
DAG-Aware Logic Synthesis of Datapaths

Cunxi Yu, Maciej Ciesielski
University of Massachusetts, Amherst

ECE Department
Amherst, MA, 01003

ycunxi@umass.edu

Mihir Choudhury, Andrew Sullivan
IBM T.J Watson Research Center

Yorktown Heights, NY, 10598

choudhury@us.ibm.com

Abstract - Traditional datapath synthesis for standard-
cell designs go through extraction of arithmetic operations
from the high-level description, high-level synthesis, and
netlist generation. In this paper, we take a fresh look at ap-
plying high-level synthesis methodologies in logic synthesis.
We present a DAG-Aware synthesis technique for datapaths
synthesis which is implemented using And-Inv-Graphs. Our
approach targets area minimization. The proposed algo-
rithm includes identifying vector multiplexers, searching for
common specification logic, and reallocating multiplexers in
the Boolean network. We propose an algorithm to identify
common specification logic by using subgraph isomorphism.
Experimental results show that our technique can provide
over 10% area reduction beyond the traditional design flow.
The proposed algorithm is tested on industry designs and
academic benchmark suits using IBM 14nm technology.

Keywords

Logic synthesis, AIGs, datapaths, resource sharing

1. INTRODUCTION
Modern microprocessors and embedded systems contain

datapaths modules which play an important role in compu-
tations. Traditionally, datapath synthesis for standard-cell
design goes through a series of steps, including extraction
of arithmetic operations from RTL code, high-level synthe-
sis (HLS), logic synthesis, and technology mapping [1]. The
arithmetic operations such as addition, multiplication, shift-
ing, comparison, and etc., are extracted first and are mod-
eled into the datapaths. High-level synthesis (HLS), which
basically consists of scheduling, allocation, and binding is
applied when the arithmetic operations are extracted [2].
Finally, the standard-cell netlist is generated after logic syn-
thesis and technology mapping with a given standard-cell
library.
A known area-reduction optimization in the high-level

synthesis step called resource sharing. We illustrate the con-
cept of resource sharing using an example in Figure 1(a).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA

c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2898000

(a)

1

0

Op1

Op2

S

A

B

R

1

0

S

Op1
A

B

R Logic synthesis

High-level
synthesis

Technology
mapping

Standard-cell
netlist

C/C++
specification

Compilation

(b)

Behavior
HDLs

Extraction

Our approach

F

F

Figure 1: (a) Design flow of datapaths. (b) Resource

sharing example.

Assuming Op1 and Op2 are addition operations, function
F = S?(A + R) : (B + R). Figure 1(a) shows that the first
implementation can be optimized by sharing the adder com-
ponent. We can see that resource sharing is able to reduce
the area and potentially the power. Several attempts have
been made to provide optimizations based on deriving the
optimized data flow graph (DFG). For example, [3][4] pro-
posed an optimization algorithm which was implemented in
HDL compilers using behavioral transformations; [5][6] pro-
posed an integer linear programming (ILP) formula based
algorithm for binding resources; and in [7], canonical TED
representation was introduced to optimize data-flow compu-
tations. However, these techniques has several limitations:
1) The high-level optimization is limited to the capability of
extracting the arithmetic operations from the implementa-
tion. 2) Resource sharing is only applicable to a high-level
component that is included in the library. For example, if
Op1, Op2 are combinational logic units that perform the
same but the function is not included in the library, the re-
source sharing will not be applied. 3) Resource sharing is
applicable only if two components are equivalent or equiv-
alent with negation. Another design flow that starts with
C/C++ specification is popular and widely used [8]. The
C/C++ implementations are initially compiled into a high-
level HDL description regardless of the extraction. However,
the architecture is implicit in the coding style, which makes
the high-level synthesis more difficult because of the coding
variety.

In this work, we demonstrate that these limitations can
be successfully addressed by adding a design flow compo-
nent into the current flow between high-level synthesis and

logic synthesis (Figure 1(b)). We take a fresh look at ap-
plying high-level synthesis methodologies in logic synthe-
sis, particularly the resource sharing. This algorithm ini-
tially identifies the vector multiplexers from a Boolean net-
work that provides the boundaries of the logic that could be
shared. An efficient algorithm of searching common specifi-
cation logic is implemented using graph isomorphism. We
demonstrate that the resource sharing method is no longer
limited to arithmetic operations. In fact, it is applicable to
arbitrary combinational logic if common specification logic
can be identified. This means that the resource sharing can
be partially applicable even if Op1 and Op2 are two logic
units have partial functional similarity. This paper is orga-
nized as follows: Section 2 covers the background. Section 3
presents the methodology and implementation of our tech-
nique. Section 4 presents the experimental results.

2. BACKGROUND

2.1 Boolean network
A Boolean network can be represented using directed acyclic

graph (DAG) with nodes corresponding to logic gates and
directed edges corresponding to wires connecting the gates
[9]. In the AIG, each node has either 0 or two incoming
edges. A node with no incoming edges is a primary input
(PI). An edge can be complemented to indicates the inver-
sion of the signal. Primary outputs (POs) are represented
using specific nodes. Registers in AIG network are consid-
ered as PIs and POs. A. Mishchenko et. al [9] claimed that
the size (area) of an AIG is the number of its nodes and the
depth (delay) is the number of nodes on the longest path
from the PIs to the POs. The combinational logic of an
arbitrary Boolean network can be factored and transformed
into an AIG using DeMorgan’s rule [10].

2.2 Logic synthesis
Logic synthesis transforms the Boolean network to reduce

the number of nodes (area), logic levels (delay), switching
activity (power). Traditional logic synthesis tools such as
SIS [11] and ABC [10] target multi-level logic optimization
that basically apply removing redundancy, logic simplifica-
tion, and logic sharing. However, the resource sharing in
Boolean network has yet been studied.

3. MULTIPLEXERS RELOCATION
This section describes the methodology and implementa-

tion of our technique composed of two parts: pre processing
and multiplexer relocation. The overview of the proposed
technique is shown in Figure 2. Our framework takes the
gate-level netlist (Verilog, BLIF or AIGER [12]) as input and
transforms the design into AIG network. The pre-processing
includes collecting vector multiplexers and generating sub-
networks (Section 3.1). The sub-networks are the logic cones
of of the vector multiplexers that end at PIs or latches. These
are used for multiplexer relocation. The multiplexer reloca-
tion process includes searching common specification logic
and reallocating the multiplexers (Section 3.2). We check
if the design before and after each relocation are functional
equivalent by combinational equivalence checking (CEC).

3.1 Pre-processing

transform into
AIG

HDLs

classify
vec-multiplexer

sub-network

vector<Aig_Ntk*>

realloc
multiplexers

common
specification logic

realloc?

update AIG ntk

no

cec

yes

HDLs

Figure 2: Overview of the proposed technique.

The pre-processing algorithm (Algorithm 1) includes iden-
tifying multiplexer nodes, identifying vector multiplexers,
and generating the sub-networks.

Algorithm 1 Pre processing

Input: Boolean network N
Output: Vector multiplexers and the sub-network

1: n← number of AIG nodes
2: Initial map(node, vector[node]) M
3: Initial network vector V
4: for each node i ∈ N do
5: if i is multiplexer node then
6: Generate pair P(s, i), s is the select node of i
7: Insert P intoM, key is s
8: end if
9: end for
10: for each key k in mapM do
11: Create logic cone Nk of the nodes in k → second
12: V ← Nk

13: end for
14: return V,M

First, all the multiplexer nodes are collected in the Boolean
network (line 5). We classify a node as a multiplexer node
if it satisfies three properties: a) it has two complemented
children i1, i2; and b) nodes i1, i2 have a shared child; and
c) one of these two nodes has a complemented fanin from
the shared child. In Figure 3(a), i1, i2 are two completed
children of node m. They have a shared node s, which is
a fanin of i2 and s complement is a fanin of i1. Hence, m
is multiplexer node. Node s is called the select node. The
function of z is equivalent to a 2-to-1 multiplexer shown in
Figure 3(b). Each AIG node is an AND operation and com-
plemented edge is an inverter. We prove the equivalence in
Eq. 1. When a node is identified as a multiplexer node, the
select node is also collected. This is used for classifying the
multiplexer nodes into ‘vector multiplexers.

Definition 1. Vector multiplexer: In an AIG network, if
there is a set of multiplexer nodes N{n1, n2, ...} such that
{n1, n2, ...} have identical select node, then N is a vector

m

a bs

z

i
2

i
1

m

i
1

i
2

z

a b

s
0 1

(a) (b)

Figure 3: (a) Identify multiplexer node. (b) Equiva-
lent 2-to-1 multiplexer.

multiplexer.
In high-level description C/SystemC or behavior Regis-

ter Transfer level (RTL), the word or vector multiplexer is
a multiplexer with word inputs (Figure 4(a)). However, in
boolean network, hierarchy and module information is lost
when the netlist is flattened during synthesis flow (see Fig-
ure 4(b)). We collect all the vector multiplexers based on
Definition 1. First, we collect all the multiplexer nodes and
the corresponding select nodes by traversing the entire AIG
graph. The multiplexer nodes are classified into different
sets depending on select nodes(line 7). Note that the mul-
tiplexer node does not necessary correspond to multiplexer
in the design, which means that it is possible to find larger
size vector multiplexer than the original design. The sub-
network is generated by backward searching the AIG net-
work (line 11). It starts from the nodes included in the
vector multiplexer and ends at PIs or latches. The last step
of pre-processing is ranking the vector multiplexers based on
the size of the vector multiplexer (i.e. the number of multi-
plexer nodes of the vector multiplexer) and the sub-network
depth.

i1 = a · s

i2 = b · s

m = i1 · i2 = i1 + i2

z = a · s+ b · s

(1)

1

0

Add

Add

S

(a) (b)

S

1

0
S

1

0

S

1

0

…

Boolean network

Figure 4: Vector 2-to-1 MUXes in Boolean network.

3.2 Multiplexer relocation
Definition 2. Common specification logic (CSL): L1,
L2,..., Ln are combinational logic blocks that have the same
number of inputs and outputs. Given the identical inputs, if
L1,L2, ...,Ln are functionally equivalent, they form a com-
mon specification logic (n >= 2).

…

C1

L1 L2

0 1S L1

C1’

0 1S

…

(a) (b)

I
1 I

2

F
F '

Figure 5: Single vector multiplexer re-allocation;
L1, L2 are common specification logic (CSL); I1, I2
are inputs of L1 and L2.

The problem in our context can be defined as follows:
Logic cone L1 is selected by s̄ and logic cone L2 is se-
lected by s(Figure 5 a); starting with a vector multiplexer
V {n1, n2,...}, search if L1,L2 that are common specification
logic. In other words, L1 and L2 are functionally equivalent
if the inputs are identical. Note that they are not necessarily
functionally equivalent in the design.

If L1 and L2 are common specification logic, the design
can be minimized by reallocating the multiplexers with in-
puts L1 and L2. As shown in Figure 5(b), I1 and I2 are
the inputs of the common specification logic L1 and L2. To
reallocate the multiplexers, we first duplicate the logic of C1
without L1 and L2 (call it C′1). Then, a set of multiplexers
are created to re-multiplex I1 and I2. These multiplexers
are created depending on how logic L1 and L2 are selected
in the original design. Now, the outputs of the multiplexers
will be the inputs of L1. With this transformation, F and
F ′ are functionally equivalent, which can be proved as fol-
lows: F = f(I1) · S + f(I2) · S̄; F

′ = f(I1 · S + I2 · S̄). If
S = 0, F = F ′ = f(I1); and if S = 1, F = F ′ = f(I2),
where f is the function of L1 and L2.

The most popular technique for checking if the designs
are common specification logic is combinational equivalence
checking (CEC). This problem has been addressed using
BDDs [13], SAT[14] [15], AIG[10] etc. Current CECmethod-
ology ensures that the two combinational circuits are checked
for equivalence. However, this is not applicable here because
that the boundary of the input is not given.

Eugene Goldberg1 [16] proposed common specification ver-
ification technique that is able to identify if two combina-
tional circuits N1, N2 have common specification. If N1, N2

are two logic with a common specification, they are toggle
equivalent. However, this technique [16] is applicable to a
known specification. Additionally, the technique is imple-
mented by checking the common specification level by level
from output to input, which means it requires a known set
of signals as inputs.

Our algorithm of identifying common specification logic
is shown in Algorithm 2. It takes the sub-network cre-
ated in pre-processing as the input and returns two set of
AIG nodes: common specification logic nodes VC and bound
nodes VB . Our algorithm solves this problem using subgraph

1Currently, the ACM version has an error about author’s
name (11.23.2016).

3

2

4

5 76

13

12

14

15 1716

(b)

3

2

4 13

12

14

(a)

Figure 6: Node pairing in Algorithm 2 (a) case 1 (b)
case 2

Algorithm 2 Identify Common Specification Logic

Input: Sub-Boolean network Nsub

Output: common specification logic nodes VC and bound
nodes VB
1: Initialize Vtmp = Initial(Nsub)
2: while Vtmp 6= NULL do
3: VC ← VC + Vtmp

4: Vtmp ← NextPair(Vtmp)
5: end while
6: VB ← BoundNodes(VC)
7: return VB , VC

isomorphism.
A digraph G = (V,A) consists of a set of vertices V and

arcs A ⊆ V × V . Each vertex v ⊆ V has an in-degree
d−(v) = # {w ⊆ V |(w, v) ⊆ A} and out-degree d+(v) = #
{w ⊆ V |(v, w) ⊆ A}. The graphs G andH are isomorphic iff
there is a permutation p of V such that for any two vertices
[u, v] in E(G), [p(u), p(v)] are also in E(H). Determining if
two graphs are isomorphic is thought to be neither an NP-
complete problem nor a P-problem. However, the graph
isomorphism in practice can be reduced into a polynomial
time problem. This is because AIG network is a Directed
acyclic graph. and the in-degree of each node is limited to a
constant (number of fanin equals 2).
Our algorithm determines if two DAG subgraphs G(V1, A)

and G′(V2, A) are isomorphic by backward searching level-
by-level. The two vertices, V1, V2 are the two AIG nodes
connected to a multiplexer (e.g. Figure 3-a, node a, b). At
each iteration, we collect the nodes which maintain the iso-
morphism between the two graphs and pair the nodes for
next iteration. Assuming that the complemented edge is 1
and regular edge is 0, there are four types of AIG node:
{0, 0}, {0, 1}, {1, 0}, and {1, 1}. For pairing the nodes for
checking isomorphism, two cases are considered:
Case 1) {0,1}, {1,0}: If only one of the coming edges of
the two given nodes are complemented, the paring solution
is unique (Figure 6 a). To make sure that the two graphs are
isomorphic, node 3 must be paired with node 14 and node 4
must be paired with node 13. In this case, node 2 is added
into the common specification logic nodes set. Nodes {3,14}
and {4,13} are generated pairs for next iteration.
Case 2) {0,0}, {1,1}: If the two coming edges of the two
given nodes are the same, there are two possible pairings.
For example, in Figure 6(b), node 3 can be either paired
with node 13 or node 14. As we can see, the more common

specification logic is detected, the more area reduction can
be achieved by sharing the logic. This means that we need
to target on the largest subgraphs that are isomorphic. This
is done by searching further AIG structures. In Figure 6(b),
if node 3 is paired with node 13 and node 4 with node 14,
the common specification logic searching algorithm stops at
the second level and returns only three nodes. However, if
node 3 is paired with node 14, the common specification logic
will have three levels. This is because pairing of node 3 with
node 14 makes the two sub-graphs {3,5,6} and {14,16,17}
are isomorphic. In this paper, we set k equal to 3.

We illustrate the entire multiplexer relocation algorithm
using an example shown in Figure 7.
Initialization (line 1): The initialization step returns the
initial pairs for identifying common logic. First, the mul-
tiplexer node 4 is identified (Figure 7(b)). The multiplexer
nodes are {4, 5, 6} and the select node is S. The initial nodes,
node 15 and 21, are the input nodes of the multiplexer.
Therefore, node 15 and 21 are the two vertices for identi-
fying isomorphic sub-graphs. The initial pairs are generated
based the case 2 ({0, 0}, {1, 1}). To maximize the common
logic size, the two initial pairs are {13, 19} and {14, 20}. The
common logic is VC={15}.
Searching CSL (lines 2-5): This function starts with the
initialized pairs and ends if there is no new pairs gener-
ated. At the beginning of each iteration, Vtmp stores the
current level pairs. Then, Vtmp is overwritten by new pairs
generated by NextPair(). Meanwhile, the new nodes are
collected iteratively (line 3). As shown in Figure 7(b), at
the first iteration Vtmp = [{13, 19}, {14, 20}]. NextPair() is
the function that returns the pairs for next iteration based
on the two cases we discussed. It returns the two pairs
[{11, 18}, {12, 17}], which are written into Vtmp. Note sets
{15,13,14} and {21,19,20} are the current subgraphs that
are isomorphic. Nodes 13 and 14 are collected into VC , so
that VC = {15, 13, 14}. At the second iteration, NextPair()
returns null since it is not able to generate any new pairs.
At this iteration, nodes 11 and 12 are collected into VC .
This function ends and returns VC = {15, 13, 14}+ {11, 12}
= {15, 13, 14, 11, 12}.
Bound nodes (line 6): BoundNodes() is the function that
returns the nodes of the boundary between common speci-
fication logic and the remaining logic. It takes the common
logic nodes VC as input. This is done by collecting all the
children of the nodes that have the largest depth in sub-
graphs (VC). Additionally, this function returns the rela-
tionship between the select node (S) with the bound nodes.
In Figure 7(c), the bound nodes are {A1, B1} and {A2, B2}
which are selected by S̄ and S respectively.
Multiplexer relocation: The relocation function takes
the original AIG network, CSL nodes (VC), and bound nodes
(VB) as inputs and returns the optimized AIG network. The
relocation is done in three steps: 1) Duplicate the non-
common logic as C′ when the bound nodes are reached.
Note that the bound nodes are included in C′. In Figure
7(d), C′ only includes the PI nodes. 2) A set of multiplex-
ers (AIG nodes) are created to ”re-multiplexing” the bound
nodes. Nodes {22, 23, 24} and {25, 26, 27} are the two
multiplexers in this example; 3) The common specification
logic is connected to the multiplexer nodes by matching the
selecting function.

3.3 Multiplexers relocation with Retiming

13

15

14

11 12

A1 B1

19

21

20

17 18

A2 B2

5 6

S

Z

4

13

15

14

11 12

A1 B1

19

21

20

17 18

A2 B2

5 6

S

Z

4

Multiplexer node

initial node initial node

13

15

14

11 12

CSL

Bound = {A
1
,B

1

S

!
,!!A

2
,B

2

S

!
}

13

15

14

11 12

A1 B1A2 B2S

23 24 26 27

22 25

Z’

multiplexer multiplexer

(a) (b) (c) (d)

Figure 7: (a) Original AIG network, A1, A2, B1, B2, S are PIs; Z is output. (b) Initialize multiplexer relocation;
multiplexer node is node 4; initial pairs are {13,19},{14,20}. (c) Common specification logic, bound nodes,
and how bound nodes are selected. (d) AIG network after multiplexer relocation

(a) (b)

1

0

S

C2

C1 1

0

S

C2

C1 1

0

S

C1

F F’ F’’

(c)

Figure 8: Identifying common specification logic af-
ter backward retiming (a) Original design. (b) Back-
ward retiming applied. (c) Multiplexers relocation.

The proposed algorithm in Section 3.2 is applicable to
both combinational and sequential designs. However, it does
not provide relocations across the latches. This is because
pre-processing generates sub-networks between the vector
multiplexer and the latches or PIs of the sequential de-
signs. However, this may eliminate some common specifi-
cation logic when generating the sub-network. C1 and C2

are common specification logic in Figure 8 (a). However, our
technique cannot identify any common logic. This is because
the sub-network generated by pre-processing only includes
C1 and the vector multiplexer. To overcome this limitation,
we combine our technique with retiming. Backward retiming
enables the algorithm to identify more common specification
logic (shown in Figure 8(b)). Then, our technique is able
to identify C1 and C2 as common specification logic. Figure
8(c) shows that the design has been minimized by backward
retiming and multiplexer relocation. One limitation of this
approach is that the number of latches may increase if only
backward retiming is applied.

4. EXPERIMENTAL RESULTS
The proposed algorithm has been implemented in theABC

environment [10]. It takes the gate-level netlist as input
and outputs the optimized gate-level netlist. The designs
tested in Table 1 have been initially implemented in C/C++.
These implementations are compiled into RTL-level by IBM
high-level synthesis tool and GAUT [17] and are synthe-
sized into gate-level netlist using IBM logic synthesis system
BooleDozer [18]. We evaluate our technique by measuring

Design Original Ours ∆ area CPU time
ibm1 24010 20154 16.1 % 320 s

branch1 10759 8920 17.1 % 57 s
branch2 5654 4144 26.7 % 167 s
branch3 3421 3038 9.9 % 1.7 s
polynom1 24648 15676 37.4 % 470 s
polynom2 37254 33220 10.8 % 611 s
loop safe1 1587 1587 0 % 0.1 s
loop safe2 2760 2760 0 % 0.1 s

Table 1: Evaluation of multiplexer reallocation; com-
parison with traditional design flow

for (i = 0; i <5; i++)
{
if(x > y && x < 2*y)

f = f - x;
else

f = f + y;
}

Table 2: C++ implementation example

the design area and the delay (as logic levels) after tech-
nology mapping. The area and logic levels are obtained by
ABC mapper (command map -v) using IBM 14nm technol-
ogy library.

In Table 1, Original represents the area of the designs that
go through compilation, high-level synthesis, logic synthe-
sis, and technology mapping. Logic synthesis and mapping
are done using ABC(command: strash; dch -v; map -v)[10].
Optimization command dch, the most powerful optimization
function in ABC) , has been applied multiple times until the
number of AND nodes and logic levels cannot be reduced.
The experiments in third column represent the area with our
multiplexer relocation technique. The only difference com-
pared to Original, is that we apply multiplexer relocation
before the logic synthesis. ibm1 is a datapath design of IBM
Z-series microprocessor. branch designs are branch predic-
tion designs. polynom benchmarks are polynomial division
algorithm. loop safe are the benchmarks in loop track of
SV-COMP benchmarks suit.

The results shown in Table 1 demonstrate that the pro-
posed method is able to improve design area beyond the ap-
proach offered by traditional design flow. For the loop safe

Lev: 1

Lev: 2

Lev: 3

Lev: n

1

2 3

4 5 6 7

…

Lev: n-1

Bound nodes 2
n−1

2
n−2

…

Figure 9: Fanout-free AIG

designs, our technique does not provide additional area re-
duction compared to the traditional flow. This is because
that these designs have simple structure so that ABC is able
to identify and merge the equivalent nodes during the logic
synthesis. The proposed algorithm does not improve the
delay (number of levels) directly. This is because relocat-
ing the multiplexers does not reduce the logic depth of the
critical path. However, our technique can potentially enable
other optimization techniques in the design flow. For exam-
ple, we observe that the number of levels of the critical path
of ibm1 design can be significantly reduced after relocations
by other techniques implemented in [18].

4.1 Limitations
This approach has also been evaluated using ISCAS89 and

ITC99 benchmarks suits. The benchmarks we tested include
c5315, c7552, s9234, s38584, b04, b14, b22 circuits. However,
the multiplexer relocation technique improves only 4.2% area
for c7552. For other designs, this technique does not provide
reduction. This is because:
a) The technique is applicable to a designs that contain vec-
tor multiplexers (see Definition 1). b) The number of bound
nodes nB must be 2x smaller than the number of common
logic nodes nC . This is because our technique needs to in-
sert nB/2 multiplexers to reallocate the original multiplex-
ers. Note that each multiplexer are a two level logic that
consists of three AIG nodes.
The worst-case scenario is when the common logic (CSL)

is represented as a Fanout-free AIG graph (Figure 9). As-
suming the common logic includes level 1 to level n-1, nC is
the number of nodes in the common logic.That is, nC=20 +
21 + ...2n−2 = 2n−1 − 1, and nB=2n−2. To reallocate a
multiplexer, ncost=3 ∗ 2n−2=2n−1 + 2n−2 extra nodes are
inserted. The number of reducible nodes is equal to nC .
Hence, ∆n=nC - ncost=2n−1−1−(2n−1+2n−2) =−1−2n−2,
which is always negative.This means that the multiplexer re-
location always provides negative gain when the logic cone
of the vector multiplexer is a Fanout free network. Note
that this approach is less efficient if the designs have been
optimized using logic synthesis. This is because the current
method is limited to identify common specification logic and
vector multiplexers structurally since AIG is not canonical.

5. CONCLUSION
The paper presented an efficient logic synthesis technique

that targets area minimization of datapath designs. The
proposed technique combines the high-level synthesis tech-
nique, resource sharing with logic synthesis. Instead of bind-
ing the resources of arithmetic operations in high-level syn-
thesis, our technique is able to binding arbitrary combina-
tional logic if they form common specification logic. We

presented an efficient algorithm of identifying common spec-
ification logic using graph isomorphism. The experimen-
tal results show that our technique can provide additional
area reduction beyond traditional design flow. Future work
will focus on improving the algorithm of identifying common
logic regardless of the structure.

6. REFERENCES
[1] R. Zimmermann, “Datapath synthesis for standard-cell

design,” in 2009 19th IEEE International Symposium on
Computer Arithmetic. IEEE, 2009, pp. 207–211.

[2] G. D. Micheli, Synthesis and Optimization of Digital
Circuits. McGraw-Hill Higher Education, 1994.

[3] M. Potkonjak and J. Rabaey, “Optimizing Resource
Utilization using Transformations,”Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 13, no. 3, pp. 277–292, 1994.

[4] M. B. Srivastava and M. Potkonjak, “Optimum and
Heuristic Transformation Techniques for Simultaneous
Optimization of Latency and Throughput,”Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 3, no. 1, pp. 2–19, 1995.

[5] S. P. Mohanty, N. Ranganathan, and S. K. Chappidi, “An
ILP-based Scheduling Scheme For Energy Efficient High
Performance Datapath Synthesis,” in ISCAS, vol. 5.
IEEE, 2003, pp. V–313.

[6] J. Cong and J. Xu, “Simultaneous FU and Register
Binding-based on Network Flow Method,” in Design,
Automation and Test in Europe, 2008. DATE’08. IEEE,
2008, pp. 1057–1062.

[7] M. Ciesielski, D. Gomez-Prado, Q. Ren, J. Guillot, and
E. Boutillon, “Optimization of Data-flow Computations
using Canonical TED Representation,”Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 28, no. 9, pp. 1321–1333, 2009.

[8] G. Martin and G. Smith, “High-level Synthesis: Past,
Present, and Future,” IEEE Design & Test of Computers,
no. 4, pp. 18–25, 2009.

[9] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware
AIG Rewriting A Fresh Look at Combinational Logic
Synthesis,” in 43rd DAC. ACM, 2006, pp. 532–535.

[10] A. Mishchenko et al., “ABC: A System for Sequential
Synthesis and Verification (2007),”URL http://www. eecs.
berkeley. edu/alanmi/abc, 2010.

[11] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. Sangiovanni-Vincentelli, “SIS: A System
for Sequential Circuit Synthesis,” 1992.

[12] A. Biere, “The AIGER and-inverter graph (AIG) format,”
Available at fmv. jku. at/aiger, 2007.

[13] R. E. Bryant, “Graph-based Algorithms for Boolean
Function Manipulation,”Computers, IEEE Transactions
on, vol. 100, no. 8, pp. 677–691, 1986.

[14] A. Kuehlmann and F. Krohm, “Equivalence Checking using
Cuts and Heaps,” in 34th DAC. ACM, 1997, pp. 263–268.

[15] E. Goldberg, M. Prasad, and R. Brayton, “Using SAT for
Combinational Equivalence Checking,” in DATE. IEEE
Press, 2001, pp. 114–121.

[16] E. Goldberg, “Equivalence Checking of Dissimilar Circuits
II,” Technical report, Tech. Rep., 2004.

[17] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and
E. Martin, “GAUT: A High-level Synthesis Tool for DSP
Applications,” in High-Level Synthesis. Springer, 2008, pp.
147–169.

[18] L. Stok, D. Kung, and et al., “BooleDozer: Logic Synthesis
for ASICs,” IBM Journal of Research and Development,
vol. 40, no. 4, pp. 407–430, 1996.

