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Abstract - The paper presents an algebraic approach to functional
verification of gate-level, integer arithmetic circuits. It is based on ex-
tracting a unique bit-level polynomial function computed by the cir-
cuit directly from its gate-level implementation. The method can be
used to verify the arithmetic function computed by the circuit against
its known specification, or to extract the arithmetic function imple-
mented by the circuit. Experiments were performed on arithmetic cir-
cuits synthesized and mapped onto standard cells using ABC system.
The results demonstrate scalability of the method to large arithmetic
circuits, such as multipliers, multiply-accumulate, and other elements
of arithmetic datapaths with up to 512-bit operands and over 2 Mil-
lion gates. The procedure has linear runtime and memory complexity,
measured in the number of logic gates of the design.

I. Introduction

Despite a considerable progress in verification of random
and control logic, advances in formal verification of arith-
metic designs have been lagging. This can be contributed
mostly to the difficulty in efficient modeling of arithmetic
circuits and datapaths without resorting to computation-
ally expensive Boolean methods that require “bit blasting”,
i.e., flattening the design to a bit-level netlist.
Importance of arithmetic verification problem grows

with an increased use of arithmetic modules in embedded
systems to perform computation intensive tasks in multi-
media, signal processing, and cryptography applications.
While some EDA vendors offer tools that generate “cor-
rect by construction” arithmetic components, the problem
of verifying non-standard, bit-optimized embedded arith-
metic circuits remains open. Furthermore, while it could
be argued that industry somehow manages to handle the
arithmetic verification problems, it does it at a high cost by
throwing at it all possible verification methods and tools,
both formal, and simulation-based [1]. This sentiment is
also echoed in the most recent paper on floating point ver-
ification at IBM [2].
The work presented in this paper aims at overcoming

some of these problems. It addresses the verification prob-
lem at an algebraic level, treating an arithmetic circuit and
its specification (if known) as a properly constructed alge-
braic system. The proposed technique solves the verifica-
tion problem by function extraction, i.e., by deriving arith-
metic function computed by the circuit from its low-level
circuit implementation. The method can be used to ver-
ify the extracted function against the given specification
(if known), or as a reverse engineering tool, to learn the
function performed by the circuit. In case of an incorrectly
implemented function, this method will generate a coun-
terexample (bug trace).

II. Related Work

Several approaches have been proposed to check an
arithmetic circuit against its functional specification. Dif-
ferent variants of canonical, graph-based representations

have been proposed, including Binary Decision Diagrams
(BDDs), Binary Moment Diagrams (BMDs) [3], Taylor
Expansion Diagrams (TED) [4], and other hybrid dia-
grams.While BDDs have been used extensively in logic syn-
thesis, their application to verification of arithmetic circuits
is limited by the prohibitively high memory requirement for
complex arithmetic circuits, such as multipliers.
Arithmetic verification problems have been typically

modeled using Boolean satisfiability (SAT) or satisfiabil-
ity modulo theories (SMT). Several SAT solvers have been
developed to solve Boolean decision problems, including
ABC, MiniSAT, and others. Some of them, such as Cryp-
toMiniSAT [5], specifically target xor-rich circuits, but,
like all others, are based on a computationally expensive
DPLL decision procedure. Several techniques combine lin-
ear arithmetic constraints with Boolean SAT in a unified al-
gebraic domain [6]; or combine automatic test pattern gen-
eration (ATPG) and modular arithmetic constraint-solving
techniques for the purpose of test generation and assertion
checking [7]; but they do not offer sufficient scalability. Ap-
proaches based on ILP models of the arithmetic operators
[8] [9] are also known to be computationally expensive and
not scalable.
SMT solvers depart from treating the problem in a

strictly Boolean domain and integrate different well-defined
theories (Boolean logic, bit vectors, integer arithmetic,
etc.) into a DPLL-style SAT decision procedure [10]. Some
of the most effective SMT solvers potentially applicable to
our problem are Boolector, Z3, CVC and Yices, among
others. However, SMT solvers still model the problem as a
decision problem and are not efficient at solving verification
problems that appear in arithmetic circuits.
Another class of solvers include Theorem Provers, de-

ductive systems for proving that an implementation satis-
fies the specification, using mathematical reasoning. The
proof system is based on a large and strongly problem-
specific database of axioms and inference rules, such as
simplification, rewriting, induction, etc. Some of the most
popular theorem proving systems are: HOL, PVS, and
Boyer-Moore/ACL2, Nqthm.The success of verification us-
ing theorem prover depends on the set of available axioms
and rewrite rules, and on the choice and order in which the
rules are applied during the proof process, with no guar-
antee for a conclusive answer. Similarly, term rewriting
techniques, such as [11] or [12], are incomplete and “may
fail to generate the proof because additional lemmas are
needed” [12].
One of the most advanced techniques that have poten-

tial to solve the arithmetic verification problem are those
based on symbolic Computer Algebra [13]. These methods
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model the arithmetic circuit specification and its hardware
implementation as polynomials [14],[15],[16],[17],[18],[19].
They attempt to prove that the implementation satisfies
the specification by performing a series of divisions of the
specification polynomial F by the implementation polyno-
mials B = {f1, . . . , fs}, representing the circuit compo-
nents. For example, the specification of an integer multi-
plier circuit Z = X · Y is F = Z −X · Y . The implemen-
tation polynomials for gate-level circuits are derived from
logic gate equations, similar to those shown in eq.(1).
The verification problem employed by these methods is

posed as the reduction of F modulo B, denoted F
B
−→+

r. If r = 0 the implementation satisfies the specification.
However, if r 6= 0, such a conclusion cannot be made: B
may not be sufficient to reduce F to 0, and yet the circuit
may be correct. To check if F is reducible to zero, one
must use a canonical set of polynomials, G = {g1, ..., gt},
called Groebner basis, obtained from a linear combination
of polynomials fi ∈ B with polynomial coefficients. In
general, a linear combination of polynomials fi is called an
ideal J = 〈f1, ..., fs〉. The resulting reduction problem is
referred to as ideal membership testing: check F ∈ J . 1

Wienand et. al. [16] model an arithmetic circuit as
an arithmetic bit-level (ABL) network of adders and other
arithmetic operators. Both the specification and the oper-
ators are represented as polynomials over Z2n . They show
that, the properly ordered set G of polynomials represent-
ing logic gates automatically renders it a Groebner basis.
The verification problem is solved by testing if specification
F reduced modulo G vanishes over Z2n using a computer
algebra system, Singular [20]. In [17], the solution is further
restricted to variables in Z2 and the reduction formulated
directly over quotient ring Q = Z2n [X]/〈x2−x〉. Here, the
ideal 〈x2 − x〉 is the constraint restricting variables x to
Boolean. While mathematically elegant, adding this con-
straint for all variables makes the method computationally
expensive for gate-level circuits. In general, the method of
[17] is limited to ABL networks composed of half adders
ha.

Lv, Kalla, et. al [18], [19], formulated the verifica-
tion problem similarly, but applied it to Galois field (GF)
arithmetic circuits, which enjoy certain simplifying prop-
erties. Specifically, for GF, the problem reduces to the
ideal membership testing over a larger ideal that includes
J0 = 〈x2−x〉 in F2. The solution uses a modified Gaussian
elimination technique. In [19], a symbolic computer alge-
bra method is used to derive a word level abstraction for
GF circuits, where GF operators are elements of a poly-
nomial ring with coefficients in F2k . This work relies on
the customized computation of Groebner basis and applies
only to GF networks. It does not extend to polynomial
rings in integers Z2n which is the subject of this paper.
A different approach to arithmetic verification has been

proposed in [21] and [22], where a bit-level network is de-
scribed by a system of linear equations. The system is

1In general, one must test if F ∈ I(V (J)). It is only for finite fields
F2q that this test reduces to F ∈ J . Details can be found in [13] [18].

then reduced to a single algebraic signature, FSig, using
standard linear algebra methods and compared to the spec-
ification polynomial Fspec. A non-zero residual expression
RE = FSig − Fspec, determines a potential mismatch be-
tween the implementation and the specification, indicat-
ing a design error. Additional step is needed to check if
RE = 0, which may be as difficult as the original prob-
lem itself. An extension to this work has been recently
presented in [23], by computing input signature from the
known output signature using a network-flow approach.
This technique also relies on the half-adder based circuit
structure and represents logic gates as elements of has.
Logic gates that cannot be mapped into adders are rep-
resented as has, with an unused output left as “floating”.
Additional constraint relating floating signals to fanouts
in the circuit must be satisfied for the result to be trusted;
however the computation to verify this condition can be ex-
pensive. For this reason, this method becomes inefficient
if the number of logic gates dominates the HA network.
Also, the circuit would need to be partitioned into linear
and non-linear portions, which is a non-trivial task.
In summary, the problem of formally verifying integer

arithmetic circuits over integers Z2n remains open [24]. To
the best of our knowledge, the techniques reviewed here
cannot efficiently solve the verification problem for gate-
level arithmetic circuits in Z2n over Boolean variables Z2,
which is the problem we describe in this paper.

III. Function Extraction

Novelty and Contribution: This paper offers a ro-
bust solution to arithmetic verification by extracting a
unique bit-level polynomial function implemented by the
circuit, directly from its gate-level implementation. This is
done by transforming the polynomial representing encoding
of the outputs (called output signature) into a polynomial
at the primary inputs (the input signature). If the specifi-
cation of the circuit is known, the extracted input signature
will be compared with that specification. Otherwise, the
computed signature provides the arithmetic function im-
plemented by the circuit.
The method uses an efficient algebraic model of the cir-

cuit, with logic gates represented by algebraic expressions,
while correctly modeling signals as Boolean variables. In
contrast to [23], it works directly on unstructured, gate-
level implementations. And in contrast to [17],[19] and
other computer algebra methods, it is done using efficient
polynomial transformation process, without a need for ex-
pensive Groebner-based polynomial division.
To the best of our knowledge, this approach has not been

attempted before in the context of gate-level integer arith-
metic in Z2n

2. In a sense, it indirectly proves that checking
if the implementation satisfies the specification can be done
using ideal membership testing in Z2n , although such a re-
sult is not known in theory [24].

2The functional abstraction technique described in [19] applies only
to Galois field circuits and is based on polynomial reduction via
Groebner basis.
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A. Algebraic Model

The circuit is modeled as a network of logic elements
of arbitrary complexity: basic logic gates (and, or, xor,
inv) and complex (aoi, oai, etc.) standard cells obtained
by synthesis and technology mapping.
Each logic element is modeled as a pseudo-Boolean poly-

nomial fi, with variables from Z2 (binary) and coefficients
from Z2n (integers modulo 2n). The following algebraic
equations are used to describe Boolean operators and ar-
bitrary logic gates:

¬a = 1− a

a ∧ b = a · b

a ∨ b = a+ b− a · b

a⊕ b = a+ b− 2a · b

(1)

In our model, the arithmetic function computed by the
circuit is specified by two polynomials: an input signa-
ture and an output signature. The input signature, Sigin,
is a polynomial in primary input variables that uniquely
represents the integer function computed by the circuit,
i.e., its specification. For example, an n-bit binary adder
with inputs {a0, · · · , an−1, b0, · · · , bn−1}, is described by

Sigin =
∑n−1

i=0 2iai+
∑n−1

i=0 2ibi. Similarly, the input signa-
ture of a 2-bit signed multiplier, shown in Fig. 1, is Sigin =
(−2a1+a0)(−2b1+ b0) = 4a1b1−2a0b1−2a1b0+a0b0, etc.
In our approach, the input specification need not to be
known; it will be derived from the circuit implementation
as part of the verification process.
Similarly, the output signature, Sigout, of the circuit is

defined as a polynomial in the primary output signals. Such
a polynomial is uniquely determined by the n-bit encoding
of the output, provided by the designer. For example, the
output signature of the 2-bit signed multiplier in Fig. 1
is −8z3 + 4z2 + 2z1 + z0. In general, an output signature
of an unsigned arithmetic circuit with n output bits zi is
represented as a linear polynomial, Sigout =

∑n−1
i=0 2i zi.

Similar expression is derived for signed arithmetic circuits.
Our goal is to transform the output signature, Sigout,

using polynomial representation of the internal logic ele-
ments, into the input signature, Sigin. By construction,
the resulting Sigin will contain only the primary inputs
(PI) and will uniquely determine the arithmetic function
computed by the circuit (c.f. Theorem 1).
B. Outline of the Approach
The proposed approach is illustrated with a simple 2-bit

signed multiplier example, shown in Fig. 1. The input sig-
nature Sigin is computed by by a series of transformations
performed in a reversed topological order, from the primary
outputs (PO) to primary inputs (PI), starting at the known
output signature F0 = Sigout. Each equation corresponds
to a cut in the circuit, i.e., a set of signals that separate pri-
mary inputs from primary outputs. The following sequence
is given here for the purpose of illustration, with the dis-
cussion on the ordering of transformations to follow. First,
F0 is transformed into F1 using substitutions z3 = 1 − x8

and z2 = 1 − x9. Subsequently, F2 is obtained from F1

using equations for x8 and x9, and so on, culminating at
the primary inputs with F7 = 4a1b1−2a0b1−2a1b0+a0b0.

F0 = −8z3 + 4z2 + 2z1 + z0

F1 = 8x8 − 4x9 + 2z1 + z0 − 4

F2 = 8(x1 + x7 − x1x7)− 4(x1 + x7 − 2x1x7) + 2z1 + z0 − 4

F3 = 4x1 + 4x7 + 2z1 + z0 − 4

F4 = 4x1 + 4x5x6 + 2(x5 + x6 − 2x5x6) + z0 − 4

F5 = 4x1 + 2(x5 + x6) + z0 − 4

F6 = 4x1 − 2x2 − 2x3 + x4

F7 = 4a1b1 − 2a0b1 − 2a1b0 + a0b0

= (−2a1 + a0)(−2b1 + b0)

a0b0a1b1

x1 x2 x3 x4

x7

F0

F1

F2

F3

F4

F5

F6

F7

x8

z3 z2 z1 z0

x5
x6

x9

Sig_in

a 1

a 0

1

b 1

-2

Sig_out

b 0

1

ONE

-2

a) b)

Fig. 1. Verifying a 2-bit signed multiplier: a) Gate-level circuit with
output signature Sigout = −8z3 + 4z2 + 2z1 + z0; b) Arithmetic
function extracted from the circuit using TED in normal factored
form: Sigin = (−2a1 + a0)(−2b1 + b0).

Note the local increase in the polynomial size (at F2 or
F4) known as “fat belly” effect, before it gets eventually
reduced to the expression in PIs only. The choice of the
cuts and the order in which the variables are eliminated by
substitution has a profound influence on the size of the fat
belly and the efficiency of the method. They are guided by
the following heuristics to keep the size of the intermediate
expressions as small as possible.
• Fanouts: Identify variables that depend on common
(fanout) inputs and perform their substitution simultane-
ously. This increases a chance for eliminating common
subexpressions. For example, in Fig. 1 variables in subex-
pression 8x8 − 4x9 depend on common fanout variables x1

and x7. As a result, 8x8 − 4x9 = 4(2x8 − x9) reduces to
4(x1 + x7), without introducing a nonlinear term 8x1x7.
Such nonlinear terms are particularly harmful if their vari-
ables continue to be substituted by other variables, poten-
tially leading to exponential explosion.
• Dependency and Levelization:

a) Substitution must follow the reverse-topological order;
once a given variable (output of a gate) is substituted by an
algebraic expression of the gate inputs, it will be eliminated
from the current cut expression and will never be consid-
ered again. That is, a variable is substituted for only after
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substituting all signals in its logical cone. For example, be-
fore substituting for x6, one must substitute for x7 and z1,
since they both depend on x6. Since the circuit is acyclic,
there always exists an ordering of substitutions that satis-
fies this condition. We refer to this topological constraint
informally as “vertical”, since it orders variables upwards
from POs to PIs.
b) To further increase the efficiency of substitution, another
(“horizontal”) constraint is imposed on the ordering of the
candidate variables at a given transformation step. Specif-
ically, the variables that are at the same logic level (from
PIs) and have transitive fan-in to common variables should
be eliminated together, as this will maximize a chance of
the reduction of common terms. It is these variables that
define the best cut at each step of the procedure.
• Vanishing Polynomials: In some arithmetic circuits a
particular output bit may always evaluate to zero. This is
typically associated with MSB, but this is not the only case.
For example, in the squarer circuit (multiplier which com-
putes a square value Z of some integer input) the output bit
z1 is always 0. For this reason one may want to exclude bit
z1 from the output signature, Sigout =

∑n−1
i=0 2i zi. How-

ever, the set of algebraic expressions associated with the
term 2z1 offers some early simplification during the com-
putation of the signature, before it reaches the primary in-
puts. Obviously, the logic cone of z1 itself will reduce to 0
at the PI, but the terms of its intermediate cuts (at internal
signals) help reduce the size of the intermediate cuts of the
rest of the circuit. We refer to such a redundant expression
as the vanishing polynomial, as it vanishes (evaluates to 0)
for all possible values of its input variables. We comment
in Section V on how presence of such a redundancy may
help the verification.
• Complex gates: Our signature transformation algo-
rithm works on a fabric of basic Boolean gates; this offers
high logic granularity and the greatest choice of signals for
the selection of the smallest cut. For the design with com-
plex gates (standard cells AOIxx, OAIxx, etc.), algebraic
equations are written for each internal signal of the gate,
rather than only for its output. As confirmed by our ex-
periments, this offers a richer set of cuts to choose from
and increases a chance of an earlier simplification of the
cut expression.
• Binary signals: During elimination, the expensive di-
vision by the ideal 〈x2 − x〉, employed by [17], is replaced
by lowering xk to x every time variable x is raised to higher
degree during the substitution process. For example, if at
any point an expression contains a term xyx, it will be re-
placed by xy. With this, an expression, such as xyx− yxy,
will immediately reduce to 0.

Efficient Datastructure: Our algorithm uses an effi-
cient data structure to support these simplifications and
efficiently implement an iterative substitution and elimina-
tion process. Specifically: a data structure is maintained
that records the terms in the expression that contain the
variable to be substituted. It reduces the cost of finding
what terms will have their coefficients changed during the
substitution. The expression data structure is a C++ ob-

ject that represents a pseudo-Boolean expression. It sup-
ports both fast addition and fast substitution with two
C++ maps, implemented as binary search trees, a terms
map and a substitution map.

C. Properties of the Extracted Input Signature

Once Sigin has been computed, it is analyzed to see if
it matches the expected specification. The comparison be-
tween the two expressions can be done using canonical data
structures, such as BMD [3] or TED [4] that can check
equivalence between two word-level outputs expressed in
bit-level inputs.
In case of a buggy circuit, if the specification is given and

the system can successfully compute input signature, then
any mismatch between the specification and input signa-
ture can be used to generate a counter-example (bug trace).
This can be done, by solving a SAT/SMT problem on that
mismatch polynomial. Any satisfying solution will provide
a test vector for the counter-example.
When the specifiction is not given, TED can represent

the function implemented by the circuit in normal factored
form to help identify the type of arithmetic function ob-
tained. TED has a capability of finding best ordering of
variables from which such a form can be obtained [25]. In
large arithmetic circuits, additional variable ordering direc-
tives may be given by the designer if the bit-level composi-
tion of input words is known. For example, for the circuit
in Fig. 1(a), the input signature computed by our method
is Sigin = 4a1b1 − 2a0b1 − 2a1b0 + a0b0. Its TED repre-
sentation shown in Fig. 1(b) reveals the canonical factored
form, Sigin = (−2a1 + a0)(−2b1 + b0). This indicates that
the function computed by the circuit is a two-bit signed
multiplier, A · B, if the variables (a1, a0) and (b1, b0) form
the two-bit input words, A and B.

Essential part of the described approach is the following
theoretical result about the correctness and uniqueness of
the computed input signature. Here, “correct” means that
the result is the same as if it were computed with Boolean
methods. This result applies to combinational circuits, but
it can be readily extended to sequential circuits by un-
rolling the circuit over a fixed number of time frames into
a combinational circuit (bounded model).
Theorem: Given a combinational circuit composed of

basic logic gates, described by polynomial expressions (1),
input signature Sigin computed by the proposed procedure
is unique and correctly represents the arithmetic function
implemented by the circuit.
Proof: The proof of correctness hinges on the fact that

each internal signal is correctly represented by an algebraic
expression, i.e., such an expression evaluates to a correct
Boolean value. Specifically, it can be easily verified that
equations (1) are the correct algebraic representations of
basic Boolean functions. Hence, any logic function that is
expressed recursively by eq. (1) must evaluate to a correct
Boolean value; once the polynomial is reduced by removing
redundant terms, the algebraic representation is unique.
Example: xor function, f = a ⊕ b = a′b + ab′, can be
written as f = (1 − a)b + a(1 − b) − ((1 − a)b)(a(1 − b)),
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which reduces to a unique form, a+ b− 2ab. Hence, a PO
signal is correctly represented by variables in its logic cone,
up to the primary inputs. Therefore, Sigout, which is the
weighted sum of the output signals, is eventually replaced
by Sigin. For this reason such computed Sigin is a correct
algebraic representation of the circuit.
The proof of uniqueness is based on induction on i, the

step when polynomial Fi is transformed into Fi+1.
Base phase: polynomial F0 = Sigout, a linear combina-
tion of primary outputs, is unique. Also, as discussed
above, algebraic representation of each logic gate is unique.
Induction phase: Assuming that Fi is unique, we must
prove that Fi+1 is unique. Recall that each variable in
Fi represents output of some logic gate; during the trans-
formation process it is substituted by a unique polynomial
of that gate. Since the circuit is combinational (no loops)
and the substitution is done in reversed topological order,
at each step i a variable in Fi is replaced by a unique poly-
nomial in new variables. Hence, polynomial Fi+1 derived
from Fi by such substitution is also unique. �

IV. Experimental Results

The verification technique described in this paper was
implemented in C++. The program was tested on a num-
ber of gate-level combinational arithmetic circuits, taken
from [26]: CSA multipliers, add-multiply, matrix multipli-
ers, squaring, etc., with operands ranging from 64 to 512
bits. The results are shown in Table I and II. The exper-
iments were conducted on a PC with Intel Processor Core
i5-3470 CPU 3.20GHz x4 with 15.6 GB memory.
Experimental setup: The gate-level structures were

obtained by direct translation of standard implementation
of the designs onto basic logic gates [26]. The designs la-
beled with extension .syn were synthesized and mapped
using ABC system [27] (commands: strash; logic; map)
onto mcnc.genlib standard cell library. ABC was unable
to synthesize the 512-bit CSA multiplier due to memory
limitation.
SAT experiments: the miter for the multiplier design

was created using ABC, command miter, with the refer-
ence design generated by ABC with gen -N -m command.
ABC was also tested using the combinational equivalence
checking command cec. SMT experiments: given the spec-
ification Sigin and output encoding Sigout, the goal was to
prove that (Sigout − Sigin) is unsatisfiable (unSAT). Two
types of encoding of the gate equations were tested: 1) Al-
gebraic gate equations written in SMT2 format; and 2) The
CNF formula for the gates, produced by ABC, translated
using online parser into SMT2. This encoding had much
better performance than method (1) for all the tested SMT
solvers. These results are shown in Table II.
The plot for CPU runtime in Fig. 2 shows an approx-

imately linear runtime complexity of the program in the
number of gates for all the tested circuits. This should be
contrasted with quadratic runtime complexity of [23] (col.
5) and the exponential time complexity of other tools.
Table II gives comparison of our results for the synthe-

sized multipliers with winners of recent SMT competitions

Fig. 2. CPU time for verifying arithmetic combinational circuits.

and evaluation, including Boolector, Z3, CVC4; best SAT
tools and the ABC system; with the symbolic algebra tool,
singular; and Synopsys’ Formality system. It shows that
our technique surpasses those tools in CPU time by several
orders of magnitude.

V. Conclusions and Future Work

The paper describes an efficient approach to derive the
function computed by an integer arithmetic circuit from
its gate-level implementation. It indirectly shows that the
test if the implementation satisfies the specification can, in
fact, be done using ideal membership testing in Z2n ; but
in contrast to methods based on computer algebra it is
implemented as an efficient signature transformation pro-
cess. This by itself is an important theoretical contribu-
tion to the field [24]. Also note that the SAT and SMT
approaches can only be used for verification, and not for
arithmetic function extraction provided by our method.
Our approach uses an advanced data structure and a set

of efficient heuristics to effect this extraction. The results
show that the approach can handle gate-level integer mul-
tiplier circuits up to 512 bits and containing over 2 million
gates. It should be noted, that our experiments involved
circuits synthesized with ABC onto a relatively simple set
of complex gates (mcnc.genlib). It seems that the synthe-
sis tool which retains certain degree of redundancy in the
circuit may help in the verification (recall the discussion
of vanishing polynomials and their effect on “fat belly” in
Section III-B). Solving the verification problem for highly
optimized bit-level circuits, synthesized with commercial
tools, remains a challenge, as these tools are more aggres-
sive in removing the useful redundancy (vanishing polyno-
mials). Future work will concentrate on verifying circuits
synthesized with commercial tools; on verifying sequential
and floating point circuits; and on debugging.
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Matrix Mult F=A[3 × 3] · B[3 × 1] 293K 18.82 621 MB 1,176K 77.09 2.5 GB 4,712K - MO

TABLE I

CPU Time and Memory Results (TO = Timeout after 3600 sec; MO = Memory out of 8 GB)

multiplier synthesized
multiplier 3

Statistics Function-Extraction [23]
[sec]

SAT [sec] SMT [sec] Commercial
Size #Gates CPU [sec] Mem lingeling minisat blbd ABC Boolector Z3 CVC4 Formality Our Formality
4 86 0.01 2.2 MB 0.45 0.00 0.00 0.01 0.00 0.03 0.09 0.81 0.02 2.34
8 481 0.04 2.9 MB 1.72 4.40 62.75 11.66 7.18 16.55 42.63 3.19 0.07 21.51
12 1.2K 0.08 4.3 MB 5.21 TO 1615.47 UD 2030.19 TO TO 108.1 0.17 150.65
16 2.1K 0.14 6.1 MB 7.34 TO TO UD TO TO TO 111.2 0.33 798.24
64 41.4K 5.50 76 MB TO TO TO UD TO TO TO 675.4 5.88 TO
128 164K 39.64 299 MB TO TO TO UD TO TO TO TO 23.32 TO
256 663K 285.22 1.25 GB TO TO TO UD TO TO TO TO 97.60 TO
512∗ 2,091K 130.22 4.44 GB TO TO TO UD TO TO TO TO MO TO

TABLE II

Results for synthesized multiplier; comparison with [23], SAT, SMT and commercial tools (TO = 3600 sec; MO = 8 GB)
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