IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 1

Analytical Approach to Layout Generation
of Datapath Cells

Maciej Ciesielski,

Serkan Askar,
{ciesiel, saskar,}@ecs.umass.edu,

Samuel Levitin T
sam.levitin@intel.com

Department of Electrical & Computer Engineering
University of Massachusetts, Amherst, MA 01003
t Intel Corporation, Shrewsbury, MA 01545

Abstract—

This paper addresses the problem of layout automation
of datapath cells. It presents an analytical approach
to transistor placement under full custom design style
and demonstrates that it can be applied to practical
datapath designs. The presented approach is based on
a mathematical model which employs a mixed integer
linear programming (MILP) technique. The placement
algorithm adopts the custom design techniques commonly
used by datapath layout designers in generating hand-
crafted designs. An important aspect of the presented
method is the efficient management of the complexity
of the underlying mathematical model, which makes it
applicable to real designs. We implemented the presented
datapath design technique as an experimental software tool
running in the industrial environment. The generated
layout results are competitive with manual designs provided
by experienced layout designers.

I. INTRODUCTION

Datapaths are characterized by a highly regular layout
structure. A typical datapath floorplan consists of an array
of horizontally oriented words of identical bit cells, called
datapath cells and vertically oriented bit slices. Since each
bit slice is replicated a number of times (determined by the
datapath width) with very little or no modification, layout
generation of such regular structures reduces to a careful
design, often by means of hand-crafting, of individual
datapath cells.

This paper addresses the problem of layout design
automation of datapath cells, and specifically concentrates
on the component placement problem using a diffusion-
limited model. In this model, the components (individual
transistors, chains of transistors, logic gates, etc.) are
spaced in such a way as to satisfy the diffusion-to-
diffusion physical design rules, without regard to detailed
routing requirements. We concentrate on the full custom
design style which has been commonly used in hand-
crafted designs of datapaths. Here the task of datapath
layout optimization amounts to minimizing the area of the
datapath cell, while taking into account some routability
and performance constraints.

The flexibility and great degree of freedom in datapath
device placement makes the datapath cell design difficult
to automate [1]. As a result, datapaths did not enjoy

This work has been supported by a grant from Compaq Computer
Corporation, Alpha CAD & Test Group

the benefits of layout design automation as did the
gate array or standard cell based designs of control and
random logic. Considerable effort has been devoted to
automate layout synthesis in full custom environment
for general building-block placement [2], [3], but little
documented work has been achieved in datapath synthesis.
It has been our ambition to provide an automated,
custom-quality placement tool for datapath cells, with
a level of compaction comparable with those hand-
crafted by experienced layout designers, but achieved in a
significantly shorter amount of time and with predictable
results. The method presented in this paper is based
on known mathematical programming techniques, but its
contribution lies in the efficient mathematical modeling
and the management of the complexity of the placement
problem.

II. BACKGROUND AND PREVIOUS WORK
A. General Placement Techniques

The placement problem has been widely researched for

all design styles [4], [1], [5], [6], [7], [8]- The placement
algorithms can be broadly divided into two classes: deter-
ministic and stochastic. The class of deterministic al-
gorithms include numerical, constructive, and analytical
methods, briefly described below.
¢ Numerical methods solve the placement problem as
a system of simultaneous equations for all components
at once. A typical example of such a method is force-
directed method, which models the placement problem as
a mechanical system of objects connected by springs [4],
[9], [10]. Additional forces can be introduced to minimize
the amount of component overlap [11]. Unfortunately,
datapath placement cannot benefit from the efficiency of
these techniques due to dissimilar geometry of modules
in datapath cells and other requirements imposed by full
custom design.
o Constructive methods generate a solution by placing
one component at a time. A multitude of constructive
methods have been developed for different design styles,
including the full custom design. Most of them are
based on solving a 2-D bin packing problem [12] [13].
In contrast to force-directed methods, these methods are
mostly applicable to geometrical packing problems, where
the connectivity constraints are not critical.

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 2

o Analytical methods are based on mathematical
programming techniques, such as Mized Integer Linear
Programming (MILP) and Quadratic Programming (QP).
Several methods have been proposed to solve the placement
problems with both rigid and flexible modules using integer
variables to represent the relative positions of placed
components [14], [15], [7] [15]. The run time of this
class of methods is exponential in the number of integer
variables used in the model, which, in general, makes it
impractical for designs with a large number of components.
However, its optimization power makes it attractive for
those problems where the complexity of the input space
can be made manageable. We shall use this model
in our work to derive component placement by finding
efficient representation of component relations to control
the complexity of the underlying combinatorial problem.
Another group of analytical methods uses resistive network
analogy to formulate the layout problems for standard cell
and gate-array designs [16]. Since the placement problem
can be viewed as a discrete mathematical optimization
problem, it has been also approached using different forms
of branch-and-bound technique [17]. Recently, the sequence
pair approach was found to be very efficient in rectilinear
module placement [18]. Quadratic Programming and
spectral, eigenvalue-based methods have been also used
to compute placement, but they are mostly applicable to
semi-custom design styles [19].

The following stochastic methods are commonly used
to model the layout design problems.

o Simulated annealing (SA) approach is analogous to
hardware annealing process. It gained wide acceptance
among researchers due to its ability to handle multi-
dimensional cost function [20], [21], [22]. Place and route
tools, such as KOAN/ANAGRAM 1II [23] and PUPPY
[24], designed for analog devices, are best examples of
layout techniques based on simulated annealing. A mixed
transistor/gate level placement tool for digital datapaths,
AKORD [25], also uses SA to optimize different objectives
such as area and connectivity under the specific custom
design constraints.

« Genetic algorithms (GA) have also been proposed for
different placement and floorplanning problems [26], [27].
The genetic algorithm is a search technique that emulates
the natural process of evolution as a means of progressing
toward an optimum solution.

Despite the wealth of literature on the placement
problem, there has been little documented work on custom-
quality datapath synthesis reported in literature. While
most CAD companies today use datapath layout generators
in their tool suites, these tools are proprietary and tuned
to their particular product environment. The problem of
datapath cell layout design has been specifically addressed
in [25] and [28]. A simulated annealing based placement
tool, AKORD [25] generates compact layouts comparable
to manual design for most of the tested datapath examples.
However, for each design, fine-tuning of the cooling
schedule and the associated SA parameters increase the
turnaround time between the experiments. Moreover,

the risk of generating layouts with minor design rule
violations, a feature typical of SA-based algorithms for
this class of problems, makes AKORD less attractive to
datapath synthesis. A constructive method reported in
[28] approaches the layout design of datapath cell as a
2-D bin packing problem and ignores to a large extent
the interconnect issues. Furthermore, custom design
techniques, such as transistor folding and merging, cannot
be modeled efficiently with this approach.

Our approach to datapath transistor placement problem
is based largely on Mixed Integer Linear Programming
(MILP) technique, as it offers a good compromise between
the result quality and model complexity. Because of its
inherent exponential complexity, we carefully define the
granularity of the model, which makes it possible to obtain
quality layouts in a reasonable CPU time.

B. Datapath Placement

Datapath circuits are typically organized in (horizontal)
rows of words representing the same functional block and
(vertical) bit slices, delimited by vertically running power
and ground rails. A typical organization of a datapath is
shown in Figure 1. Each word is composed of a number
of identical datapath cells placed next to each other, side
by side, separated by power and ground rails. With the
exception for the boundary cells, the layout of the datapath
cell of bit slice 4 is identical to that of bit slice (i+1), but
mirrored along the vertical axis so that the adjacent bit
slices can share common power or ground rail.

bit slice

datapath
cell

datapath
word

vdd

Vss

Fig. 1. Global floorplan of a datapath

Figure 2 shows an outline of a single datapath cell in a
reference horizontal orientation. The width of the bit slice,
also known as a pitch, is fixed; it determines the width for
all the datapath cells. Power and ground (VDD/VSS)
supply rails generally delimit the pitch. Signal nets are
connected to the datapath cell components by means of
bristles. Vertical bristles, or data lines, provide wiring
between different cells within the same bit slice. They run
in parallel to the power rails. Horizontal bristles, or control
lines, provide wiring between datapath cells of different
bit slices. Control lines span the width of the datapath
and run perpendicular to the power rails. The physical
location of the bristles is typically fixed prior to placing

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 3

the transistors in the datapath cell. In addition to purely

Data lines
(vertical bristles)

A NN
Yo §§
_ A — Control lines
Height to be: L ‘ ‘ ‘ ‘ ‘ ‘ (horizontal bristles
minimized |

N

§
\
§
|

Boundary — |
reflection line

Fixed pitch X ¢

Fig. 2. Representation of a datapath cell

geometrical constraints imposed by device sizes annotated
in the circuit diagram, our approach considers several
practical constraints adopted from full custom, hand-
crafted layout design practices. These include transistor
chaining and folding, and device merging.

o Transistor chaining and device merging. Transistor
chaining is a widely used technique to improve both area
and performance of datapath cells. Several transistors
can be chained together by combining their diffusion areas
in order to reduce the diffusion capacitance [29]. When
the chained devices have different widths, the resulting
component can take the form of a rectilinear polygon as
shown in Fig. 4. Diffusion sharing applied to simple
logic gates in the same datapath cell is known as device
merging. In our system device merging reduces the total
number of components to be placed, and is generated
as part of our preprocessing scheme. In an attempt to
optimize performance, dynamic nodes are considered as
prime candidates for merging.

o Transistor folding. Transistor folding is another
popular technique aimed at minimizing area and improving
performance of custom designs [30], [31]. The folding
changes the aspect ratio of the component, while
maintaining the required device size (W/L ratio). By
performing folding with different number of fingers (poly
gates), different component instances can be created for the
placement phase. The folding of devices is done as part of
the preprocessing phase, described in Section ITI-A.

o Intra-cell sharing. Two component areas (diffusion
regions or poly gates) belonging to components from
adjacent bit slices can be merged if they share the same
global net, such as power or ground line, control line, or
clock signal. In a typical organization of a datapath,
adjacent bit slices are identical copies of each other,
reflected with respect to the vertical boundary line. In this
case the components can be pushed under the boundary
line (power or ground rail) and their diffusion regions (or
poly gates) merged, creating a more compact layout, as
shown in Figure 3. This type of diffusion sharing further
contributes to a reduction in load capacitances, a very
desirable feature in high-performance datapath designs.

| i E
Bit slice (i) Bit slice (i+1) § §§
o |
1 s . L
F G i\i \§
gt L L L
A 4,—_15 % §§

Fig. 3. Diffusion sharing between two components from adjacent bit
slices

III. OUR APPROACH TO DATAPATH PLACEMENT
PROBLEM

The primary objective of datapath cell design is to
minimize the layout area. For a fixed pitch, X,
this problem reduces to minimizing the height of the
datapath cell, Yy (refer to Figure 2). The performance
and routability of the cell are considered as secondary
objectives. It is reasonable to assume that the size of the
cell is small enough to ignore the issue of interconnect delay
introduced by wiring. In our system the performance issues
are indirectly taken into consideration by performing on-
the-fly device merging and sharing, as described earlier.
These and other routability issues can be also addressed by
minimizing some measure of interconnect complexity of the
internal signal nets, incorporated in the form of additional,
explicit constraints. In case of a bulk process (single-well or
twin-well technology), the number of diffusion wells must
also be minimized, as this improves yield and reduces the
number of well plugs required.

In our approach each component in the datapath cell
represents a single device (transistor or simple logic gate), a
chain of transistors, or a group of devices merged together
and to be placed as one entity. We refer to such single
or combined devices as placeable components. Physical
constraints imposed on placeable components allow for a
certain degree of freedom, including multiple instances and
orientations.

e Multiple instances. FEach placeable component can
take one of several allowed shapes, or instances. In our case
the shapes are limited to rectilinear polygons. The different
instances of placeable components are obtained either by
transistor chaining (supplied by the circuit designer), or
by transistor folding (generated as part of our procedure).
The placement optimization procedure will automatically
select the best instance of the component.

e T-shaped and L-shaped components. Rectilinear
components can be modeled as sets of abutting rectangles,
as shown in Figure 4.

o Component orientation. Each component is allowed
to take an arbitrary orientation along the horizontal
and vertical axes. Rectangular components can have
two possible orientations, while the L-shaped and T-
shaped components can assume any of the eight possible
orientations. The system will automatically select the
orientation that minimizes the overall cost function as part
of the optimization.

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 4

dhall T n

Fig. 4. Instances of placeable components: a) predefined shapes
(chained transistors): T-shape and L-shape; b) generated
instances (folded transistors)

Finally we must consider the minimum spacing between
the component boundaries that satisfies the design rules of
the given process technology.

In order to manage the complexity of datapath transistor
placement problem the entire design process is divided into
the following phases.

1. Pre-processing. In this step the connectivity,
component geometry, bit slice geometry, and process
technology information is obtained from the raw input
files and stored in the database. Based on the component
geometry and connectivity information, the possible device
merging and folding is carefully examined and the multiple
instances of placeable components are generated.

2. Initial Relative Placement. The goal of this phase
is to derive a relative initial placement of components that
will facilitate the modeling of the subsequent geometric
placement problem. It uses a force-directed placement
technique to find the relative positions of components
based on their connectivity, while ignoring, for now, the
component geometry.

3. Component Grouping. An important step in our
procedure is the grouping of components into larger clusters
to facilitate the subsequent geometric placement. This
step is dictated by a need to limit the number of integer
variables in the analytical formulation of the geometric
placement.

4. Geometric Placement. This phase concentrates
on the generation of non-overlapping placement of
components, taking into consideration their geometries
and physical design rules. The component connectivity is
addressed implicitly by maintaining the relative positions
of the components determined during the initial placement
phase. The objective of the geometric placement is to
minimize the height of the layout.

5. Post-processing. This phase addresses the routability
and manufacturing issues, and specifically the minimiza-
tion of wire length and diffusion wells. The geometrical
placement computed in the previous phase is modified here
by applying a series of size-invariant transformations, such
as mirroring and swapping of components. The metrics
for these transformations include total (or critical) wiring
length minimization and, for a single-well technology, the
minimization of the number of wells.

A. Pre-Processing

The goal of the pre-processing step is to process
and analyze: the connectivity between the components,
bit slice geometry, component geometry, and process
technology. This information is then used to generate
multiple instances of placeable components by means of
transistor folding and device merging.

Connectivity information of the datapath cell is given as
a wirelist, extracted from the circuit structure. Particular
attention is being paid to dynamic nets, connected to
the dynamic nodes or transmission gates. They are
examined carefully in an attempt to shorten their wire
length and to reduce the load capacitance by means of
merging. Component geometry is provided by specifying
the dimensions of the modules. Bit slice data includes the
width of the slice (a pitch) and the location of the power
rails. Finally, the technology file provides the design rules
for the given process technology.

Merging and Folding. Our heuristics for merging and
folding are based on techniques used by experienced layout
designers in generating hand-crafted datapath layouts.
The merging is employed as a means to provide multiple
instances for the placeable components. If no merging is
possible, the folding is applied instead. If the transistor
contains a dynamic net, only the instances with even
number of fingers are allowed as this minimizes the
diffusion capacitance of the dynamic node more effectively.

4 2

L7 R17 ~

U

3

2

L6

2
2

££££%
kit

r

Fig. 5. Schematic of example 2X spanning two bit slices

Example 1: 2X is a datapath circuit with 24 compo-
nents which spans two bit slices. The schematic of the cell
is shown in Figure 5.

The labels L and R indicate the left and right bit slice
components. Most of the components are connected to the
dynamic nets at the inputs to L7 and R7. Two pairs
of transmission gates are merged at the dynamic nodes:
L13 with L14, and L15 with L16. The N diffusion of the
transmission gate L18 is merged with an NMOS device L17
at the dynamic node. Two pairs of inverters, (L8, L10)
and (L11, L12), share common diffusion on power nodes
and hence they are also merged. The same merging applies
to the right bit slices. There is also merging between the
components of the L and R parts. The large inverter L7
merges with R7 and the smaller inverter L9 with R9. As a
result of the merging, the number of placeable components

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 5

was reduced from 24 to 12; the load capacitances on the
dynamic nodes were also reduced. m|

B. Initial Relative Placement and Component Grouping

The goal of this phase is to derive a relative
initial placement of components that will facilitate
modeling of the subsequent geometric placement problem.
Connectivity is the major factor considered in this step,
while component geometries are temporarily ignored; they
will be taken into account in the geometric placement
step. Standard force-directed technique [8] is used to
compute the locations of the component centers, based
on the connectivity of components to other components,
bristles, and power rails.

In order to avoid a trivial solution (with all components
placed on top of each other) the location of some of the
components must be temporarily fixed [9]. We select
a minimum number of such components, called anchors,
one per each corner of the physical design space. The
z coordinates for the anchors are known from the fixed
pitch of the datapath cell, while their y coordinates are
computed from the estimated cell height. Exact locations
are not important in this phase; the location of the anchors
will be relaxed during the subsequent geometric placement
to meet the geometric constraints and minimize the cell
height. Anchors are selected heuristically by analyzing the
following factors:

1. Component area and geometry: mimicking the manual
layout, large components placed in the corners of the
datapath cell are considered as good candidates for
anchors.

2. Connections to bristles and power rails: the connection
to bristles and power rails, whose exact locations within
the datapath cell are known, are taken into account in
the initial placement algorithm. This helps address the
routability issue and reduce the net length in the final
layout.

3. Shareability across the cell boundaries: If a component
shares diffusion with another component in the adjacent bit
slice, it will be chosen as an anchor. It will then be placed
close to (or under) the cell boundary during the geometric
placement phase.

Example 2: Figure 6 shows the result of the initial
relative placement for the Example 2X. Component 85 is
created by merging two inverters (L7, R7) of both bit slices.
It has the largest area and is chosen as one of the bottom
anchors. Anchors 27 (R15, R16) and 30 (L13, L14) are
the next largest in area, with connections to north and south
bristles, respectively. The fourth anchor is component 26
(R12, R11). |

The computed initial placement provides an important
information about the relative positions of the component
centers. This information will be used in modeling of the
subsequent geometric placement phase, with an integer
variable @);; introduced to represent a selection of a relative
position for a pair of components (i,j) (refer to Section
ITI-C.3 and Figure 9). To further simplify the complexity
of the geometric placement phase, the components are

Fig. 6. Initial relative placement, with possible component grouping,
for example 2X

grouped according to their proximity in the initial relative
placement phase. This effectively reduces the number of
integer variables @;; in the model (which is quadratic in
the number of components). By combining components
into groups, only one integer variable is needed to represent
the relative position of the components in the group with
respect to any other group, hence significantly limiting the
total number of integer variables needed. The components
inside each group are still placed independently, but
maintain their relation to other components as a group,
rather than individually.

The component grouping employs a simple clustering
technique based on the mneighborhood concept. Two
components are neighbors if they are adjacent in the initial
placement in terms of their z or y coordinates. If two
components are neighbors in both directions, the pair is
chosen to form a group. KEach group is then considered
as a new component, whose coordinates are derived from
that of its members. The search for new groups continuous
iteratively until the maximum allowed number of integer
variables is reached. The grouping is not performed if the
estimated number of integer variables is within the allowed
limit (see the discussion in Section IV).

Example 3: Dotted ovals in Figure 6 illustrate the
possible grouping of components for the 2X example. In this
case the grouping is actually not needed since the number
of integer variables is sufficiently small. O

C. MILP Formulation of Geometric Placement
C.1 Component Modeling

Each rectangular component ¢ is modeled as a rectangle
whose coordinates of the top/right corner are denoted by
a pair (X;,Y;) as shown in Figure 7. The width W; and
height H; of component ¢ are defined as its dimensions
perpendicular and parallel to the poly line, respectively.
An integer variable R; is introduced for each component i
to model its geometric orientation. R;=0 if the component
is placed horizontally, and R;=1, if it is placed vertically
(see Figure 7).

Each rectangular component can assume up to two
different shapes (instances). For this purpose, a new
integer variable S;, the instance selection parameter, is
introduced for component i, such that S;=0 if the first
instance of the component is chosen, and S5;=1 if the

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 6

H; Xi,Yi

Ri =1 Ri =0

Fig. 7. Model of a component in two different orientations

second instance is chosen. This is modeled by the following
equations [7]:
w; =
H, =

Wio - (1 —=8;) + Wi - S;
Hio- (1= S8;) + Hi - S;

(1)
(2)

where W9 and H;o are the width and the height of the
first instance and W; and H;; are the width and the
height of the second instance of component . The model
can be readily extended to multiple instances (shapes) at
a cost of adding new integer variables. Larger number
of component shapes would provide a greater flexibility
in finding a compact datapath layout. However to keep
the complexity low, we only allow for 2 instances of each
placeable component.

In addition to rectangular components, our model also
allows for L-shaped or T-shaped components. An L-
shaped or T-shaped component is modeled as a set of
abutting rectangles with the same poly orientation. During
the geometric placement all eight orientations of these
components are considered and modeled as a set of linear
equations. The following constraints model all the possible

100 101
XY Xy R |Mx My Xer Yi-Yj
000 N 001 01010 0 W
,A 0| o1 |H- HJ W,
= li 01110 0 id
0|11 |H-Hjl-W
1/0[0| Wi |H-H
SR 1/0]1|-W; |H-H;
" = 1/1]0| W 0
010 011 111w | 0
110 111

Fig. 8. The modeling of L.-shaped components

orientations of an L-shaped component shown in Figure 8.

X;i—X; =

- Mijj - szMyj + Mijijj) - (Hi - Hj)
+(RJ' - szRj - Mijj + MaﬂjMijj) Wi
+(Mg; My; — My, My, R;) - (H; — Hj)
+(MijJ' - ijMijj) ’ (_WJ')

+(ijRJ' - szMijj) Wi+ szMijj ’ (_Wj)

(My,

3)

where M, and M, are the integer variables modeling
the mirroring along the z and y axis, respectively, and
R; is the orientation parameter for rectangle 7. Similar
equations are used for T-shaped components with only

minor modifications. The product of binary variables
M, R; can be linearized as follows:

My;Rj < Mg,
M,,R; < R,
Mijj > sz + Rj -1 (4)

Similar equations hold for the product M, M, R; and for
the Y coordinate constraints.

C.2 Boundary Constraints

Each component must be placed within the boundaries
of the datapath cell, determined by its fixed pitch, X,
and variable height, Yy (to be minimized). Let Ay be
a distance from the boundary of component i to the
respective boundary of the datapath cell. The boundary
constraints are given as follows:

Xpim; + Dpi, < Xi < Xo — Dy,
Ypim; + Doi, LY < Yo — Ay,

()
(6)

where Ay;, and Ay;, are the margins to the vertical and
horizontal boundary lines, respectively, and Xp;m,, and
Ypim; are given as

W; H;
Xpim; = { i Ypim; = { w;
1 1

Here W; and H; are the width and height of component
i. If component i is shareable across vertical reflection
line, Ap;, can be negative to allow for intentional diffusion
overlap. Otherwise Ay;, is positive, its value determined
by the respective physical design rule. Sharing across the
horizontal reflection line is not permitted in our case, hence
Api, > 0.

iR =1
if R; =0

ifR;, =1

iR, =0

C.3 Non-overlapping Constraints

To generate a non-overlapping placement the distance
between each pair of components must satisfy the diffusion
spacing requirements, specified by the physical design
rules. The initial relative placement limits the relationship
between a pair of components to one of the non-convex
areas of the design space: top or right, top or left, bottom
or right, or bottom or left. For example, in the initial
placement shown in Figure 6 component 25 is placed above
and to the right of component 29. This allows us to fix the
relationship between them so that 25 will be placed above
or to the right of 29. To model this non-convex design
space, a binary integer variable @;; is introduced for each
pair of components (ij). The non-overlapping constraints
take the following form:

X; — Xi > Xpim; —Lx(1-Qi5)+ Dsep (8)
Y} - sz Z YDim]- —Lx Qz’j + A:aep (9)

Here L is a sufficiently large positive number, and A, is
the required spacing between the components. With this
formulation, the value of variable @;; fixes the physical
relation between components 7 and j to be either horizontal

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 7

or vertical. This allows a component to be placed in
three of the four quadrants with respect to its neighbor.
As shown in Figure 9, for @;;=0 component j will be
placed above component 4, with no constraints imposed
on its horizontal position with respect to component i.
For @);;=1, component j will be placed to the right of
component ¢, with no constraint on its vertical position.
As a result, component j can be located anywhere above
or to the right of ¢ (but not below and to the left, as this
would violate the initial relative placement condition).

=

ﬁ %)

)

Fig. 9. Modeling of non-overlapping constrains

C.4 The Optimization Problem

The final optimization problem is to minimize Yj
subject to the set of linear constraints (5 - 9) defined above.
We solve this problem using a commercial MILP solver,
CPLEX [32].

A typical datapath cell placement problem involves 20-
50 original components. After component merging, the size
of the typical problem reduces to less than 20 placeable
components, and is further divided into groups. To make
our approach computationally feasible, a limit has been
imposed on the number of integer variables in our MILP
formulation. We observed that MILP can run efficiently
(and generate good result within several minutes on a
standard PC) if it is limited to about 60 integer variables.
This number, although problem-specific and varying from
one optimization instance to another, has been quite stable
for the class of problems addressed here. It has been
determined empirically based on a large number of runs.

We control the complexity of the underlying optimization
problem in several ways, including the merging and
grouping of components, discussed earlier. Both of these
techniques effectively reduce the total number of integer
variables to the desired level. We should emphasize that
the placement is carried out for all components at once,
while restricting relative positions of components based on
their group membership.

Example 4: The result of geometric placement for
example 2X is given in Figure 10. The impact of the initial
relative placement on the physical locations of components
is noticeable. See, for example, how component 25 was
placed above 29 and pushed to the left of it. a

27 o 25
T 34
g 30§ 31; 28 n 335 36

Fig. 10. Geometric placement of example 2X

D. Post-Processing

The goal of the post-processing phase is to generate the
final layout of the placed transistors at the mask level. This
phase deals with several fine-grain layout issues, such as
determining the final positioning and orientation of the
placed components, assignment of N wells to P diffusion
regions, etc. This is accomplished by mirroring the devices
along the X and Y axes. Notice that such mirroring affects
the absolute positions of component pins and the location
of the P/N diffusion regions, and therefore can be used to
reduce the number of wells and to simplify the routing.
Minimizing the number of wells is an important issue from
the manufacturing point of view for the bulk process. Once
the design meets the required timing specification, it is
more important to minimize the number of wells than
to reduce the net length, according to the experienced
layout designers. The well minimization also contributes
to routability by minimizing the number of well ties.

Our approach to final layout generation is composed
of two steps. First, we compute the orientations of
the components to minimize the number of wells. This
information is then used as a constraint in the next step
which globally minimizes the weighted net length.

D.1 Well Minimization

We assume here a single well technology and formulate
the N-well minimization problem as a global optimization
problem and solve it using a MILP approach.

The first step in our procedure is to represent all possible
P diffusion region adjacencies between the adjacent
components. We will use an interval representation of
the components, defined as follows: each component
is represented by a horizontal and vertical interval by
projecting the component onto the X and Y axis,
respectively. The length of the horizontal interval gives
the width, while the length of the vertical interval specifies
the height of the component. Intervals that are adjacent in
one direction and overlap in the other represent adjacent
components. For example, the vertical intervals 1 and 3
overlap while horizontal intervals 1 and 3 are adjacent,
indicating that components 1 and 3 are adjacent in the
layout. The overlap between intervals in either direction
determines a possible adjacency between their N or P
diffusion regions. By analyzing the adjacency information
in the interval representation, we can identify the pairs of
components that may contribute to the minimization of
wells.

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 8

2 3
4| 5 4
3
1 1
6 [6
A Via= {vj3 i }
1 3 T~ 6 Vas= {vay 5 }
Vae= {Vis Vis }
—fy0 yly2y3
D N diffusion D P diffusion Va6= {Vag VeV 3V 36 }
Fig. 11. Obtaining the diffusion adjacency graph from geometric

placement

The diffusion adjacency is modeled by a Diffusion
Adjacency Graph (DIAG). Each node in the graph
represents a component; an edge (i,7) is created for
each pair of components that have adjacent overlapping
intervals in either direction. Figure 11 shows an example
of a DIAG for a sample layout. Each edge (i,j) € DIAG
is assigned a set of weights representing the amount of the
diffusion overlap, V;; = {vfj} The construction of weights
vfj is illustrated in Figure 12; the mirroring of component
1 along the X axis gives rise to two different values of
P diffusion adjacency with component j, namely v?j and
vzl]. For the graph in Figure 11, the set V3¢ contains four
weights, v through v34, due to four different combinations
of diffusion regions of components 3 and 6.

a) b)

Fig. 12. Computation of interval overlaps: a) original position; b)
component ¢ mirrored along X axis

To model the problem in analytical terms we introduce a
binary variable M; to represent the mirroring of a double-
diffusion component 4 along its respective axis. For single-
diffusion components there is no need to introduce such
variables since the mirroring will have no effect on the
diffusion placement. Variable M; will refer to the mirroring
of component i along the X axis if the orientation of the
component (as computed in the geometric placement) is
vertical (it has rotation parameter R; = 1); otherwise, for
R; =0, M; will refer to the mirroring along the Y axis.

Assuming that only one component (7) has both diffusion
types, the interval overlap Z;; for a component pair (3, j)
can be written as follows:

Zij = (1 — Mz) - ’U?j + Mi - ’Uilj (10)
where v - and U . are the overlap weights for M; = 0 and 1,
respectlvely (refer to Figure 12). The above equation can

easily be extended to the case when both components have
double diffusions:

Zi; = (1 - M; — Mj; + Mij) ol + (Ml — Mij) . ’Uilj (11)
+(Mj — Mij) . U?j + M,']' . vi3j

The product M;; =
4.

The objective is to maximize the sum of the interval
overlaps between all pairs of components in the DIAG,

2

(i,))EDIAG

M;-M; can be linearized as in equation

max Zij (12)

This maximizes the adjacency between the P diffusion
regions, leading to a solution with minimum number of
compact wells, as illustrated in Figure 13.

Fig. 13. Example of well minimization by component mirroring

Example 5: Figure 1/ shows the result of the well
minimization for the circuit 2X, compared to the geometric
placement in the reference orientation. The mirroring of

the selected components improved the P diffusion overlaps
in the final layout, resulting in fewer N wells. O

Fig. 14. Effect of well minimization for example 2X; a) before well

minimization; b) after well minimization

- -

D.2 Net Length Minimization

The length of a net is determined by the exact locations
of its terminals (pins). Mirroring of components along the
X or Y axis affects the location of the pins and hence the

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 9

length of the net connected to the pins. The goal of net
length minimization is to find the mirroring of components
that reduces the overall (weighted) net length. This is
illustrated symbolically in Figure 15. We formulate the
net length minimization problem as a global optimization
problem over the entire set of wires. Each pin ¢ is modeled

Fig. 15. Effect of mirroring on net length

as a point with coordinates (Xp;, Y p;). The location of the
pin is a function of the component mirroring, as shown in
Figure 16. We introduce two binary variables M, and M,,

L 00 ot Ivx Imy| Xp | Yy
dx ’ X 0| 0}-d dy

! :
1y 0| 1| dy| dy
L . 1] 0|-d —dy
Mx:My /Vm”l:o %thf ! 1] & -9

Fig. 16. Pin location as a function of component mirroring in X and
Y directions

per component ¢, to model the mirroring along the X and
Y axis, respectively. The location of each pin is computed
relative to the component center, which is not affected by
mirroring. The location Xp; of pin ¢ on component q is
expressed by the following linear equations:

Xp; = Xeg— (1= My, — My, + Mgy) - dy

where Xc, is the z location of the center of component
q; d; is the displacement of the pin from the component
center in X direction; and szq = M, ,M,,. The latter
can be represented as a set of linear equations, similar to
equation 4. The Y coordinates of the pins are derived in a
similar fashion.

We approximate the length of a net using a half perimeter
of the bounding box that includes all the pins of the
net. The objective is to minimize the weighted sum of
the lengths of all the nets, with higher weights assigned
to critical nets. In order to preserve the solution of
well minimization additional constraints are imposed by
fixing the mirroring variables, M, 6 and M, , for all the
components g affected by well minimization.

(Bhducted on a 200 MHz Intel®
+(My, — Myy,) - dy — (My, — Myy) - dy + Myy, - drunning Linux. 1

IV. RESULTS

The analytical technique for transistor layout generation
described in this paper has been implemented as an
experimental software tool. We tested our program
on several datapath circuits made available by Alpha
Development Group of Compaq. The complexity of those
circuits ranged from 10 to 40 transistors, with the number
of placeable components between 9 and 20. This reflects
a typical complexity of datapath cells we have seen in
industry. We compared our results in terms of datapath
cell height with those obtained manually by an experienced
layout designer. We are not aware of any other datapath
layout synthesis tool for the purpose of fair comparison.
We should recall that our datapath synthesis tool does not
take into account the detailed routing. Nevertheless, for all
the tested circuits the geometric placement generated by
the tool was routable after minor modifications involving
placing additional contacts required for routing. In some
cases this required the expansion of the cell height to permit
insertion of required contacts and wires, while preserving
the cell topology.

Height [A] CPU [min]
Circuit | # of | Custom Our Our
name trans. | design | approach | approach
PGK9 20 66 78.5 1:40
PB7 8 42 42 0:20
CS15 45 155.5 150 2:30
MU9 12 77.5 90 4:20
CMU8 9 180 190.5 0:20
2X 24 76 76 0:25

TABLE I

COMPARISON WITH HAND CRAFTED RESULTS

Table I compares the final (routed) layouts with the
results obtained manually. Both the automatically
generated layout and the custom layout were routed
(manually) by the same designer. The datapath cell
heights are given in design units, A. The experiments were
Pentium processor
A commercial MILP solver CPLEX
[32] was used for solving the MILP-based optimization
problems. The limit on the total number of variables in
the MILP model was set to 60. This number has been
determined empirically based on a large number of runs
in order to finish the computation within a few minutes
of CPU time. As can be seen from the table, our results
compare favorably with the manual layouts, while taking
only several minutes to compute.

CS15 is one example where our approach generated
a better result than the designer. As the number of
components in a circuit increases, the manual layout
generation becomes less manageable; this in turn decreases
the quality of the constructed datapath layout.

!Intel and Pentium are registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 10

Interval Overlaps [\] | Net length [A]
Circuit | # of | # of | # of | Before After Before | After
name trans. | nets | pins | optim. optim. optim. | optim.
PGK9 20 21 94 580 580 74598 | 71598
PB7 8 12 35 740 880 8746 8466
CS15 45 35 85 1080 1360 46640 | 43800
MU9 12 17 63 480 760 30780 | 28940
CMU8 9 14 96 620 760 68720 | 67140
2X 24 32 122 1120 1980 75444 | 74010
TABLE II
RESULTS OF POST-PROCESSING
T i
G14 /A//é%’%’”‘%%}% — :? } } =l
= | [=1 ==z L
=
o— 1
Xﬂ [‘ =7
= ==
L
I ‘ ‘ 1 = —
; ==l Hf”
i e iy
e M S ‘
i
=hIs ,
M= HE‘E\ I
=TI L I
= 5 MA‘ %
: ;
W= =
B
= i
=il)

Fig. 17. Manually generated layout of example CS15 (routed)

It is important to emphasize that the manually generated
results include additional techniques and “tricks of the
trade” such as unequal transistor folding, device splitting,
etc. Designers often fold devices in the best possible way
to fit them in the available layout slots. These techniques
are currently not considered by our approach, which only
considers rectangular shapes.

Table II compares the post-processing results for
net length and well minimization with the results of
geometrical placement. The table shows our measure of
improved routability in terms of the overall net length.
The amount of the interval overlaps (used as a measure
of well packing) and the overall net lengths are given in
A. We believe that our post-processing step contributed to

Fig. 18. Automatically generated layout of example CS15 (routed)

the routability of the tested datapath cells by minimizing
the critical net length and the number of the required well
ties.

V. CoNCLUSIONS AND FUTURE WORK

This work presents an attempt at automating datapath
layout design. We presented a methodology and a
practical software tool to generate datapath cell layout on
a transistor level.

While most of the mathematical techniques employed
here are not new, the contribution of this work lies in the
efficient management of the complexity of the placement
problem, which is inherently exponential. This comes in
two places: 1) by dividing the problem into separate,
yet related steps of a) initial relative placement (which

IEEE TRANS. ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, DECEMBER 2002 (IN PRODUCTION) 11

considers component connectivity only), and b) geometric
placement (which respects the derived connectivity in
terms of relative placement and computes non-overlapping
placement); and 2) by limiting the number of integer
variables @);; in the MILP formulation by grouping the
components according to their connectivity (initial relative
placement). As a result, the size of the problem in the
number of integer variables remains manageable, and the
placement problem can be solved in a matter of minutes
on todays computers.

Although the routing was not taken into account
explicitly, all the generated layouts were routable — either
directly or with only minor modifications performed during
manual routing. The results demonstrate significant
time reduction within acceptable limits of area overhead
compared to manual designs. The results are better for
larger circuits, where human limitations at handling large
design complexity becomes more apparent. The global
post-processing optimization further improves the quality
of generated layouts in terms of their routability and
manufacturability. We are confident that our analytical
approach combined with proper post-processing and
iterative improvement can create automatically routable
and fully acceptable datapath layouts competitive with
those obtained by human designers, but at a significantly
shorter time.

Future work in the datapath synthesis research might
focus on the following issues:

« Develop a systematic way to include routability measures
in the model. This can be achieved by adding a global
routing phase to more accurately predict the effects of
routing on circuit area.

e Develop better anchoring heuristics and make the
method less sensitive to anchoring and less dependent on
the initial relative placement.

¢ Consider improvements to MILP model by means of
hierarchical placement and iterative group relaxation in
order to handle larger designs.

o Improve post-processing by adding layout compaction
involving miscellaneous geometrical transformations and
component swapping.

Acknowledgments

The authors would like to thank Ken Slater, formerly of
Compaq Computer Corporation, for invaluable comments
on the methodology for datapath layout generation and his
guidance regarding the tool development.

REFERENCES

[1] B. Preas and M. Lorenzetti, Physical Design Automation of
VLSI Systems, The Benjamin/Cummings Publishing Company,
1988.

[2] R. Rivest, “The 'PI’ (placement and interconnect) system,”
Proc. 19th Design Automation Conference, pp. 475-481, 1982.

[3] N.P.Chen,C.P.Hsu, E. S. Kuh, C. C. Chen, and M. Takahashi,
“BBL: A building block layout style for custom chip design,”
Proc. IEEE Int. Conf. on Computer Aided Design, pp. 40-41,
1983.

[4] M. Hanan and J.M. Kurtzberg, “Placement techniques,” in
Design Automation of Digital Systems, M. A. Breuer, Ed., pp.
213-282. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1972.

(11]

(12]
13]

(14]

(16]

(17]

18]

(19]

[20]

(21]

(22]

T. Lengauer, Combinatorial Algorithms for Integrated Circuit
Layout, Wiley-Teubner Series, 1990.

N. A. Sherwani, Algorithms for VLSI Physical Design
Automation, Kluwer Academic Publishers, 1993.

M. Sarrafzadeh and C. K. Wong, An Introduction to VLSI
Physical Design, McGraw-Hill Series, 1994.

M. S. Sait and H. Youssef, VLSI Physical Design Automation,
IEEE Press - McGraw-Hill, 1995.

N. R. Quinn and M. A. Breuer, “A force directed component
placement procedure for printed circuit boards,” IEEE
Transactions on Circuits and Systems, pp. 377-388, 1979.

H. Onodera, M. Sakamato, T. Kurihara, and K. Tamaru, “Step
by step placement strategies for building block layout,” Proc.
Int. Symp. on Circuits and Systems, pp. 921-926, 1989.

H. Eisenmann and F. M. Johannes, “Generic global placement
and floorplanning,” 35th ACM/IEEE Design Automation
Conference, pp. 269-274, 1998.

B. Baker, “Orthogonal packing in two dimensions,”
Journal on Computing, pp. 846-855, 1980.

B. Chazelle, “The bottom-left bin packing heuristic: An efficient
implementation,” IEEE Transactions on Computers, 1983.

L. Markov, J. R. Fox, and J. H. Blank, “Optmization techniques
for two-dimensional placement,” Proceedings of 21th Design
Automation Conference, pp. 655—-656, 1984.

S. Sutanthavibul, E. Shragowitz, and J. B. Rosen, “An
analytical approach to floorplan design and optimization,” IEEE
Transactions on CAD, pp. 761-769, 1991.

C. Cheng and E. S. Kuh, “Module placement based on resistive
network optimization,” IEEE Transactions on CAD, pp. 218-
225, 1984.

H. Onodera, Y. Taniguchi, and K. Tamaru, “Branch-and-bound
placement for building block layout,” Proceedings of 28th Design
Automation Conference, pp. 433—439, 1991.

J. Xu, P. N. Guo, and C. K. Cheng, “Sequence-pair approach for
rectilinear module placement,” IEEE Transactions on Circuits
and Systems, pp. 484-493, 1999.

J. P. Blanks, “Near optimal placement using a quadratic
objective function,” Proceedings of 22nd Design Automation
Conference, pp. 609-615, 1985.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, pp. 671-680, 1983.
D. F. Wong and C. L. Liu, “A new algorithm for floorplan
design,” Proceedings of 23th Design Automation Conference,
pp.- 101-107, 1986.

C. Sechen, “Chip-planning, and global routing of macro/custom
cell integrated circuits using simulated annealing,” 25th
ACM/IEEE Design Automation Conference, pp. 73-80, 1988.
J. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley,
“KOAN/ANAGRAM II: New tools for device-level analog
placement and routing,” IEEE Journal on Solid-State Circuits,
pp- 330-342, 1991.

E. Charbon, E. Malavasi, U. Choudhury, and A. Sangiovanni-
Vincintelli, “A constraint-driven placement methodology for
analog integrated circuits,” Proceedings of CICC, pp. 2821-2824,
1992.

T. Serdar and S. Sechen, “Akord: Transistor level and mixed
transistor/gate level placement tool for digital data paths,”
Proceedings of ICCAD’99, pp. 91-97, 1999.

J. P. Cohoon and W. D. Paris, “Genetic Placement,”
Transactions on CAD, pp. 956-964, Nov. 1987.

S. Nakatake, H. Murata, K. Fujiyoshi, and Y Kajitani,
“Bounded-slicing structure for module placement,” VLSI Design
Techniques, pp. 19—24, 1994.

D. Vahia and M. Ciesielski, “Transistor Level Placement for
Full Custom Datapath Cell Design,” International Symposium
on Physical Design, pp- 158-163, 1999.

M. A. Riepe and K. A. Sakallah, “Transistor level micro-
placement and routing for two-dimensional digital vlsi cell
synthesis,” Proceedings of International Symposium on Physical
Design, pp. 74-81, 1999.

A. Gupta and J. P. Hayes, “Optimal 2-d cell layout with
integrated transistor folding,” Proceedings of International
Conference on Computer Aided Design, pp. 128-135, 1998.

J. Kim and S Kang, “An efficient transistor folding algorithm
for row-based cmos layout design,” Proceedings of 34th Design
Automation Conference, pp. 456-459, 1997.

Ilog CPLEX, Integer Linear Programming with Cplez,
1999.

SIAM

IEEE

Ilog,

