make it possible to check if two combinational
functions are equivalent by checking if their graph-based representations are isomorphic. Check-
ing for isomorphism can be done in constant time, once the representation has been constructed,
by testing if the two functions share the same root of the diagram.
The canonical diagrams can be fully characterized by the following basic properties, described in
details in this chapter:

1. Decomposition principle, which defines the type of function that can be modeled by the
diagram and the underlying decomposition method. They include binary decomposition for
Boolean functions; some form of multi-valued decomposition for integer-valued functions;
and moment decomposition or other non-binary expansions for arithmetic functions.

2. Simplification rules that make the diagram minimal and irredundant, hence canonical. Dif-
ferent rules apply to different types of diagrams.

3. Composition algorithms, which, given graph-based representations for functions F and G,
specify how to construct a similar representation for function F < op > G, where < op >
represents an arbitrary operation defined for the given application domain (Boolean, arith-
metic, finite field, etc). The composition algorithms, commonly known as APPLY algorithms,
recursively apply the given operation < op > to the decomposed functions, depending on the
type of functions and operations allowed.

One of the most known and commonly used canonical diagram representation is Binary Decision
Diagram (BDD) [1]. BDDs are based on the well known Shannon (or more accurately, Boole)

2



function expansion, which decomposes the function into two co-factors, f (x = 0) and f (x = 1).
Each subgraph resulting from such a decomposition can be viewed as as a decision (x = 0 or
x = 1) taken at a decomposing variable, justifying the name decision diagram. BDDs have been
developed for Boolean functions and logic circuits represented at the bit level and used extensively
in representing and verifying bit-level designs, such as control and random logic. Thanks to their
compact, canonical form they truly revolutionized the field of combinational verification and logic
synthesis and found applications to many other fields, such as satisfiability, testing and synthesis.
However, because of their exponential worst-case size complexity, they have had limited success
in modeling and verifying RTL designs with significant arithmetic component, especially with
multipliers.
Another canonical form described in this chapter is a Binary Moment Diagram (BMD) [2], devel-
oped specifically for arithmetic functions. BMDs are based on a moment decomposition princi-
ple, which treats an arithmetic function as a linear function with Boolean inputs and integer (or
real-valued) outputs. The two sub-functions resulting from the decomposition represent the two
moments (constant and linear) of the function, rather than a “decision”. For this reason BMDs do
not technically belong to a category of decision diagrams but form a class of their own. BMDs find
important applications in verifying arithmetic designs with bit-level inputs and integer outputs.
Two newer types of diagrams, called Taylor Expansion Diagram (TED) and Finite Field Decision
Diagram (FFDD), have been recently introduced to address the need for a more abstract design
representation, with inputs and outputs allowed to take either integer or discrete (finite-field) val-
ues. Both of these diagrams can be thought of as extensions of BDDs and BMDs, with inputs and
outputs represented as symbolic variables. The two diagrams differ in arithmetic representation of
the data (infinite precision integer vs finite field arithmetic) and the type of decomposition used
(Taylor expansion vs multi-valued GF decomposition).
Taylor Expansion Diagram (TED) [3] is based on Taylor expansion of polynomial representation
of the computation expressed in the design. Both inputs and outputs are treated as infinite precision
integers (or real numbers) and are represented by symbolic variables. The power of abstraction,
combined with canonicity and compactness makes the TED particularly attractive for verification
of designs specified at the behavioral and algorithmic levels, such as datapaths and signal process-
ing systems. Computations performed by those designs can often be expressed as polynomials
and be efficiently represented with TEDs, with memory requirements several orders of magnitude
smaller than those of other known representations. TEDs can also serve as a vehicle to transform
the initial functional representation of the design into a structural representation in form of a data
flow graph (DFG); as such they are applicable to behavioral synthesis, or, more specifically, to
behavioral transformations which can also be used in verification.
Finite Field Decision Diagram (FFDD) [4] is an extension of multiple-terminal decision diagrams,
but with inputs and outputs represented in finite field (also called Galois Field, GF) arithmetic
rather than in the integer domain. Finite field representation has numerous applications in cryptog-
raphy, error control systems, fault tolerant designs, and digital signal processing. FFDD represen-
tation allows the simulation and verification of such systems to be performed more efficiently on a
higher level of abstraction. The verification can be performed either at the bit or the word-level; it
is not restricted to word boundaries and can be used to model and verify any combination of output
bits.
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2 Decision Diagrams
Binary Decision Diagrams (BDD) have emerged as representation of choice for many applications,
ranging from representation of Boolean function, to verification and satisfiability, to logic synthe-
sis. Even though BDDs (albeit under different name) have been known since late 1950s it was
the seminal work of Bryant [1] that brought to light their importance as canonical representations
for Boolean logic. This section briefly reviews basic theory and algorithms for BDDs, taken from
multiple sources [1, 5–7].

2.1 Binary Decision Diagrams (BDD)

A binary decision diagram is a graph-based data structure, which represents a set of binary-valued
decisions, culminating at the overall decision that can be either true or false. Specifically, BDD
is a directed acyclic graph (DAG) whose nodes represent the decisions, and edges represent the
decision types (true or false). The final decision evaluated at the root represents the overall function
encoded by the BDD. Ordered and reduced BDD is irredundant and canonical, i.e., a representation
of a function in that form is unique. Formally, BDD is defined as follows:

Definition 2.1 A Binary Decision Diagram (BDD) is a rooted directed acyclic graph G(V,E) with
a set of nodes V and set of edges E. The vertex set V contains two types of vertices:

• Two terminal nodes (leaves), corresponding to constant 0 and 1.
• A set of variable nodes {u}, each associated with a Boolean variable v = var(u). Each node

has exactly two out-going edges, pointing to two children functions, low(u) and high(u). (In
the figures, the two children edges are represented as dotted and solid lines, respectively.)

The function of node u ∈ V , associated with variable v = var(u) is given by f u = v̄ · low(u)+ v ·
high(u), where low(u) and high(u) are the functions of the low and high children of u, respectively.
In particular, the function evaluated at the root represents the logic function encoded in the BDD.

The Decomposition Principle. The above definition basically states that BDD is based on a
Shannon (Boole) expansion of function f , applied recursively to its variables. That is,

f u = v̄ · fv̄ + v · fv (1)

where fv̄ = low(u) and fv = high(u) are the negative and positive cofactors of f with respect to the
decomposing variable v.

Definition 2.2 A BDD is ordered (denoted OBDD) if on all paths from the root to its terminal
nodes, the variables appear in the same linear order: x1 < x2 < ... < xn. Furthermore, OBDD is
reduced (denoted ROBDD) if it satisfies two properties:

1. (Irredundancy) No variable node u has identical low and high children, i.e., low(u) 6=
high(u).
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2. (Uniqueness) No two distinct nodes u and v have the same variable name and the same low
and high children That is, var(u) = var(v), low(u) = low(v),high(u) = high(v) ⇒ u = v

The above definition provide the reduction rules for BDDs: rule 1 removes redundant nodes with
same low and high children; rule 2 merges isomorphic subgraphs. The resulting ROBDDs is an
irredundant representation, i.e., no two nodes of the ROBDD represent the same Boolean function.
Two ROBDDs are isomorphic if there is a one-to-one mapping between the vertex sets that pre-
serves adjacency, indices and leaf values. Thus two isomorphic ROBDDs represent the same func-
tion. Conversely, two Boolean expressions that represent the same logic function have isomorphic
ROBDDs for a given ordering of variables. In this sense ROBDDs are a canonical representation.
The following lemma, due to Bryant, states the canonicity of ROBDDs [1].

Lemma 1 For any Boolean function f there is exactly one ROBDD with root node u and variable
order x1 < x2 < ... < xn such that f u = f (x1,x2, ...,xn).

BDD Construction. An algorithm has been proposed by Bryant to reduce OBDD. The resulting
diagram, ROBDD, is irredundant, minimal and canonical. The algorithm visits the OBDD bottom
up, from the leaf nodes to the root, and labels each vertex v ∈ V with an identifier id(v). The
reduction rules are then applied to remove redundant nodes and merge isomorphic subgraphs. As
a result, an ROBDD is identified by a subset of vertices with different identifiers.
The algorithm is illustrated in Figure 1, taken from [5] for function f = (a + b)c. OBDD is con-
structed from the original expression, as shown in Figure 1(a). Then, the nodes of the OBDD are
labeled with identifiers, as a function of the variable name and their children. First, the leaf nodes
(0 and 1) are labeled with identifiers id = 1 and id = 2, respectively. Then the vertices v4,v5 on the
bottom most level, corresponding to variable c, are labeled with their identifiers. In this case both
nodes are assigned the same identifier, id = 3, since they correspond to the same variable and have
children with same identifiers. They are replaced by a single node, v4 (visited first), added to the
ROBDD. Next, the algorithm visits vertices v2,v3, associated with variable b. Vertex v2 is assigned
identifier id = 4 and is added to the ROBDD. The left (low) and right (high) children of node v3
have the same identifier, so v3 inherits their identifier and is discarded as redundant. Finally, the
root v1, associated with variable a is visited and assigned the identifier id = 5. It is added to the
ROBDD as a unique node with this identifier. The resulting ROBDD is shown in Figure 1(c).
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b

c

0 0 1 10
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v4
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Figure 1: Construction of a ROBDD for f = (a + b)c: a) OBDD for the variable order a,b,c; b)
OBDD with unique identifiers; c) ROBDD for variable order a,b,c.
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In practice, ROBDDs are built directly from a Boolean formulae, avoiding the reduction step and
possible memory overflow problems. This approach is based on applying the Shannon decom-
position, f = v̄ · fv̄ + v · fv, iteratively to the variables of the formulae in the predetermined order.
Canonicity and minimality of such constructed ROBDD are accomplished by using a hash table,
called the unique table, which contains a key for each vertex of an ROBDD and which uniquely
identifies the function associated with that node. The key is a triple, composed of the variable name
and the identifiers of the low and high children. The unique table is constructed bottom up. When
a new node is considered for addition to the ROBDD, a lookup in the table determines if another
vertex in the table already implements the same functionality by comparing the keys. If this is
the case, the pointer of the new node is set to the one existing in the table; otherwise a new entry
is made in the table for the new node. This way, no redundant nodes are added to the table and
the table represents an ROBDD. The run-time complexity of this and other ROBDD construction
algorithms is O(2n), where n is the number of variables. Similarly, the size of the ROBDD is, in
the worst case, exponential. The details of the construction of an ROBDD can be found in [1, 5].
BDDs provide a compact representation of Boolean logic. Each path of the BDD from root to
terminal node 1 represents a product term (on-set cube) of the function encoded in the BDD. It
is computed as a product of variables, along the path, at their respective polarity. For example,
for a BDD in Figure 1, a path {v1,v2,v4,1} corresponds to the product term ābc. Logic function
encoded in a BDD is then evaluated as a logical sum (OR) of products terms associated with the
on-paths. Similarly, a path from root to terminal node 0 represents a complement of the function.
This feature is useful for function complementation, which can be done in constant time by simply
exchanging the 0 and 1 terminal nodes.
ROBDDs can naturally represent multiple-output functions by modeling them as ROBDDs with
shared subgraphs. In the sequel, we will refer to ROBDD simply as BDD, since some ordering
of the variables is always imposed on the BDD, and the OBDD must be reduced in order to be
canonical.
BDD Composition - The APPLY Algorithm. Another way of constructing a BDD for a given
Boolean expression is to compose BDDs of its subexpressions using Boolean connectives, like
AND, OR, XOR, etc. The algorithm that performs such a composition is known as the APPLY
algorithm.
The basic idea comes, again, from the recursive application of Shannon expansion theorem for
arbitrary binary operator < op >:

f < op > g = v̄( fv̄ < op > gv̄)+ v( fv < op > gv) (2)

Starting with the top most variable v in the two functions the formula is applied recursively to all
the variables in the order they appear in their respective BDDs ( f and g must have compatible
ordering for the algorithm to work). If v is the top variable of f and g, then the operator < op > is
applied to their respective cofactors. If f does not depend on v, then fv = fv̄ = f and the cofactor is
the function itself. The worst case complexity of the APPLY algorithms is O(n1n2), where n1 and
n2 are the number of variables in the two BDDs.
Using the above algorithm, one can construct a BDD for an arbitrary Boolean network or a gate-
level netlist. First, a trivial BDD is build for the variables representing primary inputs, and then
BDDs of each expression or logic gate are constructed from the BDDs of their immediate inputs,

6



in the topological order, from primary inputs to primary outputs.
Operations on BDDs can be done in polynomial time of their size (number of nodes). However,
the real complexity is hidden in their construction, which is expensive both in time and space.
BDDs can be exponential in size and cause memory explosion, especially for designs containing
arithmetic functions, such as multipliers (BDDs cannot be built for multipliers larger than 16 ×16
bits).
Variable Ordering. The size of a BDD strongly depends on the ordering of the variables.
The size of the BDD (measured in the number of nodes) is, in the worst case, exponential in
the number of variables. ROBDDs representing adder functions are particularly sensitive to the
variable order; they can have exponential size in the worst case and a linear size in the best case.
There are functions (such as multipliers), whose BDD size is exponential regardless of the ordering.
Furthermore, there are functions for which the sum of products (SOP) or product of sums (POS)
forms are more compact than the BDDs. Many constraint functions of covering problems fall in
this category. Figure 2 shows two BDDs for function F = x1x2 +x3x4 +x5x6 constructed with two
different ordering of variables, lexicographical, and interleaved. One can see significant difference
in BDD size.

 x1 

 x2 

 x3 

 x4 

 x6 

 x5 

  F  

2c

2b

2a

1

29

28

27

0

 x1 

 x3 

 x5 

 x2 

 x4 

 x6 

  F  

40

3f 3c

3e 3d 383b

33

0

3537393a

3436

1

(a) (b)

Figure 2: Effect of variable ordering on BDD size for function F = x1x2 + x3x4 + x5x6: a) for
variable order x1,x2,x3,x4,x5,x6 b) for variable order x1,x3,x5,x2,x4,x6.

While the variable ordering problem is NP-complete, efficient heuristic variable ordering algorithm
exist, based on both static (related to lexicographical) and dynamic ordering (swapping variables
on two adjacent levels) [8].
Extensions. Several extensions have been proposed for BDDs. One of them makes a use of
complemented edges by labeling BDD edges with complement attributes. This feature makes it
possible to represent a function and its complement as a single subgraph with two edges coming
into the root of the subgraph, one with positive polarity and the other with negative polarity. In
general, BDDs with complemented edges result in a smaller BDD size and provide a means to
complement a BDD in constant time. To maintain the canonicity, certain restrictions are imposed
on the placement of the complemented edges. Namely, only low edges, corresponding to negative
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cofactors, may be assigned complement attributes. Notice that for BDD with complemented edges,
only one constant function (1) and hence only one terminal node (leaf 1) is needed, since 0 can be
derived from its complement.
Applications and Limitations of BDDs. Owing to their compactness, canonicity and ease of
manipulation, BDDs have found numerous applications in design, synthesis, verification and test-
ing of digital designs. In general, BDDs are an efficient data structure for storing and evaluating
Boolean function and discrete structures. Large sets of discrete elements can be encoded in binary
and compactly represented as characteristic functions in BDDs. BDDs come particularly handy
in representing transition relations of product machines for the purpose of sequential equivalence
checking using state traversal [7].
In particular, BDDs have found a widespread application in a number of verification problems,
including combinational equivalence checking [9], implicit state enumeration and FSM traversal
[7, 10], symbolic model checking [11] [12], test vector generation, and many others. The biggest
claim to fame comes from their applications to combinational equivalence checking. Once two
logic functions are represented by their respective ROBDDs (with the same variable order), one
can test whether two Boolean functions are equivalent by testing if their ROBDDs are isomorphic.
In practice, checking for equivalence between two functions is performed by constructing a single,
multi-rooted BDD, rather than checking for graph isomorphism. The two functions are equivalent
if they share the same root. This test can be done in constant time once the BDD is built for the
two functions.
Logic equivalence can be illustrated with the BDD shown in Figure 1(c). The ROBDD in the
figure, constructed for function f = (a + b)c, also represents function g = a · c + b · c, as well
as a number of other equivalent functions, all having the same BDD for a fixed variable order.
As mentioned earlier, BDDs can be built for an arbitrary gate-level network or a multiple-output
Boolean function. Such created BDD can then be used to check equivalence of the netlist against
another netlist, or against the initial Boolean specification of the design.
Another obvious application of BDDs is satisfiability (SAT). A Boolean function is satisfiable if
there exists an assignment of Boolean values to its variables that makes the function true ( f = 1).
Many verification, synthesis and optimization problems can be reduced to the SAT problem. Being
a decision diagrams, BDD can be used to solve the SAT problem in linear time in its size. Once the
formula to be satisfied is converted to a BDD, the BDD is traversed to find one or more paths from
the root to the terminal node 1. A satisfying solution exists as long as the BDD is not empty. This
important feature of decision diagrams finds its application in deterministic test generation, used
in simulation based verification. A target assignment, not adequately covered by semi-random or
directed simulation, is specified and solved using BDD-based SAT.
The BDD-based approach to the SAT problem can be illustrated with the example in Figure 1(c).
Two satisfying solution for f = 1, corresponding to the paths from the root to node 1, are {ac} and
{ābc}.
A special case of SAT is related to finding a satisfying assignment for f = 0. A notion of easily
invertible form was introduced by Bryant to denote a representation for which it is always possible
to find a zero of the function (solve for f = 0) in polynomial time [13]. Clearly, BDDs are easily
convertible functions, since one can find a solution to the problem by tracing the path from the
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root to terminal node 0. Another special case of SAT involves testing for tautology, i.e., testing if
function is identically equal to 1 (for all assignments of Boolean variables). This can be done in
constant time by testing if BDD for the function is reduced to constant 1.
Several efficient implementation of software program supporting BDDs have been developed for a
wide set of purposes [14]. One of the most popular packages, available on the world wide web is
the CUDD package [15].
In summary, BDDs have been very successful in verifying control-dominated applications and are
a part of a number of formal verification systems, such as SMV [12] and VIS [16]. However, as
the designs have grown in size and complexity, the size-explosion problems of BDDs have limited
their scope. Furthermore, their use in designs containing large arithmetic data-path units have not
been very limited due to prohibitive memory requirements, especially for large multipliers.

2.2 Beyond BDDs

In an attempt to obtain a more compact representation for Boolean functions, different flavors of
Boolean decomposition have been tried. These diagrams, collectively known as Decision Dia-
grams, are still based on a “point-wise” binary decomposition, but use a different interpretation of
the diagram nodes.
One such representation is based on the XOR (exclusive OR) decomposition:

f = fx̄ ⊕ x f∆x = fx ⊕ x̄ f∆x (3)

also known as Red-Miller or Davio decomposition. Here, f∆x denotes the Boolean difference of
function f w.r.t. variable x, i.e., f∆x = fx ⊕ fx̄, where ⊕ represents an XOR operation.
Ordered Functional Decision Diagrams (OFDDs) [17] are based on such a decomposition. This
representation is analogous to that of OBDDs, except that the two outgoing arcs at each node rep-
resent the negative cofactor and the Boolean difference of the function w.r.t. the node variable.
Similar to OBDDs, OFDD representation is canonical and many operations can be implemented
with algorithms of polynomial complexity. However, several important features differentiate the
two representations. First, different reduction rules are applied to make the graph canonical. Sec-
ond, the evaluations of a function on a OFDDD involves more than tracing a path. In particular for
a node variable x, both subgraphs must be evaluated and an XOR computed. Such an evaluation
can be performed in linear time in the number of nodes by a postorder traversal of the graph. An
interesting feature of the OFDDs is that, for certain classes of functions (in particular, arithmetic
functions based on XORs), OFDDs are exponentially more compact than ROBDDs, but the reverse
is also true. To obtain the advantages of each representation, Drechsler et al proposed a hybrid
form, called Ordered Kronecker FDD (OKFDD) [18]. In this representation, each variable can
use any of the three decompositions given by equations 1 - 3, potentially leading to a reasonable
reduction in the graph size.
Another variant of BDD representation, called Zero-Suppressed BDDs (ZBDDs), was developed
by Minato for solving combinatorial problems [19]. ZDDS are particularly suitable for applica-
tions involving sparse sets of bit vectors. It can be shown that ZBDDs reduce the size of the
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representation of a set of n-bit vectors over OBDDs by at most a factor of n. In practice, the
reduction is large enough to have a significant impact.
Numerous attempts have been made to extend the capabilities of BDDs to target arithmetic cir-
cuits and designs with word-level specifications. This requires extending the concept of Boolean
function representation to integer and real-valued functions over Boolean variables. The resulting
graph-based representations are commonly known as Word Level Decision Diagrams (WLDDs)
[20, 21].
One straightforward way to represent numeric-valued functions is to use branching structure of a
BDD, but to allow arbitrary values on the terminal nodes. Such a representation is referred to as
Multi-terminal BDD (MTBDD) [22] or Algebraic Decision Diagram (ADD) [23]. Evaluating an
MTBDD or ADD for a given variable assignment is similar to that of BDD. However, MTBDDs
are inefficient in representing functions yielding values over a large range, as this requires a large
number of terminal nodes and results in a large number of paths (MTBDDs tend to be trees rather
than graphs).
For such applications, alternative representations have been proposed, such as edge-valued BDDs
(EVBDDs) [24]. These forms incorporate numeric weights on the edges in order to allow greater
sharing of subgraphs and to reduce the size of the overall representation. Evaluating a function
represented by an EVBDD involves adding the products of variable values along the path, weighted
by the corresponding edge weights. This representation grows linearly in the number of bits, a
major improvement over MTBDDs. However, the overhead for storing and normalizing the edge
weights to make the representation canonical makes it them less efficient. There are classes of
functions, such as arithmetic functions, for which EVBDD has unacceptable size complexity. In
particular, the EVBDD representation for integer multipliers, F = X ·Y , grows exponentially with
the number of bits of its operands. A good review of WLDDs can be found in [20, 21].
In the next section, another type of word-level diagram is described, based on a different, non-
pointwise decomposition principle.

3 Binary Moment Diagrams (BMD)
An alternative approach to representing numeric functions, especially those encountered in arith-
metic circuits, involves changing the function decomposition with respect to its variables.
The Decomposition Principle. Binary Moment Diagrams (BMD), introduced by Bryant [13],
use a modified Shannon’s expansion, in which a Boolean variable is treated as a binary, (0,1)
integer variable. The complement of x is modeled as x̄ = 1− x, and the terms of the expansion are
regrouped around variable x resulting in the following formula:

f (x) = (1− x) · fx̄ + x · fx (4)
= fx̄ + x · ( fx − fx̄)

= fx̄ + x · f∆x

where “·”, “+” and “-” denote multiplication, addition and subtraction, respectively. The above
decomposition is termed as moment decomposition; fx̄ is the constant moment, and ( f∆x = fx− fx̄)
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is the linear moment. In this form, f can be viewed as a linear function in x, with f x̄ as the
constant term, and ( f∆x as the linear coefficient of f (the partial derivative of f with respect to
x). This expansion still relies on the assumption that variable x is Boolean, i.e., evaluates to either
0 or 1. However, it departs from a point-wise, decision-based decomposition and performs the
decomposition of a linear function based on its first two moments.
Each node of a BMD describes a function in terms of its moment decomposition with respect to the
variable labeling the node, as shown in Figure 3(a). The two outgoing arcs from each node denote
the constant moment (shown as dashed line) and the first moment (solid line) of the function w.r.t.
the decomposing variable. Part (b) of the figure shows the BMD representation of the unsigned
integer X = 4x2 + 2x1 + x0 encoded with n = 3 bits. The constants in the terminal nodes of the
BMD can be moved from to their edges, and represented as edge-weights, as shown in Figure
3(c). The resulting diagram is termed Multiplicative Binary Moment Diagram, or *BMD. The
term “multiplicative” derives from the fact that, when evaluating a function along a path from root
to one of its terminal nodes, the weights combine multiplicatively along the path.
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x1
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y y
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x1

0 1
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x
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Figure 3: Binary Moment Diagrams: (a) The moment decomposition principle; (b) BMD for
binary encoded integer X = 4x2 +2x1 + x0; (c) *BMD for X .

Similarly to BDDs, function encoded in a *BMD is evaluated by adding the terms encoded in
the paths. However, two major features differentiate (*)BMDs from decision diagrams discussed
earlier: 1) *BMDs are not decision diagrams, since they are based on the moment decomposition,
rather than a point-wise Shannon expansion. 2) *BMDs are multiplicative diagrams, in the sense
that each path from root to terminal node is a product of the variables labeling the nodes and the
edge weights along the path.
Figure 4 shows *BMDs for addition and multiplication expressed at word levels. Note that the size
of *BMDs for these operations grows linearly with the word size n.
Reduction Rules Each node in the *BMD is represented as a triple < v, low(v),high(v) >, with
two weights associated with the constant and linear moments, w0(v),w1(v). It is assumed that the
set of variables is totally ordered, like in a BDD. To maintain the canonical form certain reduction
rules must be imposed on the *BMD during node creation and weight manipulation (normaliza-
tion). In principle, these rules are similar to those in BDDs, but must follow rules of regular algebra
over (+, ·) rather than Boolean algebra (∨,∧).

1. (Irredundancy) When a linear moment at node v is 0, the function at the node evaluates to its
constant moment, i.e., does not depend on v. In this case node v is redundant and is removed.
(Note that this rules differs from the redundancy reduction rule for BDD).
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Figure 4: *BMD representations for word-level operations: (a) Sum X +Y ; (b) Product X ·Y .

2. (Uniqueness) This rule is similar to that of BDD: any two nodes indexed by the same variable
and have same two moments represent the same function and are merged in the BMD into a
single node. This rule, however, is applied after the normalization, described next.

Normalization: Several rules for manipulating edge weights are imposed on the graph to make
the graph canonical. For non-zero value of the linear moment at node v, the weights of its two
edges are normalized by factoring out the greatest common divisor (gcd) of the argument weights
w = gcd(w0(v),w1(v)), which is then pushed to the root edge of node v. By convention, the sign
of the extracted weight must match the sign of the constant moment; this way gcd always returns
non-negative value. Normalization is performed bottom up, from the leaf nodes to the root. Each
normalized node is stored in the hash table, where each entry is indexed by a key composed of
the variable and the two moments. Duplicate entries are automatically removed, resulting in an
irredundant, minimal and canonical representation.
As with BDDs, the *BMD representation of a function depends on the variable ordering, but
*BMDs are much less sensitive to variable ordering than BDDs.
The APPLY Algorithms. Similarly to BDDs, *BMDs are constructed by starting with base func-
tions, corresponding to constants and single variables, and then building more complex functions
according to some operation. Algorithms similar to the APPLY algorithm for BDDs have been
proposed. However, while there is a single APPLY algorithm for BDDs for an arbitrary Boolean
operator, *BMDs require algorithms tailored specifically for the individual operations, such as
ADD, SUB and MULT [13]. In general,

f < op > g = ( f < op > g)x̄ + x( f < op > g)∆x (5)

where
( f < op > b)x̄ = ( fx̄ < op > gx̄) (6)

and

( f < op > g)∆x = ( f < op > g)x − ( f < op > g)x̄ (7)
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= ( fx < op > gx)− ( fx̄−gx̄)

= (( fx + f∆x) < op > (gx +g∆x)− ( fx̄−gx̄)

However, in case of the multiply operation, special attention must be paid because of the introduc-
tion of the term containing x2.

f ·g = ( fx̄ + x · f∆x) · (gx̄ + x ·g∆x) = fx̄ ·gx̄ + x · ( fx̄ ·g∆x + f∆x ·gx̄)+ x2 · f∆x ·g∆x (8)

The multiply operation must be linearized by replacing x2 with x, since x is a Boolean variable.
This gives the following result for multiplication

f ·g = fx̄ ·gx̄ + x · ( fx̄ ·g∆x + f∆x ·gx̄ + f∆x ·g∆x) (9)

The APPLY algorithms proceed by traversing the argument graphs and recursively apply the oper-
ation to the subgraphs. To reduce the number of recursive calls, a hash table is maintained keyed
by the arguments of the previous calls, allowing the program to reuse previous computations.
Unlike operations on BDDs, which have run-time complexities polynomial in the number of vari-
ables, most operations on *BMDs potentially have exponential complexity. However, as demon-
strated by Bryant, these exponential cased do not arise in practical applications [13]. Furthermore,
the size of the arguments is significantly smaller in word-level applications than in bit-level appli-
cations, resulting in reasonable run-times.
For word-level expressions (X +Y ) and (X ∗Y ), where X and Y are n-bit vectors, *BMD repre-
sentation is linear in the number of bits n. Also, function cX , where c is a constant, have linear
size representation in *BMD. However, the size of *BMD for X k is O(nk). Thus, for high-degree
polynomials defined over words with large bit-width, as commonly encountered in many DSP
applications, filters, etc., *BMD remains an expensive representation.
Boolean Logic. *BMD can be adapted to also represent Boolean logic, which is important for
designs with Boolean connectives. The following equations are used to model Boolean logic.

NOT : x̄ = (1− x) (10)
AND : x∧ y = x · y (11)

OR : x∨ y = x+ y− x · y (12)
XOR : x⊕ y = x+ y−2x · y (13)

Figure 5 shows BMD representations for these basic Boolean operators [2]. . In the diagrams,
x and y are Boolean variables represented by binary variables, and + and · represent algebraic
operators of ADD and MULT, respectively. The resulting functions are 0,1 integer functions.
*BMDs provide a concise representation of functions defined over bit vectors, or words of data,
having a numeric representation. In particular they can efficiently encode integer-valued functions
defined over binary-encoded words, X = ∑i 2ixi, where each xi = 0 or 1. Figure 6 shows exam-
ples of *BMD representation for signed integers several sign schemes (signed magnitude, ones
complement, and twos complement). All commonly used encodings can be similarly represented.
Applications to Word-level Verification. (*)BMDs have been successfully used in formal ver-
ification of arithmetic circuits. Figure 7 illustrates an approach to arithmetic circuit verification
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Figure 6: *BMD representations for word-level operations: a) Sign magnitude; b) Two’s comple-
ment; c) One’s complement.

proposed in [13,25]. The goal is to prove a correspondence between a logic circuit, represented by
a vector of Boolean functions f , and the design specification, represented by a word-level function
F . The inputs to the Boolean circuit f are vectors of Boolean signals, x1,x2, . . . ,xk; the inputs to
the specification function F are word-level signals (symbolic variables) X1,X2, . . . ,Xk. In order to
compare the two designs, each of the Boolean vectors xi is transformed into a word-level signal Xi
using an encoding function Enci(xi), and connected to the appropriate input of F . An encoding
function simply provides the interpretation of the bit vectors. An example of such an encoding
function (in this case, unsigned integer) is shown in Figure 3. Similarly, the output of the logic
circuit f is transformed to a word-level function using an encoding function Enc0. The general
task of verification is then to prove the equivalence between the circuit output, interpreted as a
word, and the output of the word-level specification.

Enc0( f (x1, . . . ,xk)) = F(Enc1(x1), . . . ,Enck(xk)) (14)

*BMDs can provide suitable data structure for this form of verification. TEDs, described in the
next section, can be used for for the final comparison at the word-level.
A serious limitation of (*)BMDs is that they cannot be used for solving SAT problems. This is
because (*)BMDs are multiplicative diagrams, i.e., the weights combine multiplicatively along
the path from terminal node to root. Solving the integer-valued SAT problem in this structure
is equivalent to solve the integer factorization problem. They are also not “easily invertible”, as
defined earlier in the context of the decision diagrams.
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Figure 7: General verification problem: prove correspondence between a word-level specification
and bit-level implementation.

Several variants of *BMD representation have been proposed in literature. Chen et al introduced
Multiplicative Power Hybrid Decision Diagrams (PHDDs) that allows it to handle floating point
arithmetic [26]. This is the only known form that supports floating point operation in a graph
without introducing rational numbers, by representing the mantissa and exponent as connected
subgraphs. However, the size of the graph, even for the adder function, grows exponentially with
the size of the exponent size.
Drechsler et al extended *BMDs to a form called K*BMD to make the decomposition more ef-
ficient in terms of the graph size. This is done by admitting multiple decomposition types and
allowing both additive and multiplicative edge weights [27]. However, a set of restrictions im-
posed on the edge weights to make it canonical makes such a graph difficult to construct. K*BMD
is characterized by linear complexity of the word-level operations for sum, product and cX , and
can represent X k in O(nk−1) nodes. As we will see in the next section, this result can be further
improved with TEDs [3], which offer linear size complexity for this and other word-level opera-
tions.

4 Taylor Expansion Diagrams (TED)
Before formally introducing TEDs, we briefly review previous work and recent advances in word-
level equivalence checking and the supporting symbolic representations.

4.1 Related Work.

In the realm of high-level design verification, the issue of abstraction of symbolic, word-level
computations have received a lot of attention. This is visible in theorem-proving techniques, auto-
mated decision procedures for Presburger arithmetic [28] [29], techniques using algebraic manip-
ulation [30], symbolic simulation [31], or in the decision procedures that use a combination of the-
ories [32] [33]. Term rewriting systems, particularly those used for hardware verification [34–36]
also represent computations in high-level symbolic forms. The above representations and verifi-
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cation techniques, however, do not rely on canonical forms. For example, verification techniques
using term rewriting are based on rewrite rules that lead to normal forms. Such forms may produce
false negatives, which may be difficult to analyze and resolve.
Various forms of high-level logics have been used to represent and verify high-level design spec-
ifications. Such representations are mostly based on quantifier free fragments of first order logic.
The works that deserve particular mention include: the logic of equality with uninterpreted func-
tions (EUF) [37] and with memories (PEUFM) [38] [39], and the logic of counter arithmetic with
lambda expressions and uninterpreted functions (CLU) [40]. These logics are often transformed
into canonical representations, such as BDDs and BMDs, or into SAT instances or other normal
forms [41] [42]. To avoid exponential explosion of BDDs, equivalence verification is generally
performed by transforming high-level logic description of the design into propositional logic for-
mulas [40] [33] [38] and employing satisfiability tools [43] [44] for testing the validity of the
formulas. While these techniques have been successful in the verification of control logic and
pipelined microprocessors, they have found limited application in the verification of large datapath
designs.
Word-Level ATPG techniques [45] [46] [47] [48] [49] have also been used for RTL and behav-
ioral verification. However, their applications are generally geared toward simulation, functional
vector generation or assertion property checking, but not so much toward high-level equivalence
verification of arithmetic designs.
Symbolic Algebra Methods. Many computations encountered in behavioral design specifica-
tions can be represented in terms of polynomials. This includes digital signal and image process-
ing designs, digital filter designs, and designs that employ complex transformations, such as DCT,
DFT, WHT, etc. Polynomial representations of discrete functions have been explored in literature
long before the advent of contemporary canonical graph-based representations. Particularly, Tay-
lor’s expansion of Boolean functions has been studied in [50] [51]. However, these works mostly
targeted classical switching theory problems: logic minimization, functional decomposition, fault
detection, etc. The issue of abstraction of bit-vectors and symbolic representation of computations
for high-level synthesis and formal verification was not their focus.
Commercial symbolic algebra tools, such as Maple [52], Mathematica [53], and MatLab [54],
use advanced symbolic algebra methods to perform efficient manipulation of of mathematical ex-
pressions, including fast multiplication, factorization, etc. However, despite the unquestionable
effectiveness of these methods for classical mathematical applications, they are less effective in
modeling of large scale digital circuits and systems, and in particular in polynomial verification.
For example, symbolic algebra tools offered by Mathematica and alike cannot unequivocally de-
termine the equivalence of two polynomials. The equivalence is checked by subjecting each poly-
nomial to a series of expand operations and comparing the coefficients of the two polynomials
ordered lexicographically. As stated in the manual of Mathematica 5, “it would be quite impossi-
ble for Mathematica to match patterns by mathematical, rather than structural, equivalence.” And
“there is no general way to find out whether an arbitrary pair of mathematical expressions are
equal” [53]. Furthermore, Mathematica “cannot guarantee that any finite sequence of transfor-
mations will take any two arbitrarily chosen expressions to a standard form.”
In contrast, the TED data structure described in the sequel provides an important support for equiv-
alence verification by offering a canonical representation for multi-variate polynomials.

16



Equivalence Checking. Equivalence checking has been researched thoroughly and vast literature
exists on the topic, including satisfiability (SAT) approaches [45, 48, 49, 55, 56] verification of
arithmetic on bit-level [57–59], symbolic approaches and others [60–66].
Typical approach to equivalence checking (EC) employed by industrial tools, involves identify-
ing structural equivalences or ”similarities” between pairs of points (called cut points) in the two
designs. The portions of designs identified as having equivalent cut points are removed from the
design and the EC verification is repeated on the reduced designs. However, the main difficulty lies
in identifying such cut points in designs described in different levels (e.g., RTL and algorithmic).
Another challenge in EC verification comes from structural optimizations, employed by behav-
ioral or high-level synthesis (such as factorization, resource sharing, change of order of operators,
operator merging, etc.), which reduce the level of similarity between the candidate cut points. The
next section provides a motivating example for the development of symbolic equivalence technique
based on functional, rather than structural approach and the associated canonical representation.

4.2 Motivation

The following example, Figure 8(a),(b), taken from the Synopsys technical bulletin [67], illustrates
the perceived difficulty of functional verification of arithmetic designs in case of a combinational
transformation, called resource sharing. Resource sharing transforms the netlist by moving the
operators in order to maximize sharing of the resources, in this case the multiplication. Arith-
metic Proof Engine (APF) of Synopsys’ Formality tool cannot solve this problem using cut-points
because internally equivalent points are lost during such a transformation.
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Figure 8: Verification of resource sharing: (a) z = sel ? (A ·B) : (C ·D); (b) z = (sel ? A :C) ·(sel ? B :
D); (c) Canonical TED showing functional equivalence of the two structures: z = A ·B · sel +C ·
D · (1− sel) = (A · sel +C · (1− sel)) · (B · sel +D · (1− sel)) for sel = 0,1.

This problem can be solved, however, by generating the symbolic expressions for the original and
the transformed forms in a canonical form, and proving that they are equivalent. Namely, the
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function computed by the original design shown in Figure 8(a) can be written as

z = A ·B · sel +C ·D · (1− sel) (15)

while the design in Figure 8(b) can be expressed as

(A · sel +C · (1− sel)) · (B · sel +D · (1− sel)) (16)

Since sel is a binary variable, sel2 = sel and sel · (1− sel) = 0, and the above expression reduces
to the expression (16). These expressions can be captured by a canonical data structure with
symbolic input variables A,B,sel. Such a diagram is shown in Figure 8(c). The equivalence of
the two designs can be verified by testing if the diagrams corresponding to the two designs are
isomorphic, which is the case here (only one graph is shown). This is the main idea behind Taylor
Expansion Diagrams, described next. Note that, unlike BMDs, this diagram represents the designs
with arbitrary bit-width; that is the designs can verified for equivalence regardless of their word
sizes, assuming infinite precision arithmetic.

4.3 The Taylor Series Expansion

A known limitation of all decision and moment diagram representations is that word-level com-
putations, such as A+B, require the function to be decomposed with respect to bit-level variables
A[k],B[k]. Such an expansion creates a large number of variables in the respective diagram frame-
work and requires excessive memory and time to operate upon them. In order to efficiently rep-
resent and process the HDL description of a large design, it is desirable to treat the word-level
variables as algebraic symbols, expanding them into their bit-level components only when neces-
sary.
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0 110
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1 *BMD:  A*B
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4b2 + 2b1 + b0 => B[0:2]
TED:  A*B

Figure 9: Abstraction of bit-level variables into algebraic symbols for F = A ·B.

Consider the *BMD for A ·B, shown in Fig. 9 (a), which depicts the decomposition with respect to
the bits of A and B. It would be desirable to group the nodes corresponding to the individual bits
of these variables to abstract the integer variables they represent, and use the abstracted variables
directly in the design. Fig. 9 depicts the idea of such a symbolic abstraction of variables from their
bit-level components.
In order to achieve the type of abstracted representation depicted above, one can rewrite the mo-
ment decomposition f = fx + x · ( fx − fx) as f = f (x = 0)+ x · ∂( f )

∂x . This equation resembles a
truncated Taylor series expansion of the linear function f with respect to x. By allowing x to take
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integer values, the binary moment decomposition can be generalized to a Taylor’s series expansion,
where integer variables do not need to be expanded into bits.
In this approach, an algebraic, multi-variate expression, f (x,y, ...), can be viewed as continuous,
differentiable function oever a real domain. It can be decomposed using the Taylor series expansion
with respect to variable x as follows [68]:

f (x) =
∞

∑
k=0

1
k!(x− x0)

k f k(x0) = f (0)+ x f ′(0)+
1
2x2 f ′′(0)+ .... (17)

where f ′(x0), f ′′(x0), etc., are first, second, and higher order derivatives of f with respect to x,
evaluated at x0 = 0. The derivatives of f evaluated at x = 0 are independent of variable x, and can
be further decomposed w.r.t. the remaining variables, one variable at a time. The resulting recur-
sive decomposition can be represented by a decomposition diagram, called the Taylor Expansion
Diagram, or TED.
The Taylor series expansion can be used to represent computations over integer and Boolean vari-
ables, commonly encountered in HDL descriptions. Arithmetic functions and dataflow portions
of those designs, can be expressed as multi-variate polynomials of finite degree, for which Taylor
series is finite.

Definition 4.1 The Taylor Expansion Diagram, or TED, is a directed acyclic graph (Φ,V,E,T),
representing a multi-variate polynomial expression Φ. V is the set of nodes, E is the set of directed
edges, and T is the set of terminal nodes in the graph. Every node v ∈V has an index var(v) which
identifies the decomposing variable. The function at node v is determined by the Taylor series
expansion at x = var(v) = 0, according to equation 17. The number of edges emanating from node
v is equal to the number of nonempty derivatives of f (including f (0)) w.r.t. variable var(v). Each
edge points to a subgraph whose function evaluates to the respective derivative of the function
with respect to var(v). Each subgraph is recursively defined as TED w.r.t. the remaining variables.
Terminal nodes evaluate to constants.

x2
x3

x

1 x

v
...

f

f(0) f’(0) f"(0)/2

f‘"(0)/3!

Figure 10: A decomposition node in a TED.

Starting from the root, the decomposition is applied recursively to the subsequent children nodes.
The internal nodes are in one-to-one correspondence with the successive derivatives of function f
w.r.t. variable x evaluated at x = 0. Figure 10 depicts one-level decomposition of function f at
variable x. The k-th derivative of a function rooted at node v with var(v) = x is referred to as a
k-child of v; f (x=0) is a 0-child, f ′(x=0) is a 1-child, 1

2! f ′′(x=0) is a 2-child, etc. We shall also
refer to the corresponding arcs as 0-edge (dotted), 1-edge (solid), 2-edge (double), etc.
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Example: Figure 11 shows the construction of a TED for the algebraic expression F = A2 + A ·
(B + 2 ·C + 2 ·B ·C). Let the ordering of variables be A,B,C. The decomposition is performed
first with respect to variable A. The constant term of the Taylor expansion F(A = 0) = 2 ·B ·C.
The linear term of the expansion gives F ′(A = 0) = B + 2 ·C; the quadratic term is 1

2 ·F ′′(A =

0) = 1
2 · 2 = 1. This decomposition is depicted in Fig. 11 (a). Now the Taylor series expansion

is applied recursively to the resulting terms with respect to variable B, as shown in Fig. 11(b),
and subsequently with respect to variable C. The resulting diagram is depicted in Fig. 11(c), and
its final reduced and normalized version (to be explained in Section 4.4) is shown in Fig. 11(d).
The function encoded by the TED can be evaluated by adding all the paths from non-zero terminal
nodes to the root, each path being a product of the variables in their respective powers and the edge
weights, resulting in F = A2 +AB+2AC +2BC.
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Figure 11: Construction of a TED for F = F = A2 +AB+2AC +2BC: (a)-(c) decomposition w.r.t.
individual variables; (d) normalized TED

Using the terminology of computer algebra [69], TED employs a sparse recursive representation,
where a multivariate polynomial p(x1, · · · ,xn) is represented as:

p(x1, · · · ,xn) =
m
∑
i=0

pi(x1, · · · ,xn−1)xi
n (18)

The individual polynomials pi(x1, · · · ,xn−1) can be viewed as “coefficients” of the leading variable
xn at the decomposition level corresponding to xn. By construction, the sparse form stores only
non-zero polynomials as the nodes of the TED.

4.4 Reduction and Normalization

It is possible to further reduce the size of an ordered TED by a process of TED reduction and
normalization. Analogous to BDDs and *BMDs, Taylor Expansion Diagrams can be reduced by
removing redundant nodes and merging isomorphic subgraphs. In general, a node is redundant if
it can be removed from the graph, and its incoming edges can be redirected to the nodes pointed to
by the outgoing edges of the node, without changing the function represented by the diagram.

Definition 4.2 A TED node is redundant if all of its non-0 edges are connected to terminal 0.

If node v contains only a constant term (0-edge), the function computed at that node does not
depend on the variable var(v), associated with the node. Morover, if all the edges at node v point
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to the terminal node 0, the function computed at the node evaluates to zero. In both cases, the
parent of node v is reconnected to the 0-child of v, as depicted in Fig. 12.
Identification and merging of isomorphic subgraphs in a TED are analogous to that of BDDs and
*BMDs. Two TEDs are considered isomorphic if they match in both their structure and their
attributes; i.e. if there is a one-to-one mapping between the vertex sets and the edge sets of the
two graphs that preserve vertex adjacency, edge labels and terminal leaf values. By construction,
two isomorphic TEDs represent the same function. In order to make the TED canonical, any
redundancy in the graph must be eliminated and the graph must be reduced. The reduction process
entails merging the isomorphic sub-graphs and removing redundant nodes.

Definition 4.3 A Taylor expansion diagram is reduced if it contains no redundant nodes and has
no distinct vertices v and v′, such that the subgraphs rooted at v and v′ are isomorphic. In other
words, each node of the reduced TED must be unique.

It is possible to further reduce the graph by performing normalization, similar to the one described
for *BMDs [2]. The normalization procedure starts by moving the numeric values from the non-
zero terminal nodes to the terminal edges, where they are assigned as edge weights. This is shown
in Fig. 11(d) and Fig. 13(b). By doing this, the terminal node holds constant 1. This operation
applies to all terminal edges with terminal nodes holding values different than 1 or 0. As a result,
only terminal nodes 1 and 0 are needed in the graph. The weights at the terminal edges may by
further propagated to the upper edges of the graph, depending on their relative values. The TED
normalization process that accomplishes this is defined as follows.

Definition 4.4 A reduced, ordered TED representation is normalized when:

• The weights assigned to the edges spanning out of a given node are relatively prime.

• Numeric value 0 appears only in the terminal nodes.

• The graph contains no more than two terminal nodes, one each for 0 and 1.

By ensuring that the weights assigned to the edges spanning out of a node are relatively prime, the
extraction of common subgraphs is enabled. Enforcing the rule that none of the edges be allowed
zero weight is required for the canonization of the diagram. When all the edge weights have been
propagated up to the edges, only the value 0 and 1 can reside in the terminal nodes.
The normalization of the TED representation is illustrated by an example in Fig. 13. First, as
shown in Fig. 13(b), the constants (6, 5) are moved from terminal nodes to terminal edges. These

21



1 0 1 0 1

C

A

B
5

56

6

1 0 1 0 1

C

A

B
6 5

0

(A  +5A+6)(B+C)22A  (B+C)+5A(B+C)+6(B+C)

0 1

C

A

B

6 0 5

B

C

1

A

6 5 1

(d)(c)(b)(a)

Figure 13: Normalization of the TED for F = (A2 +5A+6)(B+C)

weights are then propagated up along the linear edges to the edges rooted at nodes associated with
variable B, see Fig. 13(c). At this point the isomorphic subgraphs (B +C) are identified at the
nodes of B and the graph is subsequently reduced by merging the isomorphic subgraphs, as shown
in Fig. 13(d).
It can be shown that normalization operation can reduce the size of a TED exponentially. Con-
versely, transforming a normalized TED to a non-normalized TED can, in the worst-case, result
in an exponential increase in the graph size. This result follows directly from the concepts of
normalization of BMDs to *BMDs [2].

4.5 Canonicity of Taylor Expansion Diagrams

It now remains to be shown that an ordered, reduced and normalized Taylor Expansion Diagram
is canonical; i.e. for a fixed ordering of variables, any algebraic expression is represented by a
unique reduced, ordered and normalized TED. First, we recall the following Taylor’s Theorem,
proved in [68].

Theorem 1 (Taylor’s Theorem [68]) Let f (x) be a polynomial function in the domain R, and let
x = x0 be any point in R. There exists one and only one unique Taylor’s series with center x0 that
represents f (x) according to the equation 17.

The above theorem states the uniqueness of the Taylor’s series representation of a function, eval-
uated at a particular point (in our case at x = 0). This is a direct consequence of the fact that the
successive derivatives of a function evaluated at a point are unique. Using the Taylor’s theorem
and the properties of reduced and normalized TEDs, it can be shown that an ordered, reduced and
normalized TED is canonical.

Theorem 2 For any multivariate polynomial f with integer coefficients, there is a unique (up to
isomorphism) ordered, reduced and normalized Taylor Expansion Diagram denoting f , and any
other Taylor Expansion Diagram for f contains more vertices. In other words, an ordered, reduced
and normalized TED is minimal and canonical.

Proof: The proof of this theorem follows directly the arguments used to prove the canonicity and
minimality of BDDs [1] and *BMDs [2].

22



Uniqueness. First, a reduced TED has no trivial redundancies; the redundant nodes are eliminated
by the reduce operation. Similarly, a reduced TED does not contain any isomorphic subgraphs.
Moreover, after the normalization step, all common subexpressions are shared by further applica-
tion of the reduce operation. By virtue of the Taylor’s Theorem all the nodes in an ordered, reduced
and normalized TED are unique and distinguished.
Canonicity. We now show that the individual Taylor expansion terms, evaluated recursively, are
uniquely represented by the internal nodes of the TED. First, for polynomial functions the Tay-
lor series expansion at a given point is finite and, according to the Taylor’s Theorem, the series
is unique. Moreover, each term in the Taylor’s series corresponds to the successive derivatives
of the function evaluated at that point. By definition, the derivative of a differentiable function
evaluated at a particular point is also unique. Since the nodes in the TED correspond to the recur-
sively computed derivatives, every node in the diagram uniquely represents the function computed
at that node. Since every node in an ordered, reduced and normalized TED is distinguished and it
uniquely represents a function, the Taylor Expansion Diagram is canonical.
Minimality. We now show that a reduced, ordered and normalized TED is also minimal. This can
be proved by contradiction. Let G be a graph corresponding to a reduced, normalized and hence
canonical TED representation of a function f . Assume there exists another graph G′, with the same
variable order as in G, representing f that is smaller in size than G. This would imply that graph
G could be reduced to G′ by the application of reduce and normalize operations. However, this is
not possible as G is a reduced and normalized representation and contains no redundancies. The
sharing of identical terms across different decomposition levels in the graph G has been captured
by the reduction operation. Thus G′ cannot have a representation for f with fewer nodes than G.
Hence G is a minimal and canonical representation for f . [Q.E.D.]

4.6 Complexity of Taylor Expansion Diagrams

Let us now analyze the worst-case size complexity of an ordered and reduced Taylor Expansion
Diagram. For a polynomial function of degree k, decomposition with respect to a variable can
produce k+1 distinct Taylor expansion terms in the worst-case.

Theorem 3 Let f be a polynomial in n variables and maximum degree k. In the worst case, the
ordered, reduced, normalized Taylor Expansion Diagram for f requires O(kn−1) nodes and O(kn)
edges.

Proof: The top-level contains only one node, corresponding to the first variable. Since its max-
imum degree is k, the number of distinct children nodes at the second level is bounded by k + 1.
Similarly, each of the nodes at this level produces up to k+1 children nodes at the next level, giving
a rise to (k+1)2 nodes, and so on. In the worst case the number of children increases in geometric
progression, with the level i containing up to (k + 1)i−1 nodes. For an n-variable function, there
will be n-1 such levels, with the n-th level containing just two terminal nodes, 1 and 0. Hence
the total number of internal nodes in the graph is N = ∑n−1

i=0 (k + 1)i =
(k+1)n−1

k . The number of
edges E can be similarly computed as E = ∑n

i=1(k + 1)i =
(k+1)n+1−1

k − 1, since there may be up
to (k + 1)n terminal edges leading to the 0 and 1 nodes. Thus, in the worst-case, the total number

23



of internal nodes required to represent an n-variable polynomial with degree k is O(kn−1) and the
number of edges is O(kn). [Q.E.D.]
One should keep in mind, however, that the TED variables represent symbolic, word-level signals,
and the number of such signals in the design is significantly smaller than the number of bits in the
bit-level representation. Subsequently, even an exponential size of the polynomial with a relatively
small number of such variables may be acceptable. Moreover, for many practical designs the
complexity is not exponential.
Finally, let us consider the TED representation for functions with variables encoded as n-bit vec-
tors, X = ∑n−1

i=0 2ixi. For linear expressions, the space complexity of TED is linear in the number
of bits n, the same as *BMD. For polynomials of degree k ≥ 2, such as X 2, etc., the size of *BMD
representation grows polynomially with the number of bits, as O(nk). For K*BMD the representa-
tion also becomes nonlinear, with complexity O(nk−1), for polynomials of degree k ≥ 3. However,
for ordered, reduced and normalized TEDs, the graph remains linear in the number of bits, namely
O(n · k), for any degree k, as stated in the following theorem.

Theorem 4 Consider variable X encoded as an n-bit vector, X = ∑n−1
i=0 2ixi. The number of inter-

nal TED nodes required to represent X k in terms of bits xi, is k(n−1)+1.

Proof: We shall first illustrate it for the quadratic case k = 2. Let Wn be an n-bit representation of
X : X = Wn = ∑n−1

i=0 2ixi = 2(n−1)xn−1 +Wn−1 where Wn−1 = ∑n−2
i=0 2ixi is the part of X containing

the lower (n-1) bits. With that, W 2
n = (2n−1xn−1 +Wn−1)2 = 22(n−1)x2

n−1 + 2nxn−1Wn−1 +W 2
n−1.

Furthermore, let Wn−1 = (2n−2xn−2 +Wn−2), and W 2
n−1 = (22(n−2)x2

n−2 +2n−1xn−2Wn−2 +W 2
n−2).

Notice that the constant term (0-edge) of Wn−1 w.r.to variable xn−2 contains the term Wn−2, while
the linear term (1-edge) of W 2

n−1 contains 2n−1Wn−2. This means that the term Wn−2 can be shared
at this decomposition level by two different parents.As a result, there are exactly two non-constant
terms, Wn−2 and W 2

n−2 at this level.

n2

22(n−1)

Wn−1
2 Wn−1

1
n−1x

n−2x

nW2

Wn−1
2 Wn−1

1

1
22(n−2)

Wn−2
2

n2

22(n−1)

1

Wn−2

nW2 n−1x

n−2x

n−3x

n−12 n−22

Figure 14: Construction of TED for X 2 with n bits

In general, at any level l, associated with variable xn−l , the expansion of terms W 2
n−l and Wn−l will

create exactly two different non-constant terms, one representing W 2
n−l−1 and the other Wn−l−1;

plus a constant term 2n−l . The term Wn−l−l will be shared, with different multiplicative constants,
by W 2

n−l and Wn−l .
This reasoning can be readily generalized to arbitrary integer degree k; at each level there will
always be exactly k different non-constant terms. Since on the top variable (xn−1) level there is
only one node (the root), and there are exactly k non-constant nodes at each of the remaining
(n−1) levels, the total number of nodes is equal to k(n−1)+1. �
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The derivation of TED representation for X 2 generalized to n bits is shown in Figure 15,
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Figure 15: Derivation of TED representation for X 2 with n bits

Table 1 compares the worst-case size complexity of the canonical “decision” diagrams described
in this chapter in terms of the number of nodes as a function of the size of their operands (bit-width
n). It shows significantly lower worst-case complexity of TED compared to other representations.

Table 1: Size complexity of different canonical diagrams
Diagram type X X +Y X ·Y X k cX

MTBDD exp exp exp exp exp
EVBDD lin lin exp exp exp
*BMD lin lin lin nk lin

K*BMD lin lin lin nk−1 lin
TED const const const (n−1)k –

4.7 Composition of Taylor Expansion Diagrams

Taylor Expansion Diagrams can be composed to compute complex expressions from simpler ones.
This section describes general composition rules to compute a new TED as an algebraic sum (+)
or product (·) of two TEDs. The general composition process for TEDs is similar to that of the
APPLY operator for BDD’s [1], in the sense that the operations are recursively applied on respective
graphs. However, the composition rules for TEDs are specific to the rules of the algebra (R, ·,+).
Starting from the roots of the two TEDs, the TED of the result is constructed by recursively con-
structing all the non-zero terms from the two functions, and combining them, according to a given
operation, to form the diagram for the new function. To ensure that the newly generated nodes are
unique and minimal, the REDUCE operator is applied to remove any redundancies in the graph.
Let u and v be two nodes to be composed, resulting in a new node q. Let var(u) = x and var(v) = y
denote the decomposing variables associated with the two nodes. The top node q of the resulting
TED is associated with the variable with the higher order, i.e., var(q) = x, if x ≥ y, and var(q) = y
otherwise. Let f ,g be two functions rooted at nodes u,v, respectively, and h be a function rooted
at the new node q.
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For the purpose of illustration, we describe the operations on linear expressions, but the analysis
is equally applicable to polynomials of arbitrary degree. In constructing these basic operators, we
must consider several cases:

1. Both nodes u,v are terminal nodes. In this case a new terminal node q is created as val(q) =
val(u)+val(v) for the ADD operation, and as val(q)= val(u) ·val(v) for the MULT operation.

2. At least one of the nodes is non-terminal. In this case the TED construction proceeds accord-
ing to the variable order. Two cases need to be considered here: (a) when the top nodes u,v
have the same index, and (b) when they have different indices. The detailed analysis of both
cases is given in [70]. Here we show the multiplication of two diagrams rooted at variables
u and v with the same index.

h(x) = f (x) ·g(x) = ( f (0)+ x f ′(0)) · (g(0)+ xg′(0)) (19)
= [ f (0)g(0)]+ x[ f (0)g′(0)+ f ′(0)g(0)]+ x2[ f ′(0)g′(0)].

In this case, the 0-child of q is obtained by pairing the 0-children of u,v. Its 1-child is
created as a sum of two cross products of 0- and 1-children, thus requiring an additional
ADD operation. Also, an additional 2-child (representing the quadratic term) is created by
pairing the 1-children of u,v.

u0*v1+u1*v0u0*v0
u1*v1

x2
u*vx

x1*
u0 u1

u

v0 v1

vx x =

Figure 16: Multiplicative composition for nodes with same variables.

Figure 17 illustrates the application of the ADD and MULT procedures to two TEDs. As shown
in the figure, the root nodes of the two TEDs have the same variable index. The MULT operation
requires the following steps: (i) performing the multiplication of their respective constant (0-)
and linear (1-) children nodes; and (ii) generating the sum of the cross-products of their 0- and
1-children. On the other hand, the two TEDs corresponding to the resulting cross-product, as
highlighted in the figure, have different variable indices for their root nodes. In this case, the node
with the lower index corresponding to variable C is added to the 0-child of the node corresponding
to variable B.
It should be noted that the ADD and MULT procedures described above will initially produce non-
normalized TEDs, with numeric values residing only in the terminal nodes, requiring further nor-
malization. When these operations are performed on normalized TEDs, with weights assigned to
the edges, then the following modification is required: when the variable indices of the root nodes
of f and g are different, the edge weights have to be propagated down to the children nodes recur-
sively. Downward propagation of edge weights results in the dynamic update of the edge weights
of the children nodes. In each recursion step, this propagation of edge weights down to the chil-
dren proceeds until the weights reach the terminal nodes. The numeric values are updated only in
the terminal nodes. Every time a new node is created, the REDUCE and NORMALIZE operations
are required to be performed in order to remove any redundancies from the graph and generate a
minimal and canonical representation.
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Figure 17: Example of MULT composition: (A+B)(A+2C).

4.8 Design Modeling and Verfication with TEDs

Using the operations described in the previous section, Taylor Expansion Diagrams can be con-
structed to represent various computations over integers in a compact, canonical form. The compo-
sitional operators ADD and MULT can be used to compute any combination of arithmetic functions
by operating directly on their TEDs. However, the representation of Boolean logic, often present
in the RTL designs, requires special attention since the output of a logic block must evaluate to
Boolean rather than to an integer value.
Boolean Logic. Similarly to *BMDs, one can also define TED operators for Boolean logic, OR,
AND, and XOR, where both the range and domain of function are Boolean. This can be done in
much the same way as it is done for *BMDs. In fact, the TED and *BMD for a Boolean logic are
identical, because they require only the first moment decomposition (refer to Figure 5).
Similarly one can derive other operators which rely on Boolean variables as one of their inputs,
with other inputs being word-level. One such example is the multiplexer, MUX(c,X ,Y ) = c ·X +
(1− c) ·Y , where c is a binary control signal, and X and Y are word-level inputs.
In general, TED, which represents an integer-valued function, will also correctly model designs
with arithmetic and Boolean functions. Note that the ADD (+) function will always create correct
integer result over Boolean and integer domains, because Boolean variables are treated as binary
(0,1), a special case of integer. However the MULT (·) function may create powers of Boolean
variables, xk, which should be reduced to x. A minor modification of TED is done to account for
this effect so that the Boolean nature of variable x can be maintained in the representation. Such
modified Taylor Expansion Diagrams are also canonical.
TED Construction for RTL Designs. TED construction for an RTL design starts with building
trivial TEDs for its primary inputs. Partial expansion of the word-level input signals is often
necessary when one or more bits from any of the input signals fan out to other parts of the design.
This is the case in the designs shown in Fig. 18 (a) and (b), where bits ak = A[k] and bk = B[k]
are derived from word-level variables A and B. In this case, the word-level variables must be
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decomposed into several word-level variables with shorter bit-widths. In our case, A = 2(k+1)Ahi +
2kak +Alo and B = 2(k+1)Bhi +2kbk +Blo, where Ahi = A[n−1:k+1], ak = A[k], and Alo = A[k-1:0];
and similarly for variable B. Variables Ahi,ak,Alo,Bhi,bk,Blo form the abstracted primary inputs of
the system. The basic TEDs are readily generated for these abstracted inputs from their respective
bases (Ahi,ak,Alo), and (Bhi,bk,Blo).
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Figure 18: RTL verification using canonical TED representation: (a), (b) Functionally equivalent
RTL modules; (c) The isomorphic TED for the two designs.

Once all the abstracted primary inputs are represented by their TEDs, Taylor Expansion Diagrams
can be constructed for all the components of the design. TEDs for the primary outputs are then
generated by systematically composing the constituent TEDs in the topological order, from the
primary inputs to the primary outputs. For example, to compute A + B in Fig. 18 (a) and (b),
the ADD operator is applied to functions A and B (each represented in terms of their abstracted
components). The subtract operation, A−B, is computed by first multiplying B with a constant
−1 and adding the result to the TED of A. The multipliers are constructed from their respective
inputs using the MULT operator, and so on. To generate a TED for the output of the multiplexors,
the Boolean functions s1 and s2 first need to be constructed as TEDs. Function s1 is computed
by transforming the single-bit comparator ak > bk into a Boolean function and expressed as an
algebraic equation, s1 = ak ∧bk = ak · (1−bk), as described in Section 4.8. Similarly, s2 = ak ∨bk
is computed as s2 = 1−ak · (1−bk) and represented as a TED. Finally, the TEDs for the primary
outputs are generated using the MUX operator with the respective inputs. As a result of such a
series of composition operations, the outputs of the TED represent multi-variate polynomials in
terms of the primary inputs of the design.
TED-based Verification. After having constructed the respective ordered, reduced, and normal-
ized Taylor Expansion Diagram for each design, the test for functional equivalence is performed
by checking for isomorphism of the resulting graphs. In fact, the TED-based verification is similar
to that using BDDs and BMDs: the generation of the TEDs for the two designs under verification
takes place in the same TED manager; when the two functions are equivalent, both functions point
to the same root of the common TED. This is shown in Fig. 18(c).
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It should be noted that the arithmetic operations in these designs assume that no overflow is pro-
duced by any of the intermediate signal. That is, functions F1 and F2 are functionally equivalent
under infinite precision computation model. This limitaion is a natural consequence of the design
representation on the abstract level, where notion of the individual bits is not available.

4.9 Implementation and Experimental Results

A prototype version of TED software for behavioral HDL designs has been implemented using as
a front end a popular high-level synthesis system GAUT [71]. This system was selected due to
its commercial quality, robustness, and its open architecture. The input to the system is behav-
ioral VHDL or C description of the design. The design is parsed and the extracted data flow is
automatically transformed into canonical TED representation.
The core computational platform of the TED package consists of a manager that performs the con-
struction and manipulation of the graph. It provides routines to uniquely store and manipulate the
nodes, edges and terminal values, in order to keep the diagrams canonical. To support canonicity,
the nodes are stored in a hash table, implemented as unique table, similar to that of the CUDD
package [14], [72]. The table contains a key for each vertex of the TED, computed from the node
index and the attributes of its children and the edge weights. As a result, equivalence test between
two TEDs reduces to a simple scalar test between the identifiers of the corresponding vertices.
Variable Ordering. Since TEDs are a canonical representation subject to the imposition of a
total ordering on the variables, it is desirable to search for a variable order that would minimize
the size of TEDs. Dynamic variable ordering for TEDs is based on local swapping of adjacent
variables in the diagram, similar to those employed in BDD ordering [73, 74]. It has been shown
that, similarly to BDDs, local swapping of adjacent variables does not affect the structure of the
diagram outside of the swapping area.
In addition, TEDs can be subjected to static ordering. Typically, the variables are ordered topo-
logically, from primary inputs to primary outputs, in the order in which the signals appear in the
design specification. Coefficients are usually represented as weights associated with TED edges.
In some cases, however, it may be beneficial to treat some of the coefficients as special variables,
rather than weights associated with edges, and place them in the TED graph above all the sig-
nal variables. This is particularly important when TEDs are used for the purpose of expression
simplification and TED decomposition, as it facilitates symbolic factorization and common subex-
pression elimination [75].
Experimental Setup. Several experiments were performed using the prototype TEDify soft-
ware on a number of dataflow designs described in behavioral VHDL. The designs range from
simple algebraic (polynomial) computations to those encountered in signal and image processing
algorithms. Simple RTL designs with Boolean-algebraic interface were also tested.
The experiments with TED were conducted as follows. The design described in behavioral VHDL
or C was parsed by a high-level synthesis system GAUT [71]. The extracted data flow was then
automatically translated into a canonical TED representation using the experimental software TE-
Dify. Comparisons against *BMDs were conducted to demonstrate the power of abstraction of
TED representation. For this purpose, each design was synthesized into a structural netlist from
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which *BMDs were constructed. In most cases BDDs could not be constructed due to their pro-
hibitive size, and they are not reported. Experiments confirm that word-size abstraction by TEDs
results in much smaller graph size and computation times as compared to *BMDs.
Verification of High-level Transformations. During the process of architectural synthesis, the
initial HDL description often proceeds through a series of high-level transformations. For example,
computation AC + BC can be transformed into an equivalent one, (A + B)C, which better utilizes
the hardware resources. TEDs are ideally suited to verify the correctness of such transformations
by proving equivalence of the two expressions, regardless of the word size of the input/output sig-
nals. We performed numerous experiments to verify the equivalence of such algebraic expressions.
Results indicate that both time and memory usage required by TEDs is orders of magnitude smaller
as compared to *BMDs. For example, the expression (A + B)(C + D), where A,B,C,D are n-bit
vectors, has a TED representation containing just 4 internal nodes, regardless of the word size. The
size of *BMD for this expression varies from 418 nodes for the 8-bit vectors, to 2,808 nodes for
32-bit variables. BDD graphs could not be constructed for more than 15 bits.
RTL Verification. As mentioned earlier, TEDs offer the flexibility of representing designs
containing both arithmetic operators and Boolean logic. We used the generic designs of Figure 18
and performed a set of experiments to observe the efficiency of TED representation under varying
size of Boolean logic. The size of the algebraic signals A,B was kept constant at 32 bits, while
the word size of the comparator (or the equivalent Boolean logic) was varied from 1 to 20. As
the size of Boolean logic present in the design increases, the number of bits extracted from A,B
also increases (the figure shows it for single bits). Table 2 gives the results obtained with TED
and compares them to those of *BMDs. Note that, as the size of Boolean logic increases, TED
size converges to that of *BMD. This is to be expected as *BMDs can be considered as a special
(Boolean) case of TEDs.

Table 2: Size of TED vs. Boolean logic
bits *BMD TED
(k) Size CPU time Size CPU
4 4620 107 s 194 44 s
8 15K 87 s 998 74 s

12 19K 93 s 999 92 s
16 23.9K 249 s 4454 104 s
18 timeout >12 hrs 12.8K 29 min
20 timeout >12 hrs timeout >12 hrs

Array Processing. An experiment was also performed to analyze the capability of TEDs to
represent computations performed by an array of processors. The design that was analyzed is
an n× n array of configurable Processing Elements (PE), which is a part of a low power motion
estimation architecture [76]. Each processing element can perform two types of computations on
a pair of 8-bit vectors, Ai,Bi, namely (Ai −B j) or (A2

i −B2
j), and the final result of all PEs is then

added together. The size of the array was varied from 4× 4 to 16× 16, and the TED for the final
result was constructed for each configuration.
When the PEs are configured to perform subtraction (Ai −B j), both TEDs and *BMDs can be
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constructed for the design. However, when the PEs are configured to compute A2
i −B2

j , the size of
*BMDs grows quadratically. As a result, we were unable to construct *BMDs for the 16×16 array
of 8-bit processors. In contrast, the TEDs were constructed easily for all the cases. The results are
shown in Table 3. Note that we were unable to construct the BDDs for any size n of the array for
the quadratic computation.

Table 3: PE computation: (A2
i −B2

j).
Array size *BMD TED

(n×n) Size CPU time Size CPU time
4× 4 123 3 s 10 1.2 s
6× 6 986 3.4 s 14 1.5 s
8× 8 6842 112 s 18 1.6 s

16× 16 out of mem - 34 8.8 s

DSP Computations. One of the most suitable applications for TED representation are algorith-
mic descriptions of dataflow computations, such as digital signal and image processing algorithms.
For this reason, we have experimented with the designs that implement various DSP algorithms.
Table 4 presents some data related to the complexity of the TEDs constructed for these designs.
The first column in the Table describes the computation implemented by the design. These in-
clude: FIR and IIR filters, fast Fourier transform (FFT ), elliptical wave filter (Elliptic), least
mean square computation (LMS128), discrete cosine transform (DCT ), matrix product computa-
tion (ProdMat), Kalman filter (Kalman), etc. Most of these designs perform algebraic computa-
tions by operating on vectors of data, which can be of arbitrary size. The next column gives the
number of inputs for each design. While each input is a 16-bit vector, TED represents them as
word-level symbolic variable. Similarly, the next column depicts the number of 16-bit outputs.
The remaining columns of the table show: BMD size (number of nodes), CPU time required to
construct the BMD for the 16-bit output words, TED size (number of nodes) required to represent
the entire design; CPU times required to generate TED diagrams does not account for the parsing
time of the GAUT front end.

Table 4: Signal Processing Applications
Design Input Output *BMD size BMD CPU TED size TED CPU

size size (nodes) time (s) (nodes) time (s)
Dup-real 3x16 1x16 92 10 5 1

IIR 5x16 1x16 162 13 7 1
FIR16 16x16 1x16 450 25 18 1

FFT 10x16 8x16 995 31 29 1
Elliptic 8x16 8x16 922 19 47 1

LMS128 50x16 1x16 8194 128 52 1
DCT 32x16 16x16 2562 77 82 1

ProdMat 32x16 16x16 2786 51 89 1
Kalman 77x16 4x16 4866 109 98 1
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Fig. 19 depicts a multiple-output TED for the elliptical wave filter (design elliptic), where each
root node corresponds to an output of the design.

  sv18_o    sv26_o  

inp.1

  sv38_o  

inp.2

  sv33_o  

inp.3

  sv39_o  

inp.4

2

  outp  

inp.5

  sv2_o  

inp.6

  sv13_o  

inp.7 inp.8

sv2.1

T1

6

sv33.1

6

sv39.1

2

sv13.1

2

sv26.1

2

5 sv18

4

sv2.2

4

sv33.2

4

sv39.2

4

sv13.2

4

sv26.2

3

2

sv2.3

2

sv33.3

5

sv39.3

2

3

sv13.3

sv26.3

sv38

2

sv2.4

2

sv33.4

5

sv39.4

6

sv13.4

2

sv26.4

2

2

sv2.5

2

sv33.5

6

sv39.5

9

sv13.5

2

sv2.6

sv33.6

3

sv39.6

5

10

sv2.7

9

sv33.7

2

sv39.7

sv13.6

3

11

sv2.8

11

sv33.8

3

sv39.8

3

sv13.7

8

sv26.5

2

3

 inp 

 sv2 

 sv33 

 sv39 

 sv13 

 sv26 

 sv18 

 sv38 

Figure 19: Elliptic Wave Filter: TED structure obtained automatically from VHDL description.

Algorithmic Verification. This final set of experiments demonstrates the natural capability of
Taylor Expansion Diagrams to verify equivalence of designs described at the algorithmic level.
Consider two dataflow designs computing convolution of two real vectors, A(i),B(i), i = 0, . . .N −
1, shown in Fig. 20. The design in Fig. 20(a) computes FFT of each vector, computes product of
the FFT results, and performs the inverse FFT operation, producing output IFFT . The operation
shown in Fig. 20(b) computes convolution directly from the two inputs, C(i)= ∑N−1

k=0 A(k) ·B(i−k).
TED was used to represent these two computations for N = 4 and to prove that they are indeed
equivalent. Fig. 21 depicts the TED for vector C of the convolution operation, isomorphic with the
vector IFFT . All graphs are automatically generated by our TED-based verification software.
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Figure 20: Equivalent Computations: (a) FFT-Product-Inv(FFT); (b) Convolution.

As illustrated by the above example, TEDs can be suitably augmented to represent computations
in the complex domain. In fact, it can be shown that TEDs can represent polynomial functions
over an arbitrary field. The only modification required is that the weights on the graph edges be
elements of the field, and that the composition (MULT and ADD) be performed with the respective
operators of the field. Subsequently, TEDs can also be used to represent computations in Galois
field [77].
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Figure 21: TED for convolution vector C, isomorphic with IFFT

4.10 Limitations of TED Representation

TEDs have several natural limitations. As mentioned eralier, TEDs can only be used to represent
infinite precision arithmetic, and cannot represent modular arithmetic. Furthermore, they can only
represent functions that have finite Taylor expansion, and in particular multi-variate polynomials
with finite integer degrees. For polynomials of finite integer degree k ≥ 1, successive differentiation
of the function ultimately leads to zero, resulting in a finite number of terms. However, those
functions that have infinite Taylor series (such as ax, where a is a constant) cannot be represented
with a finite TED graph. In order to represent exponentials using TEDs, one must expand the
integer variable into bits, X = {xn−1,xn−2, . . . ,x0}, and use the TED formulas to represent the
function in terms of the bits. Such a TED would be structurally similar to the *BMD representation
of the function.
While TED representation naturally applies to functions that can be modeled as finite polynomials,
the efficiency of TED relies on its ability to encode the design in terms of its word-level symbolic
inputs, rather than bit-level signals. This is the case with the simple RTL designs shown in Figure
18, where all input variables and internal signals have simple, low-degree polynomial representa-
tion. The abstracted word-level inputs of these designs are created by partial bit selection (ak,bk)
at the primary inputs, and a polynomial function can be constructed for its outputs. However, if
any of the internal or output signals is partitioned into sub-vectors, such sub-vectors cannot be
represented as polynomials in terms of the symbolic, word-level input variables, but depend on the
individual bits of the inputs. The presence of such signal splits creates a fundamental problem for
the polynomial representations, and TEDs cannot be used efficiently in those cases. For similar
reasons TED cannot represent modular arithmetic. An attempt to fix this problem was proposed
in [77], by modeling the discrete functions as finite, word-level polynomials in Galois Field (GF).
The resulting polynomials, however, tend to be of much higher degree than the original function,
with the degree depending on the signal bit-width, making the representation less efficient for
practical applications. This is the case where TEDs can exhibit space explosion similar to that
encountered in BDDs and BMDs.
Another limitation of TEDs is that they cannot represent relational operators (such as comparators,
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A ≥ B,A == B, etc.) in symbolic form. This is because Taylor series expansion is defined for func-
tions and not for relations. Relations are characterized by discontinuities over their domain and are
not differentiable. In order to use TEDs to represent relational operators, often encountered in RTL
descriptions, the expansion of word-level variables and bit vectors into their bit-level components
is required.
Despite these limitation, TEDs can be successfully used for verifying equivalence of high-level,
behavioral and algorithmic descriptions. Such algorithmic descriptions typically do not exhibit
signal splits, hence resulting in polynomial functions over word-level variables.

4.11 Conclusions and Open Problems

This section described a compact, canonical, graph-based representation, called Taylor Expansion
Diagram (TED). It has been shown that, for a fixed ordering of variables, TED is a canonical rep-
resentation that can be used to verify equivalence of arithmetic computations in dataflow designs.
It has been shown how TEDs can be constructed for behavioral and some RTL design descriptions.
The power of abstraction of TEDs makes them particularly applicable to dataflow designs specified
at the behavioral and algorithmic level.
For larger systems, especially those involving complex bit-select operations, and containing large
portions of Boolean logic, relational operators and memories, TEDs can be used to represent those
portions of the design that can be modeled as polynomials. Equivalence checking of such complex
design typically involves finding structurally similar points of the designs under verification. TED
data structure can be used here to raise the level of abstraction of large portions of designs, aiding
in the identification of such similar points and in the overall verification process. In this sense
TEDs complements existing representations, such as BDDs and *BMDs, in places where the level
of abstraction can be raised.
The experiments demonstrate the applicability of TED representation to verification of dataflow de-
signs specified at behavioral and algorithmic levels. This includes portions of algorithm-dominant
designs, such as signal processing for multimedia applications and embedded systems. Computa-
tions performed by those designs can often be expressed as polynomials and be readily represented
with TEDs. The test for functional equivalence is then performed by checking isomorphism of the
resulting graphs. Of particular promise is the use of TEDs in verification of algorithmic descrip-
tions, where the use of symbolic, word-level operands, without the need to specify their bit-width,
is justified. A number of open problems remain to be researched to make TEDs a reliable data
structure for high-level design representation and verification.
In addition to these verification-related applications, TEDs proves useful in algorithmic and be-
havioral synthesis and optimization for DSP and data-flow applications [75]. TED data structure,
representing functional view of the computation can serve as an efficient vehicle to obtain a struc-
tural representation, namely the data flow graph (DFG). This can be obtained by means of graph
decomposition which transforms the functional TED representation into a structural DFG repre-
sentation. By properly guiding the decomposition process the resulting DFG can provide a better
starting point for the ensuing architectural (high-level) synthesis, than the one extracted directly
from the original HDL specification.
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5 Represention of Multiple Output Functions Over Finite Fields
This section presents a method for representing multiple-output, binary and word-level functions in
GF(N) (N = pm, p a prime number and m a nonzero positive integer) based on decision diagrams
(DD). The presented DD is canonical and can be made minimal with respect to a given variable
order. The DD has been tested on benchmarks including integer multiplier circuits and the results
show that it can produce better node compression (more than an order of magnitude in some cases)
compared to shared BDDs. The benchmark results also reflect the effect of varying the input and
output field sizes on the number of nodes. Methods of graph-based representation of characteristic
and encoded characteristic functions in GF(N) are also presented. Performance of the proposed
representations has been studied in terms of average path lengths and the actual evaluation times
with 50,000 randomly generated patterns on many benchmark circuits. All these results reflect that
the proposed technique can out perform existing techniques.

5.1 Previous Work

Finite fields have numerous applications in public-key cryptography [78] to encounter channel
errors and for protection of information, error control codes [79] and digital signal processing [80].
Finite fields gained significance with practical lucrativeness of the elliptic curve crypto systems.
The role of finite fields in error control systems is well established and contributes to many fault
tolerant designs. In the EDA industry the role of multivalued functions, especially in the form of
Multi-valued Decision Diagrams (MDD), is well described in [81,82]. Word-level diagrams can be
useful in high level verification, logic synthesis [1, 83], and software synthesis [84]. Multivalued
functions can also be represented in finite fields as shown in [85]. Finite fields can represents
many arithmetic circuits very efficiently [86]. Also there are fine grain FPGA structures for which
arithmetic circuits in finite fields seem to be highly efficient. The varied use of finite fields leads to
designing high speed, low complexity systolic VLSI realizations [87]. Fast functional simulation
in the design cycles is a key step in all these applications [88].
Most existing techniques for word-level representation, e.g. [2, 89], are not capable of efficiently
representing arbitrary combinations of bits or nibbles, i.e. subvectors, within a word. The proposed
framework for representing circuits can deal with these types of situations by treating each sub-
vector as a word-level function in GF(2m), where m denotes the number of bits within a subvector.
The word-level functions are then represented as canonic word-level graphs. Hence the proposed
technique offers a generalized framework for verifying arbitrary combinations of bits or words.
Another situation where existing word-level techniques seem to have difficulty is representing non-
linear design blocks, such as comparators, at the register transfer level, RTL (e.g., in the integer
domain). The proposed framework does not suffer from this critical shortcoming.
As an example of representing an arbitrary combination of output bits in a multiple-output
function, lets consider a 4-input 8-output binary function. The MSB expressed by f =

∑m(10,11,12,13,14,15) 1, and the LSB g = ∑m(4,5,6,7,8,9,10,11,14,15) can be represented
1The notation h = ∑m(p1, p2, . . . , pq) is used to represent the truth-table of a function where each pr (1 ≤ r ≤ q)

is the decimal equivalent of a row in the input-part of the table with an output of 1, i.e. each pr is a minterm from the
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on the same diagram as shown Fig. 22 [90]. The BDD based representation of this circuit will
require larger number of nodes.
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Figure 22: Representing two bits simultaneously.

Although research has been done on representing circuits in finite fields [86, 91], the theoretical
basis was carried out, for example, in the spectral domain for a fixed value, e.g. 4 in [91]. Unlike
these techniques, this section presents the generalized framework for the design, verification, and
simulation of circuits in finite fields based on the MDD-like graph-based form. The proposed DD
has advantages over other diagrams such as [2] in that, in addition to applications in multiple-
valued algebra, it is not restricted to word boundaries, but instead it can be used to represent
and verify any combination of output bits. Unlike [92], which is not a DD and hence lacks many
features present in a DD, the proposed diagram does not have such shortcomings. Also, unlike [82],
the proposed DD represents finite fields and extension fields, while [82] is based on the MIN-MAX
post algebra.
Owing to its canonicity the proposed technique can be used for verifying circuits at the bit or
word-level by checking for graph isomorphism, which can be done very quickly.
Fast evaluation times of multiple-output functions is significant in the areas of logic simulation,
testing, satisfiability, and safety checking [93, 94]. The proposed DDs also offer much shorter
average path lengths and hence evaluation times [95] compared to shared BDDs, with a varying
trade-off between evaluation times and spatial complexity.

5.2 Background and Notation

Finite Fields Let GF(N) denote a set of N elements, where N = pm and p is a prime number
and m a nonzero positive integer, with two special elements 0 and 1 representing the additive and
multiplicative identities respectively, and two operators addition ‘+’ and multiplication ‘·’. GF(N)
defines a finite field, also known as Galois Field, if it forms a commutative ring with identity over
these two operators in which every element has a multiplicative inverse. In otherwords, GF(N)
defines a finite field if the following properties hold.

• Associativity: ∀a,b,c ∈ GF(N) (a+b)+ c = a+(b+ c), and (a ·b) · c = a · (b · c).

• Identity: ∀a ∈ GF(N) a+0 = 0+a = a, and a ·1 = 1 ·a = a. Here ‘0’ and ‘1’ are the additive
and multiplicative identities respectively.

ON-set in its decimal form.
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• Inverse: ∀a ∈ GF(N) ∃− a,a−1 ∈ GF(N) such that a +(−a) = 0 and a · a−1 = 1. Here −a
and a−1 are the additive and multiplicative inverses respectively.

• Commutative: ∀a,b ∈ GF(N) a+b = b+a, and ∀c,d ∈ GF(N)−{0} c ·d = d · c.

• Distributive: ‘·’ distributes over ‘+’, i.e. ∀a,b,c ∈ GF(N) a · (b+ c) = (a ·b)+(a · c).

Here p, which is a prime number, is called the characteristic of the field, and satisfies the following
conditions: (a) 1+1+ · · ·+1

︸ ︷︷ ︸

p times
= 0. (b) pa = 0, ∀a ∈ GF(N). Also ∀a ∈ GF(N), aN = a, and for

a 6= 0, aN−1 = 1. The elements of GF(N) can be represented as polynomials over GF(p) of degree
at most n− 1. There exists an element α ∈ GF(N) for which the powers of α,α2, . . . ,αN−1 are
distinct and represent the nonzero elements of the field. Here α is called the primitive element of
the field. Additional properties of GF(N) can be found in [79, 85].

Generation of Finite Fields A polynomial p(x) over GF(pm) is said to be primitive if it is
irreducible (i.e. cannot be factored into lower degree polynomials), and if the smallest positive
integer r for which p(x) divides xr −1 is r = pm −1.
For example, the polynomial p(x) = x3 +x+1 is primitive over GF(2), because the smallest posi-
tive integer for which it is a divisor of xr −1 is r = 7 = 23 −1, i.e. x7 −1.
Finite fields over GF(2m) and m ≥ 2 can be generated with primitive polynomials (PP) of the form
p(x) = xm +∑m−1

i=0 cixi, where ci ∈ GF(2) [79].
For example given the PP p(x) = x3 + x + 1, we can generate GF(8) as follows. Let α be a root
of p(x), i.e. p(α) = 0. Hence α3 + α + 1 = 0 or α3 = α + 1. In general any element β ∈ GF(2m)
can be represented in this polynomial form as β(x) = ∑m−1

i=0 βixi, where βi ∈ {0,1}. In this way
all the elements of GF(8) can be generated as shown in Table 5. Note that since each coefficient
βi ∈ {0,1}, each element in its polynomial form can also be represented as a bit vector, as shown
in the third column. The bit vectors can be stored as integers in a computer program. For example,
the element α4 is 5 in decimal, which can be stored as an integer.

Operations Over Finite Fields For any α,β ∈ GF(2m), if α and β are in their polynomial forms
as α(x) = ∑m−1

i=0 αixi and β(x) = ∑m−1
i=0 βixi, where αi,βi ∈ {0,1} and 0 ≤ i < m, then multiplication

over GF(2m) can be defined as w(x) = α(x) ·β(x) mod p(x), where p(x) represents the PP used to
generate the fields [79, 85, 96]. As an example, let α,β ∈ GF(4), which is generated with the PP
p(x) = x2 + x+1. Also let α(x) = x and β(x) = x+1. Then

α ·β = α(x) ·β(x) mod p(x)
= x · (x+1) mod x2 + x+1
= x2 + x mod x2 + x+1
= 1.

If the elements are in their exponential form as in the first column of Table 5, then multiplications
can also be carried out as follows. Let a,b ∈ GF(2m) and that a = αx and b = αy. Then a ·
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Table 5: Generation of GF(23).

Exponential Polynomial Bit vector
Representation Representation

0 = 0 ↔ [0,0,0]
α0 = 1 ↔ [0,0,1]
α1 = α ↔ [0,1,0]
α2 = α2 ↔ [1,0,0]
α3 = α+1 ↔ [0,1,1]
α4 = α2 +α ↔ [1,1,0]
α5 = α3 +α2 = α2 +α+1 ↔ [1,1,1]
α6 = α2 +1 ↔ [1,0,1]

b = α(x+y) mod 2m−1, where the addition is carried out over integers. For example, from Table 5
α5 ·α6 = α(5+6) mod 7 = α4 over GF(8).
α+β, i.e. addition over GF(2m), is the bitwise EXOR of the bit vectors corresponding to α(x) and
β(x). For example, let a = α5 and b = α6 from Table 5. We also have a = [1,1,1] and b = [1,0,1].
Hence a+b = [0,1,0], which is α.
Fig. 23 shows multiplication and addition tables over GF(4).

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

(a) Addition

× 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

(b) Multiplication

Figure 23: Addition and multiplication over GF(4).

Notation The following notation is used in this chapter.
Let IN = {0,1, . . .,N −1}, and δ : IN → GF(N) be a one-to-one mapping, with δ(0) = 0.
Let f |xk=y, called the cofactor of f w.r.t. xk = y, represent the fact that all occurrences of xk within f
is replaced with y, i.e. f |xk=y = f (x1,x1, . . . ,xk = y, . . . ,xn). The notation f |xi=yi,xi+1=yi+1,...,xi+ j=yi+ j
(or just f |yi,yi+1,...,yi+ j when the context is clear) will be used to represent the replacement of vari-
ables xi,xi+1, . . . ,xi+ j with the values yi,yi+1, . . . ,yi+ j respectively.
We shall use the notation |A| to represent the total number of nodes in a graph A.
We have the following in GF(N).
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Theorem 5 A function f (x1,x2, . . . ,xk, . . . ,xn) in GF(N) can be expanded as follows.

f (x1,x2, . . . ,xk, . . . ,xn) =
N−1
∑
e=0

ge(xk) f |xk=δ(e), (20)

where ge(xk) = 1− [xk −δ(e)]N−1.

Proof. The proof is done by perfect induction as follows. From the properties of GF(N) we
have, for any a ∈ GF(N) such that a 6= 0, aN−1 = 1. Now in Theorem 5 if xk = δ(r), then gr(xk) =
1 for r ∈ IN . Furthermore, gs(xk) = 0 ∀s ∈ IN and s 6= r. Therefore, only one term, namely
f (x1,x2, . . . ,δ(r), . . . ,xn), remains on the right-hand-side of Eq. (20), while all the remaining terms
equate to zero. Hence the proof follows. [Q.E.D.]

In Theorem 5 ge(xk) is called a multiple-valued literal2 in GF(N). Theorem 5 is known as the
literal-based expansion of functions in GF(N). Theorem 5 reduces to the Shannon’s expansion
over GF(2) as follows. If we put N = 2 in Eq. (20) then

f (x1,x2, . . . ,xk, . . . ,xn) =
2−1
∑
e=0

ge(xk) f |xk=δ(e)

= g0(xk) f |x=0 +g1(xk) f |x=1

= x̄x f |x=0 + xk f |x=1,

where ȳ represents that y appears in its complemented form.
The product of literals is called a product-term or just a product.
Two product-terms are said to be disjoint if their product in GF(N) equates to zero.
An expression in GF(N) constituting product-terms is said to be disjoint if all of its product terms
are pairwise disjoint.
This chapter is organized as follows. Section 5.3 presents the theory behind the graph based repre-
sentation and its reduction, with methods for additional node and path optimizations. Section 5.9
provides the theory behind representing functions in GF(N) in terms of graph-based characteristic
and encoded characteristic functions. The proposed methods offer much shorter evaluation times
than existing approaches and Section 5.10 provides a technique for calculation of the average path
lengths for approximating the evaluation times for the proposed representations. The proposed
technique has been tested on many benchmark circuits. Finally in Section 5.11 we present the
experimental results.

5.3 Graph-Based Representation

Any function in GF(N) can be represented by means of a MDD-like [82] data structure. However,
unlike traditional MDDs, which are used to represent functions in the MIN-MAX post algebra, al-
gebra of finite fields needs considering. Although an MDD type of data structure has been used for

2The term ‘literal’ was chosen because in GF(2) this expression reduces to the traditional Boolean literal, i.e. it
represents a variable or its complement (inverse).
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representing functions in finite fields in [91], the underlying mathematical framework was consid-
ered for GF(4) only, and no generalization was proposed for higher order fields and their extensions
and no experimental results were reported, even though it was reported that generalization can be
made. Also, no technique seems to exist, which can further optimize an MDD-like representation
of functions in GF(N) by zero terminal node suppression and normalization. It should be noted
that the technique of [82] has used a type of edge negation based on modular arithmetic. However,
modular arithmetic in the form considered in [82] does not naturally comply with extension fields.
Since an MDD has been defined in terms of functions in the MIN-MAX post algebra, to distin-
guish between these two algebras the MDD-like representation of functions in finite fields will be
called (M)ultiple-(O)utput (D)ecision (D)iagrams or MODDs. Hence, traditional MDDs result in
a post algebraic MIN-MAX SOP form, while with the MODD a canonic polynomial expression
in GF(N) can be obtained. As an example, the MODD of Fig. 27(a), which represents a 4-valued
function with values in {0,1,α,β} (assuming α = 2 and β = 3), yields the following expression in
the MIN-MAX postalgebra:

f (x1,x2,x3) = β(xβ
1xβ

2 ∨ x{1,α}
1 x{1,α,β}

2 xβ
3 ∨ xβ

1x{1,α}
2 xβ

3 ∨ x0
1x{1,α}

2 xβ
3)∨

α(xβ
1x{1,α}

2 xα
3 ∨ x{1,α}

1 x{1,α,β}
2 xα

3 ∨ x0
1x{1,α}

2 xα
3 )∨

(xβ
1x{1,α}

2 x1
3 ∨ x{1,α}

1 x{1,α,β}
2 x1

3 ∨ x0
1x{1,α}

2 x1
3).

Here the symbol ‘∨’ has been used to denote MAX. MIN is denoted by the product-like notation.
The expression xS

i , where S ⊆ {0,1,α,β}, is a literal defined in the MIN-MAX postalgebra as xS
i =

MAX VALUE, where MAX VALUE = β in this case, if xi ∈ S; xS
i = 0 otherwise. In contrast xS

i = 1
if xi ∈ S; xS

i = 0 otherwise in GF(N) (Theorem 5). The following multivariate polynomial results
from the MODD in GF(4) by application of Theorem 5 followed by expansion and rearranging the
terms:

f (x1,x2,x3) = βx3
1x3

2 +αx2
1x3

2 + x1x3
2 +αx3

1x2
2 + x2

1x2
2 +βx1x2

2 + x3x2 +βx2
1x2 +αx1x2 +βx2

2x3

+αx2x3 +βx2
1x3

2x3 +αx1x3
2x3 +αx2

1x2
2x3 + x1x2

2x3 + x2
1x2x3 +βx1x2x3.

Definition 1 (Decision Diagram) A decision diagram in GF(N) is a rooted directed acyclic graph
with a set of nodes V containing two types of nodes: (a) A set of N terminal nodes or leaves with
out-degree zero, each one labeled with a δ(s) and s ∈ IN . Each terminal node u is associated with
an attribute value(u) ∈ GF(N). (b) A set of non-terminal nodes, with out-degree of N. Each non-
terminal node v is associated with an attribute var(v) = xi and 1 ≤ i ≤ n, and another attribute
child j(v) ∈V, ∀ j ∈ IN , which represents each of the children (direct successor) of v.

The correspondence between a function in GF(N) and an MODD in GF(N) can be defined as
follows.

Definition 2 (Recursive Expansion) An MODD in GF(N) rooted at v denotes a function f v in
GF(N) defined recursively as follows: (a) If v is a terminal node, then f v = value(v), where
value(v) ∈ GF(N). (b) If v is a non-terminal node with var(v) = xi, then f v is the function

f v(x1,x2, . . . ,xi, . . . ,xn) =
N−1
∑
e=0

ge(xi) f childe(v),

40



where ge(xi) = 1− [xi−δ(e)]N−1.

Each variable xi and 1 ≤ i ≤ n in an MODD is associated with one or more nodes, which appear at
the same level in the MODD. More precisely, the nodes associated with variable xi corresponds to
level-(i−1) and vice versa. Therefore level-i, corresponding to variable xi+1, can contain at most
Ni nodes. Hence the root of the MODD contains exactly 1 node, and the level before the external
nodes can contain at most Nn−2 nodes.
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Figure 24: Effect of variable ordering.

Example 1 Let us consider the MODD shown in Fig. 24(a). This MODD represents the following
function in GF(3): f (x1,x2) = g1(x1)+ g2(x1)g1(x2)+ α · g2(x1)g2(x2), where gr(xs) = 1− [xs −
δ(r)]2.
Here both the levels 0 and 1, corresponding to the variables x1 and x2 respectively, contain exactly
1 node each.

Lemma 2 Theorem 5 results in a disjoint expression, i.e. the product-terms in Eq. (20) are mutu-
ally (pairwise) disjoint.

Proof. In Eq. (20) ge(xk) = 1 iff xk = δ(e). For all other values of xk ge(xk) = 0. Let us consider
any two literals gr(xk) and gs(xk) such that r 6= s. Two cases may arise:
Case I: xk 6= δ(r) and xk 6= δ(s). In this case both gr(xk) and gs(xk) will equate to 0. Therefore,
gr(xk) ·gs(xk) = 0.
Case II: Either xk = δ(r) or xk = δ(s), but not both. If xk = δ(r), then gr(xk) = 1 and gs(xk) = 0;
otherwise, gr(xk) = 0 and gs(xk) = 1. Therefore, gr(xk) ·gs(xk) = 0.
Hence the proof follows. [Q.E.D.]

Lemma 2 yields the following.

Theorem 6 Each path from the root node to a non-zero terminal node in an MODD represents a
disjoint product term in GF(N).

Example 2 Let us consider the MODD in Fig. 24(a) representing a function in GF(3). The path
α,1 represents the product-term X = gα(x1)g1(x2). The path α,α represents the product-term
Y = gα(x1)gα(x2). Clearly X and Y are disjoint, because X ·Y = 0 as g1(x2) ·gα(x2) = 0.
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5.4 Reduction

We have the following from Theorem 5.

Corollary 6.1 In Eq. (20), if ∀i, j ∈ IN and i 6= j f |xk=δ(i) = f |xk=δ( j), then f = f |xk=δ(0) =
f |xk=δ(1) = · · · = f |xk=δ(N−1).

Proof. By perfect induction. Let h = f |xk=δ(0) = f |xk=δ(1) = · · · = f |xk=δ(N−1). Then Eq. (20)
becomes, f = h∑N−1

e=0 ge(xk).
For any a ∈ GF(N) such that a 6= 0, aN−1 = 1. Now in Theorem 5 if xk = δ(r), then gr(xk) = 1
for r ∈ IN . Furthermore, gs(xk) = 0, ∀s ∈ IN and s 6= r. Therefore, ∑N−1

e=0 ge(xk) becomes 1, which
implies f = h. Hence the proof. [Q.E.D.]

Based on the above, an MODD can be reduced as outlined in the following.

Reduction Rules There are two reduction rules.

• If all the N children of a node v point to the same node w, then delete v and connect the
incoming edge of v to w. This follows from Corollary 6.1.

• Share equivalent subgraphs.

A DD in GF(N) is said to be ordered if the expansion in Eq. (20) is recursively carried out in
a certain linear variable order such that on all the paths throughout the graph the variables also
respect the same linear order.
A DD in GF(N) is said to be reduced iff: (a) There is no node u ∈V such that ∀i, j ∈ IN and i 6= j,
childi(u) = child j(u). (b) There are no two distinct nodes u,v ∈ V which have the same variable
names and same children, i.e. var(u) = var(v) and childi(u) = childi(v) ∀i ∈ IN implies u = v.
We have the following from the definition of the MODD.

Lemma 3 For any node v in a reduced DD in GF(N), the subgraph rooted at v is itself reduced.

Canonicity A reduced ordered MODD in GF(N) based on the expansion of Theorem 5 is canon-
ical up to isomorphism. This is stated in the following.

Theorem 7 For any n variable function f (x1,x2, . . . ,xn) in GF(N) there is exactly one reduced
ordered DD in GF(N) with respect to a specific variable order, which is minimal with respect to
the reduction rules.

Proof. The proof is done by induction on the number of arguments n in f .
Base Case: If n = 0, then the function yields a constant in GF(N). The resulting reduced ordered
DD in GF(N) has exactly one node, namely the terminal node with a value in GF(N). Therefore,
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any function in GF(N) with n = 0 will have exactly one external node with the same value in
GF(N), and hence will be unique. Note that any reduced ordered DD in GF(N) with at least one
non-terminal node would yield a non-constant function.
Induction Hypothesis: Assume that the theorem holds for all functions with n−1 arguments.
Induction Step: We show that the theorem holds for any function f in GF(N) with n arguments.
Without loss of generality, let us assume that the variables are ordered as (x1,x2, . . . ,xn). Consid-
ering the first variable x1,

f (x1,x2, . . . ,xn) =
N−1
∑
e=0

ge(x1) f |x1=δ(e), (21)

where ge(x1) = 1− [x1 −δ(e)]N−1.
Let f z represent the function realized by the subgraph rooted by z. In a reduced ordered DD
in GF(N) for f , each f |x1=δ(i), ∀i ∈ IN , is represented by a subgraph rooted by ui. Since, each
f |x1=δ(i) is a function of n− 1 variables, so each ui, ∀i ∈ IN , represents a unique reduced ordered
DD in GF(N), by the induction hypothesis.
Two cases may arise:
Case 1: ∀i, j ∈ IN and i 6= j, ui = u j. It must be the case that, f ui = f u j , which implies f |x1=δ(i) =
f ui = f u j = f |x1=δ( j). Therefore, ui = u j, ∀i, j ∈ IN and i 6= j, is a reduced ordered DD in GF(N)
for f . This is also unique, since if its not then owing to the ordering x1 would appear in the root
node v if it appears at all. This would imply that f = f v. Therefore, from the definition of a
DD in GF(N), we must have f |x1=δ(k) = f v|x1=δ(k) = f childk(v), ∀k ∈ IN . Since, by assumption,
f |x1=δ(i) = f ui = f u j = f |x1=δ( j), ∀i, j ∈ IN and i 6= j, this would imply that all the children of v
would be the same. This is a contradiction, because it violates the fact that the DD is reduced.
Hence, the reduced ordered DD in GF(N) must be unique.
Case 2: ∃S ⊆ IN such that ∀k, l ∈ S and k 6= l, uk 6= ul . Therefore, by the induction hypothesis,
f uk 6= f ul , ∀k, l ∈ S and k 6= l. Let w be a node with var(w) = x1, and childq(w) = uq, ∀q ∈ IN .
Therefore,

f w =
N−1
∑
e=0

ge(x1) f ue,

where ge(x1) = 1− [x1 −δ(e)]N−1, and the DD in GF(N) rooted by w is reduced.
By assumption f ut = f |x1=δ(t), ∀t ∈ IN . Therefore, from Eq. (21), f w = f .
Suppose that this reduced ordered DD in GF(N) is not unique, and that there exists another reduced
ordered DD in GF(N) for f rooted by w′. Now, f w′

= f , and it must be the case that f w′
|x1=δ(k) 6=

f w′
|x1=δ(l), ∀k, l ∈ S and k 6= l. If this is not the case, then f |x1=δ(i) = f w′

|x1=δ(i) = f childi(w′) =

f child j(w′) = f w′
|x1=δ( j) = f |x1=δ( j), ∀i, j ∈ IN and i 6= j. This is a contradiction, since this would

imply that all the children of w′ would be the same, thus violating the fact that the DD is reduced.
Now, due to the ordering, var(w′) = x1 = var(w). In addition, since f w′

= f , it follows
that f childr(w′) = f |x1=δ(r) = f ur = f childr(w), ∀r ∈ IN . Therefore, by the induction hypothesis,
childr(w′) = ur = childr(w), ∀r ∈ IN . Therefore, it follows that w = w′, by induction. Hence
the proof for uniqueness follows by induction.
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Minimality We now prove the minimality of a reduced ordered DD in GF(N) in terms of the
total number of nodes, with respect to the reduction rules. Suppose that the reduced ordered DD
in GF(N) for f is not minimal with respect to the reduction rules. Then we can find a smaller
DD in GF(N) for f as follows. If the DD in GF(N) contains a node v with childi(v) = child j(v),
∀i, j ∈ IN and i 6= j, then eliminate v and for any node w with childk(w) = v (k ∈ IN), make
childk(w) = child0(v).
If the DD in GF(N) contains distinct but isomorphic subgraphs rooted by v and v′, then eliminate
v′ and for any node w such that childk(w) = v′ (k ∈ IN), make childk(w) = v. [Q.E.D.]

A Reduction Algorithm A reduction algorithm for MODD appears in Fig. 25. In order for
sharing of equivalent subgraphs, subgraphs already present in the MODD are placed in a table. In
Lines 4, 6, 12, and 14 we have assumed that checking for membership and addition of an element
to such a table (HT ) can be carried out in constant times, e.g. by using a hash-table. Hence, the
complexity of the algorithm is O(|G|) since each node can be made to be visited just once during
the reduction process, where G is an MODD of a function before the reduction.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Algorithm ReduceDD(v : node) : node;
begin

if v is a terminal node, then
if IsIn(v,HT ), then return LookUp(HT,v)
else begin

HT := insert(v,HT ); (* Initially HT = ∅ *)
return v

end;
else begin

v′i := ReduceDD(childi(v)), ∀i ∈ IN ;
if v′j = v′k, ∀ j,k ∈ IN and j 6= k, then return v′0
else if IsIn(v,HT ), then return LookUp(HT,v)
else begin

HT := insert(v,HT );
return v

end
end

end;

Figure 25: A reduction algorithm for MODDs in GF(N).

However, an algorithm for the creation of MODDs from the functional description in GF(N) will
have a complexity O(Nn) in the worst case. The algorithm for the creation of MODDs can be
derived from Eq. (20). The efficiency of the algorithm can be improved in general by noting that
during the recursive expansion with respect to each variable, certain variables may not appear for
further recursive calls. Therefore the recursion tree need not be expanded in the direction of a
variable which does not appear. The efficiency can be further improved by incorporating Lemma 4
based on a dynamic programming like approach as discussed in Section 5.6, which has been done
for the experimental results in Section 5.11. In this case the network in GF(N) is traversed in the
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topological order from the inputs to the outputs and Lemma 4 is applied iteratively.
Note that the size of a reduced MODD depends heavily on the variable ordering, as in any other
DD [1, 82]. The depth of an MODD in is O(n) in the worst case since each variable appears once
at each level in the worst case.
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5.5 Variable Reordering

The size, i.e. number of nodes, of an MODD depends on the order of the variables during its con-
struction. For example, the MODD in Fig. 24(a) represents a function in GF(3) under the variable
order (x1,x2). Fig. 24(b) shows the same function in GF(3), but under the variable order (x2,x1).
Clearly Fig. 24(a) contains fewer nodes than Fig. 24(b). Given an n variable function in GF(N), the
size of the solution space for finding the best variable order is O(n!), which is impractical for large
values of n. Hence, a heuristic level-by-level swap based algorithm is considered in this chapter.
The theory behind variable reordering in GF(N) is based on Theorem 5 as follows. Without loss
of generality let us assume that variables x1 and x2 are to be swapped. From Theorem 5 we have,

f (x1,x2, . . . ,xn) = g0(x1)
(
g0(x2) f |0,0 +g1(x2) f |0,1 + · · ·+gN−1(x2) f |0,N−1

)

+ g1(x1)
(
g0(x2) f |1,0 +g1(x2) f |1,1 + · · ·+gN−1(x2) f |1,N−1

)
+ · · ·

+ gN−1(x1)
(
g0(x2) f |N−1,0 +g1(x2) f |N−1,1 + · · ·+gN−1(x2) f |N−1,N−1

)
.

If x1 and x2 are swapped, then again from Theorem 5 the following function fs results,

fs(x1,x2, . . . ,xn) = g0(x2)
(
g0(x1) f |0,0 +g1(x1) f |1,0 + · · ·+gN−1(x1) f |N−1,0

)

+ g1(x2)
(
g0(x1) f |0,1 +g1(x1) f |1,1 + · · ·+gN−1(x1) f |N−1,1

)
+ · · ·

+ gN−1(x2)
(
g0(x1) f |0,N−1 +g1(x1) f |1,N−1 + · · ·+gN−1(x1) f |N−1,N−1

)
,
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where f ≡ fs. It can be noted by comparing f and fs that in fs each literal ge(x1) (ge(x2)) is
swapped with ge(x2) (ge(x1)) for e ∈ IN , and each cofactor f |r,s ( f |s,r) is swapped with f |s,r ( f |r,s).
Fig. 26 shows the MODDs corresponding to f (top MODD) and fs (bottom MODD). In the top
MODD variables x1 and x2 appear in levels 0 and 1 respectively, while the cofactors appear as
external nodes. This can be a more general case, e.g. the two variables may appear in any arbitrary
but consecutive levels in a larger MODD, e.g. variables xi and xi+1 and 2 < i ≤ n. Clearly to swap
two variables all we have to do is: (i) swap the contents of the nodes (i.e. the variables) in the two
levels, and (ii) swap each cofactor f |r,s ( f |s,r) with f |s,r ( f |r,s). However, care must be exercised
when a level has one or more missing nodes due to reduction. If this happens, then the missing
nodes may have to be recreated in the swapped version. Also, some nodes may become redundant
after the swap, in which case the redundant nodes must not appear in the final result (refer to
Example 3). However, if a node at level-i (0 ≤ i < n), which is to be swapped with level-i + 1,
does not have any children at level-i + 1, then it can be moved to level-i + 1 directly. By similar
reasoning, if a node at level-i + 1 does not have any parent nodes at level-i, then that node can be
moved up to level-i directly. Note that swapping two levels i and i + 1 does not affect the other
levels, i.e. those in the range 0 ≤ j < i (if i > 1) and i+1 < k < n (if i < n−1).
The heuristic swap based variable reordering algorithm presented in the following is based on this
(Theorem 5). A swap based variable reordering algorithm exists for BDD [8], but it is not suitable
for MODD reordering.
The algorithm uses an array of hash-tables, where the array indexes correspond to the levels in an
MODD for direct access to each of the nodes within a level. It proceeds by sifting a selected level
(i.e. a variable) up or down by swapping it with a previous or next level. The level with the largest
number of nodes is considered first, and then the one with the next largest node count, etc., i.e.
the array of hash-tables is sorted in descending order of the hash-table sizes. Once the level to be
sifted first is considered it is sifted up if it is closer to the root, or down if it is closer to the external
nodes. If it lies in the middle, then the decision to either sift up or down is made arbitrarily. The
algorithm stops after a complete sift-up and down operations. The complexity of the algorithm
can be argued to be O(n2) [8]. Various heuristics have been considered to limit the sift and swap
operations for speed up. For example, if a sift-up (down) operation doubles the node count, no
more sift-up (down) operations are carried out.

Example 3 Fig. 27 shows the basic idea behind the swap algorithm. Fig. 27(a) shows the original
MODD for a function f (x1,x2,x3) in GF(4) generated by recursive expansion of Theorem 5. Here,
variables x1,x2 and x3 appear in levels 0, 1, and 2 respectively. Level 1 (i.e. variable x2) contains
the largest number of nodes. Hence, this is considered to be the starting point of the sift operation.
Level 1 is equidistant from level-0 and level-2. Hence, a sift-up is chosen arbitrarily. Swap between
level-0 and 1 results in Fig. 27(b). The nodes shown with broken lines are redundant owing to the
fact that all their children point to the same node (Corollary 6.1). Hence, these nodes are not
considered in the final result of Fig. 27(c). For example, considering the paths with the edge x2 = 1
in Fig. 27(b), all the paths with edge x2 = 1 leading to node x3 in Fig. 27(a) have the edges with
variable x1 = i for i = 0,1,α,β. Therefore node x1 becomes redundant by Corollary 6.1, if node x1
appears after node x2 under this circumstance. The same reasoning applies to the other two nodes
with variable x1 shown with the broken lines.
It can be shown that further sift operations do not yield additional node reduction. The original
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Figure 27: Reordering example.

node count was 5, and the new node count is 3.

5.6 Operations in GF(N)

Algebraic Operations Algebraic operations such as addition, multiplication, subtraction, and
division in GF(N) can be carried out between two MODDs. Consider the following lemma, which
can be shown to hold by perfect induction.

Lemma 4 Let f (x1, . . . ,xi, . . . ,xn) and h(x1, . . . ,xi, . . . ,xn) be two functions in GF(N), and ‘�’
represent an algebraic operation in GF(N). Then

f �h =
N−1
∑
e=0

ge(xi)( f |xi=δ(e)�h|xi=δ(e)), (22)

where ge(xi) = 1− [xi−δ(e)]N−1.

Lemma 4 can be implemented recursively to perform algebraic operations between MODDs. How-
ever, application of Lemma 4 directly will almost certainly be explosive in terms of the search
space. Two things can be done to eliminate this. Firstly, while the resulting DD in GF(N) is being
constructed, it can be reduced at the same time. Secondly, intermediate results can be stored in a
cache (dynamic programming), thus eliminating many operations, which will otherwise have to be
repeated.
Let G f and Gh be the reduced MODDs for f and h respectively. The complexity of such an
operation can be reasoned about by considering the case for BDDs [1]. Assuming that insertion and
deletion from the cache can be carried out in constant times, owing to the dynamic programming
nature the number of recursive calls can be limited to O(|G f | · |Gh|).
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Composition We have the following, which can be shown to hold by perfect induction.

Lemma 5 Let f (x1,x2, . . . ,xi, . . . ,xn) and h(x1,x2, . . . ,xn) be two functions in GF(N). Then,

f |xi=h =
N−1
∑
e=0

[1− (h−δ(e))N−1] f |xi=δ(e). (23)

An algorithm for composition of two functions in GF(N) can be formed based on Lemma 5 in a
manner similar to that for a BDD [1]. For this operation we require a restrict operation in GF(N),
similar to that for a BDD, and the algebraic operations presented previously. The restrict algorithm
can be constructed for a reduced ordered DD in GF(N) in a manner similar to that for a BDD, and
is not shown here for brevity.

Multiple-Valued SAT Given a function f (x1,x2, . . . ,xn) in GF(N) and T ⊆ IN −{0}, the idea is
to find an assignment for xi, ∀i ∈ {1,2, . . . ,n}, such that the value of f is in {δ(s)|s ∈ T}. If such
an assignment exists, then f is said to be satisfiable (MV-SAT); otherwise it is unsatisfiable.
The MV-SAT problem finds applications in bounded model checking, simulation, testing and ver-
ification. An algorithm for any such satisfying assignment will have a complexity O(|G f |), where
G f is the reduced MODD for the function f in GF(N). An algorithm for all such assignments
would have an exponential complexity. However, this process can be speeded up by considering
characteristic and encoded characteristic functions in GF(N) and their evaluation times as dis-
cussed in Sections 5.9 and 5.10 [93, 94].

5.7 Multiple-Output Functions in GF(N)

For multiple input multiple output binary functions, the inputs or outputs can be arbitrarily grouped
into m-bit chunks and each m-bit chunk can be represented in GF(2m) with a single MODD. Further
node reduction can be obtained by sharing the nodes between each of the MODDs representing
a chunk of bits. Such an MODD will be called a shared MODD or SMODD. The general idea
is shown in Fig. 5.7. The SMODD is basically a single diagram with multiple root nodes, which
is also canonic. The canonicity of the SMODD can be argued in a similar manner as in a single
MODD.
Similar reasoning can be carried over to higher order fields. Given any multiple output function
in GF(R), where R is a power of a prime, the inputs and outputs can be arbitrarily grouped into m
R-valued chunks and each chunk can be represented in GF(Rm) by means of an MODD. Then an
SMODD will represent all the chunks simultaneously.
The concept of levels are applicable to SMODDs across all the outputs simultaneously by trivial
reasoning. Therefore, the theory behind variable reordering, as discussed in Section 5.5, applies
equally well to SMODDs. In this case when levels i and i + 1 (0 ≤ i < n) are swapped, all the
nodes in levels i and i + 1 across all the outputs have to be considered simultaneously. Therefore,
the swap based sift reordering algorithm discussed in Section 5.5 works equally well for SMODDs
as it does for MODDs.
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5.8 Further Node Reduction

Further node reduction can be obtained by means of the following two rules, in addition to the two
rules presented in Section 5.3.

• Zero Suppression: Suppress the 0-valued terminal node, along with all the edges pointing to
it.

• Normalization: Move the values of the non-zero terminal nodes as weights to the edges, and
ensure that (i) the weight of a specific valued edge (e.g. that with the highest value) is always
1, and (ii) assuming P represents the set of all the paths, ∀z ∈ P the GF(N) product of all the
weights along z is equal to the value of the function corresponding to z.

Note that the zero suppression rule is unlike the reduction rule for the zero suppressed BDD [97]. It
can be argued that the above two rules also will maintain the canonicity, if the weights are assigned
in a fixed order throughout the graph during normalization. A reduced graph obtained using the
above four reduction rules in GF(N) will be called a (Z)ero-suppressed (N)ormalized MODD or an
ZNMODD. The values of the terminal nodes in an MODD is distributed as weights over each path
in the ZNMODD. To read off a value of a function from a ZNMODD, first the path corresponding
to the inputs is determined. Then all the weights along that path is multiplied in GF(N), which
corresponds to the value of that function. In the rest of the chapter the weight of the highest valued
edge will be normalized to 1, unless otherwise stated.

Example 4 Let us consider the function f (x1,x2) = [0β1001α000000000] in GF(4), where
{0,1,α,β} are the elements of GF(4). Fig. 29(a) shows this function realized by means of a
reduced MODD. Fig. 29(b)–Fig. 29(d) shows the gradual conversion to ZNMODD. Here, the lines
with zero, one, two, and three cuts represent the values 0, 1, α, and β respectively. Note how the
weights are moved around and adjusted.
In Fig. 29(b) the terminal node with 0-value is suppressed along with all the edges pointing to it.
Also the non-zero values of the terminal nodes are moved as weights associated with the terminal
edges. Let us normalize with respect to the highest valued edge, i.e. make the weight of the highest
valued edges, β in this case, equal to 1. The α-edge of the left sub-graph rooted at x2 has a weight
of α. Therefore, in order to make its weight equal to 1, α is moved up one level, while the 1-edge
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Figure 29: Example of ZNMODD reduction.

is assigned a weight of β to maintain correctness of the underlying function. This results in the
ZNMODD of Fig. 29(c). Clearly in Fig. 29(c) the two sub-graphs rooted at x2 are isomorphic,
which can be shared resulting in the ZNMODD of Fig. 29(d).
Now let us find the value of f (1,1). This should yield a 1. From Fig. 29(d), this corresponds to
the path ab. The value of this function is therefore 1 ·α ·β = α ·β = 1. Similarly, f (1,α) yields
1 ·α ·1 = α, and so on.
Note that the total number of paths in Fig. 29(a) is 10, while that in Fig. 29(d) is only 4.

5.9 Representing Characteristic Functions in GF(N)

The characteristic function (CF) defines a relation over inputs and outputs such that CF = 1 if for
a specific input combination the output is valid; otherwise CF = 0.
Let us consider a multiple output function defined over finite fields: f (x1,x2, . . . ,xn) =
(y1,y2, . . . ,ym). Let X = (x1,x2, . . . ,xn) and Y = (y1,y2, . . . ,ym). Then the (n + m)-input 1-output
CF is defined as

φ(X ,Y) =

{
1 if f (X) = Y
0 otherwise

An SMODD can be constructed from the above which will constitute the n input variables and m
auxiliary variables (AV) corresponding to each of the outputs. Such an SMODD will be called
CF-SMODD. Given an input combination of f , the nodes corresponding to the AVs in the CF-
SMODD decide the outputs of f . For each node corresponding to an AV, except for only one edge,
all the other edges lead to the terminal node 0. The edge leading to the non-zero terminal node
determines the output of the function. Examples of the CF can be found in [98].
The concept of CF can be extend by allowing output encoding, since there is only one possible set
of outputs for a given input combination. The resulting function can be represented by a mapping
η : Gn ×Gl → G, where l = dlogN(m)e and will be called encoded CF or ECF. The ECF has l
AVs. Each output is defined by one of the N l input combinations in an l AV function. As with
the CF-SMODD, an ECF can be represented by means of an SMODD, which we shall call the
ECF-SMODD. The following example illustrates the key points.
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Figure 30: (a) ECF-SMODD, (b) Computation of APL.

Example 5 Let us consider a 5-input 3-output binary function defined as follows, with the inputs
denoted by the variables (x0,x1,x2,x3,x4) and the outputs denoted by ( f0, f1, f2).

f0 = ∑m(15,23,26,29,30,31)

f1 = ∑m(1,2,4,8,11,13,14,16,21,22,26,31)

f2 = ∑m(3,5,6,7,8,9,14,11,12,13,17,19,20,21,22,23,24,25,26,28)

Let us assuming that the function is encoded in GF(4) with inputs and outputs grouped as X0 =
(x0,x1), X1 = (x2,x3), X2 = x4, F0 = ( f0, f1), F1 = f2. The CF of this function is φ(X0,X1,X2,F0,F1).
We have assumed that the binary combinations 10 = α and 11 = β. The variables F0 and F1 can be
encoded as A0 = 0 for F0 and A0 = α for F1, resulting in the ECF η(X0,X1,X2,A0). Note that we
can encode 4 functions using one AV. Here we have only two functions. The resulting ECF-SMODD
appears in Fig. 30(a).

5.10 Evaluation of Functions

The evaluation of the SMODDs is required for finding satisfying assignment corresponding to an
input pattern. The path corresponding to the given input pattern is traced from the root node to
one of the terminal nodes, and the value of the terminal node gives the satisfying assignment, if
it exists. This is an O(n) operation, which can become a bottleneck especially when the number
of inputs is large and there are many input patterns require evaluating. However, fast evaluation is
highly desirable for applications in simulation, testing, and safety checking [93, 94].
In the case of a CF the outputs are evaluated at the AVs. As we know, all the outgoing edges
except only one edge lead to the zero terminal node. The remaining edge indicates the value of the
function. With the ECF once we reach the node corresponding to the AV, the paths corresponding
to each of the output encoding is traced to find the value.
For example, lets consider an input pattern (x0 = 1,x1 = 1,x2 = 0,x3 = 0,x4 = 1) for the ECF-
SMODD of Fig. 30. The pattern is (X2 = α,X1 = 0,X0 = β) if it is encoded in GF(4) (Example 5).
The path traced by the evaluation is shown in bold. After reaching node A0 in the path, the path
corresponding to the given encoding for each output has to be taken into account. In this case the
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encoding was defined as A0 = 0 for F0 and A0 = α for F1. Hence, if we take the path corresponding
to A0 = 0 we end up at terminal node 1, thus giving us F0 = 1. Similarly, F1 = α. This results in
( f0 = 0, f1 = 1, f2 = 1), which is the required evaluation.

Comparison of Evaluation Times Functions can be represented and evaluated by means of
SMODD, CF-SMODD, or ECF-SMODD. This section provides a mechanism for comparing the
evaluation times for each of the cases. We have tested our theory on many benchmark, and the
results appear in Section 5.11. A good estimation of evaluation times can be obtained by computing
the average path length (APL), which we define below.

1. Node Traversing Probability (P(Vi)): It is the probability of traversing the node Vi when an
MODD is traversed from the root node to a terminal node.

2. Edge Traversing Probability (P(e j,vi)): It is the probability of traversing the edge j =

0,1, . . . , pm−1 from the node Vi, i.e. P(e j,vi) = P(Vi)
pm , for nodes corresponding to the input

variables.

3. The edge traversing probability for edges emanating from a node corresponding to an AV is
P(e j,vi) = P(Vi) since all the edges have to be traversed for determining all the outputs of the
function.

4. The node traversing probability is equal to the sum of all the edge traversing probabilities
incident on it.

5. Average Path Length (APL): For an SMODD the APL is equal to the sum of the node travers-
ing probabilities of the non terminal nodes. For a CF-SMODD and ECF-SMODD the APL
is equal to the sum of the node traversing probabilities of those nodes above the AVs, and
the APLs for each subgraph rooted at the AVs.

6. The average path length of a shared MODD is the sum of the average path lengths of the
individual MODDs.

An algorithm for computing the APL for ECF-SMODD appears in Fig. 31. Algorithms for com-
puting the APLs for SMODD and CF-SMODD can be formulated from this algorithm, which we
have implemented in Section 5.11, but the details have been left out for brevity.
For example the node and edge traversing probabilities of the ECF-SMODD in Fig. 30(a) appears
in Fig. 30(b). The first three levels in the tree correspond to the input variables. Hence the proba-
bilities are computed using definitions 1, 2 and 4. However, since all the outputs have to be consid-
ered, the APL for each subtree is separately computed at the auxiliary nodes. The probabilities at
the auxiliary nodes correspond to the sums of the APLs of each sub-tree of the outputs. The APL is
1+(0.5+0.5)+(0.125+0.375+0.375+0.125)+(0.3125+0.625+0.625+0.3125+0.0625)=
4.9375.
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Algorithm ENC PROB(int NODE,float PROB)
{ // NODE is the current node, and PROB is its probability

if (NODE = Terminal Node) return 0;
Add PROB to NODE’s probability; // Each node stores its probability
Decrease the Reference count of NODE by 1;
if (Reference count of NODE > 0) return 0;
float TOT = 0;
for(int i = 0; i < No; i++){ // No is the output field size

T = childi(NODE);
if(NODE = auxiliary node){

clear reference counts for all nodes of the subtree T ;
make new reference count only for T ;
clear probability variable in all nodes of T;
APL for T = ENC PROB(T,NODE’s probability);
TOT = TOT + APL for T +NODE’s probability;

}else{
APL for T = ENC PROB(T,NODE’s probability/No);
TOT = TOT +APL for T ;

}
}
if(NODE! = auxiliary node) TOT = TOT +NODE’s probability;
return TOT ;

}

Figure 31: Algorithm for calculation of APL in ECF-SMODD.

5.11 Experimental Results

The techniques in this chapter have been applied to a number of benchmarks, including integer
multiplier circuits. The program was developed in C++ (Gnu C++ 3.2.2) and tested on a Pentium-
4 machine with 256MB RAM, running RedHat Linux 9 (kernel 2.4).

Performance Table 6 shows results from the standard IWLS’93 and MCNC benchmark sets.
Columns ‘I/P’ and ‘O/P’ represent the total number of inputs and outputs, column ‘SBDD’ shows
the number of nodes obtained using the shared ROBDD representation, while column GF(2r)
represents the number of nodes obtained based on the proposed DD for a field size of 2r. In
column GF(2r) r adjacent bits are grouped together for each variable in GF(2r). The nodes of the
proposed DD are also shared across the outputs. The same notation is used for the other tables.
The columns with the headings “W/o reord” and “Reord” present the node count without and with
variable reordering. A first-come first-served variable ordering is considered for the “W/o reord”
columns. For the reordering the variable-by-variable swap based sifting algorithm of Section 5.5
has been employed. Significant node reduction is apparent for many circuits, e.g. misex3c, etc.
However, in some cases the node count has increased owing to the lack of sharing. Note that suc-
cessive swap operation in a particular direction (up or down) is only carried out if a swap operation
does not increase the size of the MODD by two or more. This restriction can be relaxed (e.g. by
considering the maximum allowable size increase to be 1.5 times) to obtain better results some-
times. However, this also increases the execution time, as more swaps are carried out. Variable
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Table 6: Same Field Size for input and output.
Benchmark I/P O/P SBDD GF(22) GF(23) GF(24)

W/o reord Reord W/o reord Reord W/o reord Reord
5xp1 7 10 88 48 42 43 35 27 16
9sym 9 1 33 17 17 10 10 - -
apex4 9 19 1021 536 515 324 324 241 136
b12 15 9 91 78 47 48 45 61 51
bw 5 28 118 76 72 59 47 59 21
clip 9 5 254 136 89 88 41 49 31

misex3c 14 14 844 505 279 396 181 586 156
duke2 22 29 366 793 507 783 445 601 453
table5 17 15 685 751 678 636 636 499 348

e64 65 65 194 943 569 858 601 624 495
cordic 23 2 75 29 28 21 20 15 15
misex2 25 18 100 93 81 50 42 45 41

pdc 16 40 596 433 310 384 384 212 212
spla 16 46 628 352 339 261 261 155 155

ex1010 10 10 1402 662 654 346 344 670 207

reordering algorithms exist for MDDs [99]. However, they cannot be directly compared with the
presented technique because the presented technique has been applied to varying input and output
field sizes, while [99] seems to have ignored this aspect.
Apart from the benchmark 9sym, all the circuits have been tested up to GF(16). 9sym is a single
output circuit and hence its testing in higher order fields seemed to be unjustified. In Table 6,
the input and output field sizes are kept the same. Clearly as we move to a higher order field the
number of nodes is reducing for the majority of the cases. Also, as we move to a higher order field,
node reduction owing to reordering seems to be more effective.
For the rest of the tables, apart from Table 5.11, reordering has not been done to illustrate the other
properties of the MODD more effectively, e.g. the effect on the node count when the input and
output field sizes are varied, and when the MODDs are ordered based on the evaluation times.

Table 7: I/P Field varying with constant output field size of 2.
Benchmark I/P O/P SBDD GF(22) GF(23) GF(24)

5xp1 7 10 88 57 51 43
9sym 9 1 33 18 16 22
apex4 9 19 1021 509 346 240
b12 15 9 91 69 56 60
bw 5 28 118 71 47 42
clip 9 5 254 149 106 69

misex3c 14 14 844 450 300 246

Table 7 represent the results for the same set of benchmarks under the same variable ordering but
the input field size is varied while the output field size is kept at constant 2. Clearly the number of
nodes have reduced further for many benchmarks as compared to Table 6. The reason seems to be
improved sharing of nodes between the different outputs.
Table 8 shows the result with input field size kept at constant 2 and the output field size varied,
again under the same variable ordering. In general the number of nodes seems to have increased
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Table 8: O/P field size varying with constant Input field size of 2
Benchmark I/P O/P SBDD GF(22) GF(23) GF(24)

5xp1 7 10 88 87 77 87
9sym 9 1 33 - - -
apex4 9 19 1021 1031 989 983
b12 15 9 91 102 84 126
bw 5 28 118 154 148 140
clip 9 5 254 227 211 195

misex3c 14 14 844 903 978 1333

owing to lack of sharing between the different outputs. In other words, higher output field size
seems to hamper sharing of nodes between different outputs even though the number of nodes in
each output may reduce. This observation seems to be consistent with the conclusion drawn from
Table 7.

Table 9: Same field size for both input and output.
Multiplier SBDD GF(22) GF(23) GF(24)

W/o reord Reord W/o reord Reord W/o reord Reord
2*2 14 7 7 6 5 1 -
3*3 51 28 28 15 15 16 9
4*4 157 98 87 84 60 31 31
5*5 471 254 249 183 183 272 121
6*6 1348 795 731 736 624 431 428

Table 5.11 shows results for n ∗ n integer multipliers for n = 2,3,4,5,6. The input and output
field sizes are kept the same in this table. Clearly a substantial reduction in the number of nodes
is noticeable for the majority of the benchmarks. In some cases reordering has produced further
improvement, e.g. the 4 ∗ 4 and 6 ∗ 6 multipliers in GF(8), etc. Although we have not explicitly
shown the results in GF(25) and GF(26), MODD reported only 63 nodes as opposed to the 471
nodes for SBDD for the 5 ∗ 5 multiplier in GF(25). Also for the 6 ∗ 6 multiplier the number of
nodes reported by the MODD in GF(26) is only 127 as opposed to 1348 for the SBDD, i.e. more
than an order of magnitude reduction. Also this table suggests that the node reduction seems to
improve as we are considering larger and more practical integer multipliers.

Table 10: I/P Field varying with constant output field size of 2.
Multiplier SBDD GF(22) GF(23) GF(24)

2*2 14 9 10 4
3*3 51 33 24 28
4*4 157 78 64 55
5*5 471 263 190 127
6*6 1348 695 389 465

Table 10 shows the results with varying input field size and a constant output field size of 2. Again,
considerable improvement has been observed for some benchmarks owing to the improved sharing
of the nodes across the outputs.
Table 11 shows the results for the multipliers with fixed input field size and varying output field
size. As anticipated, the number of nodes has increased owing to the possible lack of sharing.
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Table 11: O/P field size varying with constant Input field size of 2.
Multiplier SBDD GF(22) GF(23) GF(24)

2*2 14 15 11 12
3*3 51 50 65 46
4*4 157 178 194 260
5*5 471 490 553 755
6*6 1348 1587 1917 1890

As we move to a higher order field from a lower order field, the number of nodes usually decrease.
This decrease is also associated with fewer number of levels and shorter path lengths compared to
conventional BDDs and their variants.

Evaluation Time Table 12 shows the results for the APLs as compared to SBDDs. For the
majority of the cases the APLs are significantly lower than those in the SBDDs. Also, as we
go from GF(4) to GF(8), the APLs reduce further. On an average the APLs are 3 times less in
GF(4), while about 6 times less in GF(8) as compared to the SBDDs. I.e. the evaluation time is
essentially halving as we go from GF(4) to GF(8). Note that the number of nodes in the SMODDs
is almost identical on an average compared to those in the SBDDs. This is owing to the fact that
the SMODDs have been ordered based on the APLs, which does not necessarily guarantee reduced
node count. The dashes (‘-’) in the table indicate that results for those circuits (i.e. ex1010, ex5,
b12, risc, apex4) are not available for the BDDs.
Tables 13 and 14 present comparison of the APLs for SMODD, CF-SMODD, and ECF-SMODD
for the benchmark circuits modeled in GF(4) and GF(8) respectively. These tables also show the
results for 50,000 random vectors. The results for random pattern simulation constitutes the net
total path lengths for the 50,000 vectors. The spatial complexity is reflected by the node count and
the speed of evaluation by the APLs and random pattern simulations. These results reflect speedup
over current methods for simulation such as in [95]. The trade off between these two factors across
the representations is clearly evident from the results shown in these tables. In general it can be
seen that the CF-SMODD clearly wins out in terms of speed whereas the ECF-SMODD tries to
optimize between the speed and node count.

5.12 Conclusions

This chapter focused on a framework for representing multiple-output binary and word-level cir-
cuits based on canonic DDs in GF(N). We showed that such reduced ordered DDs are canonical
and minimal with respect to a fixed variable ordering. Techniques for further node and path op-
timization have also been presented. We also presented the theory for representing functions in
GF(N) in terms of their CF and ECF under the same framework.
The proposed DDs have been tested on many benchmarks with varying input and output field sizes.
The results suggest superior performance in terms of node compression as well as reduced APLs,
which implies improved evaluation times. This has also been confirmed by simulation of 50,000
randomly selected vectors. Overall the results seem to suggest that the proposed framework can
serve as an effective medium for verification as well as for simulation, testing, and safety checking.
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Table 12: APL compared to SBDD.
Benchmark I/P O/P BDD SMODD

Nodes APL GF(4) GF(8)
Nodes APL % Imp. Nodes APL % Imp.

duke2 22 29 366 150.3 793 80.61 186 783 48.87 307
cordic 23 2 - - 29 4.41 - 21 3.29 -
misex2 25 18 100 75.6 93 16.55 456 50 8.61 877

vg2 25 8 90 48.9 892 24.15 202 867 17.2 284
table5 17 15 685 114.1 751 32.12 355 635 16.02 712

pdc 16 40 596 215.4 433 52.58 409 384 33.13 650
e64 65 65 194 256 943 64.96 394 858 56.27 454
spla 16 46 628 226.6 352 47.33 478 261 30.18 750

ex1010 10 10 - - 662 24.69 - 346 14.74 -
ex5 8 63 - - 194 66.72 - 144 36.05 -
b12 15 9 - - 78 15.34 - 48 8.31 -
x6dn 39 5 235 41.2 212 7.26 567 165 4.09 100
exep 30 63 675 255.7 462 53.86 474 409 33.44 764
x1dn 27 6 139 41 151 10.3 397 120 6.56 624
x9dn 27 7 139 50.4 160 12.6 399 174 10.66 472

mark1 20 31 119 115.7 149 36.95 313 150 26.63 434
mainpla 27 54 1857 277.5 2414 138.26 200 1667 70.74 392

risc 8 31 - - 58 23.72 - 32 13.33 -
xparc 41 73 1947 304.8 1925 94.46 322 1550 58.22 523
apex4 9 19 - - 536 36.54 - 324 16.73 -

Average 23.5 29.7 555 155.23 564.35 42.17 368 449.45 25.65 524.5
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