
M. Ciesielski, Q.Ren, D.Gomez-Prado
University of Massachusetts, Amherst, USA

TDS: A Behavioral Transformation System TDS: A Behavioral Transformation System
based on Canonical Dataflow Representationbased on Canonical Dataflow Representation

DATE’08 Workshop - New Wave of High Level Synthesis
14 March 2008

Abstract: TDS is an experimental software tool for behavioral transformations of designs
specified on algorithmic and behavioral levels. It transforms the initial design specifications into a data
flow graph (DFG) optimized for a particular objective (latency, resource utilization, etc.) prior to high-
level synthesis. The behavioral transformations are based on graph-based canonical representation,
Taylor Expansion Diagram (TED), and are followed by structural transformations of the resulting DFG
network. The system is intended for data-flow and computation-intensive designs used in digital signal
processing applications.

TDS System

TD Network Optimization

This work was supported in part by the National Science
Foundation under grants CCF-0204146 and CCF- 0702506.

Transforming TED into DFG

J. Guillot, E. Boutillon
Lab-STICC, Université Europeéne de Bretagne - UBS, France

The design, initially specified in C, C++ or behavioral HDL, is translated into a hybrid network
composed of islands of functional blocks, represented using canonical, graph-based data structure
(Taylor Expansion Diagram, TED), and structural operators. TEDs are constructed from polynomial
expressions describing functionality of the arithmetic components of the design. Each TED is then
transformed into a structural data flow graph (DFG) through a series of decomposition operations,
including TED variable ordering, linearization, factorization, common subexpression elimination (CSE),
and TED decomposition. An important feature of this process is that it minimizes the number of
arithmetic operations, in particular multiplications, hence contributing to area minimization of final
hardware implementation. This task is accomplished by properly ordering TED variables. The DFG
obtained as a result of TED decomposition is then combined with the remaining “structural” operators
(such as comparators, etc.), which cannot be represented functionally as TEDs. The entire global DFG
network is further restructured to minimize the design latency, subject to the imposed resource
constraints.

C, Behavioral HDL

DFG extraction

TD network

TD network

Design
objectives

Design
constraints

Architectural synthesis
GAUT

RTL VHDL

Optimized DFGO
rig

in
al

 D
FG Structural

elements

Functional
TED

TED linearizationVariable ordering

TED factorization
& decomposition

Constant multiplication
& shifter generation

Common subexpression
elimination (CSE)

Static timing analysis Latency optimization

Structural
DFG

Resource constraints

TED-based Transformations

DFG-based Transformations

GAUT Flow TDS flow Behavioral Transformations

Fig. 1 TDS system flow

The overall TDS system flow is shown in Fig. 1. The left part of the figure shows traditional high-level
synthesis flow (using high-level synthesis tool GAUT), which extracts a data flow (DFG) from the initial
specification. The flow on the right shows the TDS system, which transforms the initial DFG into an
optimized DFG, which is then passed back to GAUT for high-level synthesis.

TED Decomposition

F0=(a+b)(c+d)+d

Fig. 3 Transforming TED into DFG based on Normal Factored Form
obtained by TED decomposition

=

F0=ac+ad+bc+bd+d

=

F0=(a+b)S1+d S1=c+d S2=a+bF0=S2S1+d S1=c+d

Fig. 2 TED decomposition leading to a unique Normal Factored Form: F0=(a+b)(c+d)+d

TED decomposition is based on identifying common subexpressions and replacing them
by new variables (e.g., S1 = c+d, S2 = a+b, in Fig. 2). Then, a cut-based decomposition is
performed by identifying split edges, which decompose the graph disjunctively and
introduce ADD operations; and cut nodes (dominators), which decompose the graph
conjunctively and introduce MULT operations. The result is a Normal Factored Form
(NFF), which is unique for a TED with fixed variable order. Different variable orderings
will result in different factored forms and hence different DFGs.

Once a TED is decomposed into a Normal Factored Form (NFF), a structural representation (DFG)
is generated for that form by replacing additions by ADD operations and multiplications by MULT
operations. Unlike NFF, a DFG is not unique, and a number of restructuring algorithms can be
applied to minimize the expected latency, considering design constraints imposed on hardware
resources.

The diagram in Fig. 5(a) shows an initial DFG network for a simple design that involves arithmetic
operators that can be written as functional expressions and represented as TEDs, and a structural
element (gtmux, shown in gray), considered as a black box. The diagram in Fig. 5(b) shows the
restructured DFG, with the number of multipliers + adders reduced from 17+9 to 3+4, and the
latency reduced from 9 to 4. This DFG is then used as input to high-level synthesis to produce
designs with smaller hardware area or smaller latency than from the original DFG derived directly
from the initial design specification.

Fig. 5 TD Network optimization: (a) initial TD network, (b) optimized DFG

(a) (b)

Fig. 4 Transforming TED with constant multiplications into DFG with shifters

Replacing Constant Multipliers by Shifters
In addition to minimizing the number of multiplications during TED decomposition, the system
replaces constant multiplications by shift operations, as illustrated in Fig. 4 for function F=7a+6b.
First, constants coefficients are represented in canonical sign digit (CSD) form, and constant 2 is
replaced by variable L (left shift). The modified TED is then decomposed by factoring out L, resulting
in the DFG shown in the right part of the figure.

F0= ((a+b)<<2-b)<<1-a

Shift variable
L=2

F0 = 7a+6b

7=23-20, 6=23-21

F0 = (23-20)a+(23-21)b
= (L3-1)a+(L3-L)b

= =

F0 = L1(L2L3(a+b)-b)-a
= L(L2(a+b)-b)-a

References
[1] J. Guillot et al. Efficient Factorization of DSP Transforms using TEDs, DATE’06
[2] M. Ciesielski et al. Data-Flow Transformations using Taylor Expansion Diagrams, DATE’07
[3] GAUT software: http://web.univ-ubs.fr/lester/www-gaut/
[4] TDS software: http://tango.ecs.umass.edu/TED/Doc/html/

