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Abstract— Traditional dynamic simulation with standard delay 

format (SDF) back-annotation cannot be reliably performed on 

large designs. The large size of SDF files makes the event-driven 

timing simulation extremely slow as it has to process an excessive 

number of events. In order to accelerate gate-level timing 

simulation we propose an automated fast prediction-based gate-

level timing simulation that combines static timing analysis 

(STA) at the block level with dynamic timing simulation at the 

I/O interfaces. We demonstrate that the proposed timing 

simulation can be done earlier in the design cycle in parallel with 

synthesis.  

Index Terms— Gate-level timing, static timing analysis, 

dynamic timing simulation, ASIC, Opencores, RTL, Verilog  

I. INTRODUCTION 

A. Literature Survey on Verification 

As design size and complexity increase, so is the need to 

verify designs quickly and reliably. This, combined with the 

reduced design cycle of 3-6 months, makes verification an 

extremely challenging task. Today, verification consumes over 

70% of the design cycle time and, on an average, the ratio of 

verification to design engineers is 3:1 [1][2]. 

Verification engineers use a wide variety of verification 

approaches, including constrained random simulation for 

datapath components, equivalence checking for pre- and post-

synthesis netlists, and formal property verification for control 

and protocol checking. As the design gets refined into lower 

levels of abstraction, such as gate or layout level, in an 

application specific integrated circuit (ASIC) or field 

programmable gate array (FPGA) design flow, the 

performance of simulation drops significantly. This is due to 

the large size of gate-level and layout-level netlists, and gate 

and wire delays available only at these lower levels of 

abstraction. Formal property verification still cannot cope with 

the design complexity beyond register transfer level (RTL) of 

abstraction. Equivalence checking can only compare 

functionality (but not the timing) of two designs; it suffers from 

memory capacity limitations for large designs and may require 

defining structurally similar cut points as a basis of 

comparison. Other techniques, such as static timing analysis 

(STA), are prone to manually imposed constraints. A designer 

may inadvertently miss false or multi-cycle paths or add such 

paths that should not have been constrained [3]. Furthermore,  

STA does not work for asynchronous interfaces [15] and 

there is no way to validate the results of STA, except by 

simulation. To accelerate simulation at lower levels of 

abstraction, hardware assisted simulation acceleration (based 

on FPGAs), emulation (such as Cadence Palladium platform or 

EVE/Synopsys Zebu platforms), and other techniques have 

been introduced. These techniques are expensive, quite 

complex to deal with, and may require redesigning testbench or 

the design under verification (DUV) [4]. Despite this, 

traditional hardware description language (HDL) simulation 

remains the most popular method of design verification, 

because of its ease of use, inexpensive computing platform, 

100% signal controllability and observability [5]. Figure 1 

illustrates the use of simulation in a typical ASIC design flow. 

 

 

Figure 1. Simulation in ASIC/FPGA Design Flow 

 

It is clear from the above description that simulation has 

its own special place in the design flow and it is not going 

away in the foreseeable future. As the design gets refined into 

lower levels of abstraction, such as gate-level and layout level, 

functional (zero-delay) and timing simulations can validate the 

results of synthesis, STA or equivalence checking. Moreover, 

neither STA nor equivalence checking can find bugs due to X 

(unknown) signal propagation. Even though RTL regression is 

run on a daily basis, industry insists on gate-level simulation 

before sign-off. 

Gate-level simulation is necessary to validate the results of 

RTL and logic synthesis. At this stage, gate-level simulation 
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can be functional (zero-delay) or unit-delay, where all gate-

level cells are assumed to have delay value of 1 timescale unit. 

Later, gate-level timing simulation can be performed in the pre-

layout or post-layout stage using standard delay format (SDF) 

back-annotation. Gate-level simulations are considered a must 

for verifying timing critical paths of asynchronous design as 

such paths cannot be handled by STA tools. Furthermore, gate-

level simulation is used to verify the constraints of static 

verification tools such as STA and equivalence checking. 

These constraints are added manually, and the quality of results 

obtained with static tools is only as good as the imposed 

constraints. Gate-level simulation is also used to verify the 

power-up, power-down and reset sequences of the full chip. It 

is also used to estimate dynamic power drawn by the chip. 

Finally,  gate-level simulation is used after engineering change 

order (ECO) to verify the applied changes [15]. 

 

B. Issues with Simulation 

The dominant technique used for functional and timing 

simulation is event-driven HDL simulation [5]. However, 

event-driven simulation suffers from very low performance 

because of its inherently sequential nature and heavy event 

activities in gate-level simulation. As the design gets refined 

into lower levels of abstraction, and as more debugging 

features are added into the design, simulation time increases 

significantly.  Figure 2 shows the simulation performance of 

Opencores [14] AES128 design [23] at various levels of 

abstraction with debugging features enabled. As the level of 

abstraction goes down to gate or layout level and debugging 

features are enabled, simulation performance drops down 

significantly. This is due to a large number of events at the 

gate-level or layout level, timing checks and disk access to 

dump simulation data. 

 

 

Figure 2.  Drop down in simulation performance with level of 

abstraction + debugging 

C. Scope of this Work 

This work addresses the issue of improving performance of 

event-driven gate-level timing simulation using static timing 

analysis (STA) as “timing predictor” at the block level. We 

propose an automated partitioning scheme that partitions the 

gate-level netlist into blocks for SDF annotation and STA. We 

also propose a new design/verification flow where timing 

simulation can be done early in the design cycle using cycle-

accurate RTL. 

The next section briefly reviews literature on improving 

simulation performance using parallel simulation. Section 3 

presents a new approach to accelerating gate-level timing 

simulation using STA. Section 4 describes the setup, 

experiments and results based on the new approach. Section 5 

describes how to verify simulation results using the proposed 

flow. New simulation flow based on early simulation is 

discussed in Section 6. The paper is concluded in Section 7 and 

References are listed in Section 8. Our contributions in this 

work span Sections 3 through 7. 

 

II. PARALLEL GATE-LEVEL SIMULATION 

A. Parallel Discrete Event-Driven Simulation (PDES) 

To address the performance of event-driven gate-level 

simulation (both functional and timing), distributed parallel 

simulation [6][7] has been proposed. Unfortunately, it has not 

been very successful for the following reasons: i) difficulty in 

design partitioning and load balancing; ii) communication 

overhead; iii) synchronization overhead between design blocks 

imposed by the distributed environment;  and iv) lack of 

concurrency in the original design. The area of parallel 

simulation is rich in literature, and most of the known work 

concerns traditional parallel simulation, based on physical 

partitioning of the design into modules distributed to individual 

simulators. PDES is not practical for gate-level timing 

simulation as gate-level timing simulation involves processing 

huge number of events across partitions which severely 

degrades simulation performance. For this reason, recent 

parallel multi-core simulators provided by major EDA vendors 

[20][21] do not handle gate-level timing simulation in their 

multi-core simulators. 

B. Time Parallel Simulation (TPSIM) 

In contrast to the parallel discrete event HDL simulation 

described above, which partitions the design in spatial domain, 

there has been some interesting work on time-parallel discrete 

event HDL simulation [17]. This approach, called multi-level 

temporal parallel event-driven simulation (MULTES) [18], 

parallelizes simulation in time domain by dividing it into 

independent time intervals (simulation slices). Each slice is 

then simulated on a different processor. The key requirement of 

this technique is finding the initial state of each slice, which is 

a challenging problem, especially for a design obtained by re-

timing and re-synthesis [18]. For functional gate-level 

simulation, RTL is used to find the initial state of each slice 

and for gate-level timing simulation, functional gate-level is 

used to find the initial state of each time slice. Limitations to 

this include space complexity (each simulation slice simulates 

the whole design) and limited applicability to multi-core 

architecture. Multi-core architecture is more suitable to design 

partitions rather than running entire design on every core. In 

general, the method does not scale well with the multi-core 
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architecture, cannot be fully automated and requires manual 

interaction. However, if the designer requires gate-level timing 

simulation with full SDF back-annotation, TPSIM can be used. 

This will need manual interaction and state matching. 

III. HYBRID GATE-LEVEL TIMING SIMULATION 

A. Basic Idea 

We present a new approach to improve performance of 

gate-level timing simulation. The basic idea is to use static 

timing analysis (STA) as timing predictor at the block level. It 

uses worst case (critical path) delay, captured by STA, instead 

of the actual cell delays for annotating block-level timing 

during simulation. This idea is illustrated in Figures 3 and 4. 

Figure 3 shows gate-level timing simulation of a design 

consisting of two blocks, with timing simulation accomplished 

with SDF back-annotation applied to the entire design. 

However, for large designs, such SDF back-annotation will 

negatively impact the performance of gate-level timing 

simulation. 

 

Figure 3.  Gate-level timing simulation with full SDF annotation 

 

To improve the performance of gate-level timing 

simulation, we propose a hybrid approach, shown in Figure 4, 

where only gate-level block 2 is SDF back-annotated. Gate-

level block 1 is analyzed by STA tool which reports the 

maximum delay inside the block. Only this value is back-

annotated during simulation as dsta at the output of block1. 

This type of timing annotation is termed as selective SDF 

annotation. Note that STA can be performed on gate-level 

block 1 as part of the whole design or separately if I/O delays 

are modeled appropriately. 

Essentially, block 1 is simulated in functional (zero-

delay) mode i.e., without SDF back- annotation, while block 2 

is simulated with SDF back-annotation. In case of multiple 

blocks, the proposed STA based timing prediction approach 

can be used for majority of the blocks to speed up gate-level 

timing simulation. Designers typically know the timing critical 

blocks in a design where selective SDF back-annotation can 

be used to quickly verify timing. 

B. Partitioning 

Partitioning of gate-level netlist into blocks for SDF 

annotation and STA is a challenging problem as verification 

engineer may not have sufficient insight in identifying timing-

critical blocks. Furthermore, partitioning schemes are often 

manually driven. This may cause a problem when dealing with 

large gate-level netlists. Often gate-level netlist is flattened 

and hierarchy is not preserved. We propose a partitioning 

scheme based on STA that is fully automated and works for 

flat or hierarchical gate-level netlist. This is one of the most 

important contributions of this paper. Moreover, the 

partitioning does not have to be at the register boundary. For 

multi-clock designs, clock domain crossings (CDC) are 

always SDF back-annotated. Formal tools like Synopsys 

Formality can detect CDC paths in a design.  

 

Figure 4.Gate-level timing simulation with hybrid approach 

STA determines slowest (critical path) in a design. One can 

also choose to report not only the most timing critical path but 

the next most timing critical path and so on. STA report then 

reports these timing critical paths and the associated module 

instances. Since these paths are time critical, one would 

always want to do SDF back-annotated timing simulation on 

these module instances to make sure that their timing 

conforms to STA results.  In brief, one can include all the 

module instances that are in the timing critical paths for SDF 

back-annotation. This group of instances is shown as Block2 

in Figure 4. All the other module instances can be considered 

not timing critical. These module instances shall be simulated 

in functional (zero-delay) mode. This group of instances are in 

Block1. However, one needs to run STA on Block1 to find out 

their worst case delay dsta as shown in Figure 4. All of this can 

be automated in a flow as shown in Figure 5.  

 

Figure 5. Automated Partitioning and simulation flow for hybrid 

  gate-level timing simulation 
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C. Integration with the existing Design Flow 

The flow for this approach is shown in Figure 6. The key 

idea is to capture peripheral timing of each block via static 

timing analysis or various estimates derived from time 

budgeting. As some (non-critical) of the design blocks are 

simulated in functional (zero-delay) mode, except at the block 

periphery, this should result in a significant speedup compared 

to the simulation with full SDF back-annotation. 

To further improve the performance of gate-level timing 

simulation, the majority of gate-level blocks can be replaced by 

their cycle-accurate RTL blocks with peripheral timing 

captured via STA, time budgeting or other estimates to be 

explained next. 

 

Figure 6. Proposed flow for hybrid gate-level timing simulation 

 

D. Early Gate-level Timing Simulation 

The idea of early simulation is shown in Figure 7, where 

gate-level Block1 is replaced by equivalent RTL. Now RTL is 

simulated instead of gate-level for Block1. The key idea is to 

perform timing simulation using estimated timing dest early in 

the design cycle when the blocks have not been synthesized. 

The estimated timing can come from time budgeting or a tool 

like Synopsys DC Explorer [22]. This is in contrast to the 

conventional approach, where gate-level simulation is 

performed later in the design flow, after synthesis or place & 

route step, with all the detailed delay data already available. 

Major simulator vendors have already embraced the idea of 

early timing simulation based on the estimated delays 

realizing that performing gate-level timing simulations late in 

the design cycle is prohibitively slow. Verification engineers 

get around this problem by performing gate-level timing 

simulation of only time critical blocks with few test vectors. 

However, they are not able to perform full chip timing 

simulation with large number of test vectors, which often 

leaves certain timing bugs undetected. Synopsys [21] has 

recently announced a new product called DC Explorer [22] 

that is based on the same idea of early design exploration. It 

can do early synthesis, timing  and other estimates with 

sufficient accuracy for designs to start the simulation process 

early in the design flow. For this reason, Synopsys DC 

Explorer is rapidly getting adoption in the industry. 

 

Figure 7. Early timing simulation using RTL with estimate of 

peripheral timing 

IV. EXPERIMENTS 

A. Setup 

We tested the proposed approach by measuring the 

performance of gate-level timing simulation of several 

Opencores Verilog designs [14], namely AES-128 [23], 3-DES 

[24],  VGA controller [25] and JPEG encoder [26] designs. We 

used  Cadence [20] Incisive Unified Simulator 13.1 on quad-

core Intel CPU with 8GB RAM. The designs were synthesized 

with Synopsys Design Compiler using TSMC 65nm standard 

cell library. All these designs except VGA controller are single 

clock designs. The following Table 1 shows essential statistics 

for these designs. 

Table 1. Gate-level design statistics 

 

B. Results 

First, we show simulation results with the AES-128 design.  

We started with SDF annotation of majority of blocks (to 

accommodate many timing critical paths) and then gradually 

decreased the number of blocks in SDF annotation to one (to 

accommodate the worst case timing path). Table 2 shows that 

significant speedup (~5x) over full SDF annotated timing 

simulation can be obtained. 

The waveforms in Figure 8 illustrate the difference 

between full SDF annotation and selective SDF annotation. It 

shows that signal from selective SDF annotation is delayed 

more than the SDF-annotated signal due to STA delay, but 

contains no glitches. This means fewer events to process 

during simulation and hence faster simulation. Both signals 

match at the clock cycle boundary (positive edge of the clock). 

In the next set of experiments, all designs were divided 

into two gate-level blocks, Block1 and Block2 as in Figure 4. 

Block 2 contains module instances from the most timing 
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critical path. Here, the number of timing critical paths 

considered is one. 

The proposed approach has an additional advantage that it 

validates the result of STA which is depends on manual 

constraints entry. If the simulation exhibits timing failure, it 

will help debug STA constraints. Once the constraints are 

corrected, STA is run again to provide new #dsta value. This 

STA-to-simulation cycle is repeated until all timing failures 

are debugged and removed from the simulation. 

Table 2. Gate-level timing simulation speedup of AES-128 for 

variable number of blocks in SDF annotation 

 

 

Figure 8. Full SDF annotation vs selective SDF annotation in 

waveform 

Table 3. Speedup with hybrid gate-level timing simulation 

 

V. VERIFICATION OF SIMULATION RESULTS 

In order to verify the timing correctness of the approach, 

we propose the following dumping-based flow, shown in 

Figure 9. Note that this is an optional step, used only to verify 

the proposed simulation approach. In practice, verification 

engineer can skip this step to reduce the verification time. 

While testbench can verify functional correctness of the 

two simulations, the proposed verification scheme helps in 

verifying timing correctness of the two simulations. In order 

for both simulations to be timing correct, the monitored 

signals from the two simulations should match at the clock 

cycle boundary. Unfortunately, dumping, as shown in Figure 2 

can drastically reduce simulation performance. Further, the 

amount of dumping can cause the disk to quickly become full. 

Therefore, it is recommended that dumping should be done for 

a small time interval rather than for the entire simulation. We 

used small simulation intervals to verify timing correctness of 

the output signals of the designs. Cadence Comparescan tool 

was used to compare the dumped signals. The tool reported 

the signals to be matching at the clock cycle boundary. Table 

3 shows comparison between full SDF gate-level timing 

simulation and proposed hybrid gate-level timing simulation 

for all the flip-flops/registers in VGA and AES-128 designs. 

The fact that the values of the registers match at the clock 

cycle boundary during the entire simulation confirms the 

accuracy of our approach. 

 

Figure 9. Verification flow for hybrid gate-level timing simulation 

 

Table 4. Accuracy of hybrid gate-level timing simulation at the 

register boundary 

 

VI. NEW GATE-LEVEL TIMING SIMULATION FLOW 

We also propose the design/verification flow in which 

gate-level timing simulation is performed early in the design 

cycle, using estimates from time budgeting and/or STA. Tools 

like Synopsys DC Explorer [22] can provide timing estimates 

for running gate-level timing simulation. As already 

mentioned performing gate-level timing simulation late in the 

design cycle is prohibitively slow and may result in design 

changes back in the RTL or may require ECO. Further, the 

idea of performing long full chip timing simulation in a short 

amount of time is much welcomed by the industry. Figures 10 

and 11 show the traditional and new flow for simulation, 
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respectively. The obvious advantage of the new flow is rapid 

gate-level timing simulation early in the design cycle so that 

timing checks are validated and bugs are caught early on. 

 

Figure 10. Traditional simulation flow in ASIC design 

 

Figure 11. Proposed flow of early simulation in ASIC design 

 

VII. CONCLUSION AND FUTURE WORK 

Today, system-on-chip (SoC) designs have become 

widespread. These designs integrate multiple hardware cores 

working at different frequencies. Timing simulation of such 

multi-clock domain designs is critical. Traditional dynamic 

simulation with SDF back-annotation cannot be done on such 

large designs. In addition, event-driven timing simulation is 

extremely slow, suffers from capacity issues because of large 

SDF files (exceeding 10GB for small SoC designs) and is 

generally done late in the ASIC design cycle after synthesis or 

layout. 

This paper provides a proof of concept of hybrid gate-level 

timing simulation that makes use of STA and selective SDF 

back-annotation to accelerate gate-level timing simulation. 

STA acts as timing predictor for blocks which are run without 

SDF back-annotation. The approach also validates the result 

of STA which depends on manual constraints entry. The 

proposed approach is applicable to multi-clock domain 

designs with clock domain crossings (CDC). We are actively 

working on such larger designs. Further, we proposed a flow 

for early simulation in the ASIC/FPGA design flow that 

includes rapid hybrid gate-level timing simulation. 
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