
Functional Verification of Hardware Dividers
using Algebraic Model

Atif Yasin∗, Tiankai Su∗, Sébastien Pillement†, Maciej Ciesielski∗
∗University of Massachusetts, Amherst, MA, USA

†Univ Nantes, CNRS, IETR UMR 6164, F-44000 Nantes, France
ayasin@umass.edu, tiankaisu@umass.edu, sebastien.pillement@univ-nantes.fr, ciesiel@umass.edu

Abstract—Division is one of the most complex arithmetic
operations to implement and its hardware implementation re-
quires thorough verification at the gate level. Dividers are
difficult to verify using standard Boolean methods, such as
equivalence checking or SAT-based techniques, as they require
"bit-blasting" onto bit-level netlists. Other methods, such as
theorem provers, concentrate mostly on proving correctness
of the division algorithm. However, verification of low-level
hardware implementations has received only a limited attention.
This paper addresses the problem of verifying gate-level divider
circuits by extending an algebraic model, successfully used to
prove multipliers and other arithmetic circuits, to dividers. The
method verifies whether the gate-level divider circuit actually
performs a division, without a need for a reference design.

I. INTRODUCTION

A considerable progress has been made in recent years in
verification of arithmetic circuits such as multipliers, fused
multiply-adders, multiply-accumulate, and other components
of arithmetic datapaths, both in the integer and finite field
domain [1][2]. However, the verification of hardware dividers
has received only a limited attention from the verification com-
munity. A notable exception are theorem provers, inductive
reasoning systems that concentrate on proving correctness of
the division algorithm and the resulting architectures, but not
on the gate-level verification [3][4].

Division plays a major role in many domains, including
computer arithmetic, computational geometry, embedded sys-
tems, and other special purpose applications. It is one of the
most complex arithmetic operations to implement and requires
careful hardware implementation and verification [5]. In this
work, we concentrate on combinational dividers: divide by
constant, integer divider, and the fractional fixed point divider,
an essential component of the floating point division. Our
approach is based on the algebraic rewriting model, which
performs arithmetic function extraction, originally proposed
and successfully applied to integer and Galois Field multipliers
[1] [6].

The paper is organized as follows. Section II provides the
necessary background and reviews the previous work in this
field. Section III describes the algebraic rewriting technique
that forms the core of our verification approach. Section IV
briefly describes verification of a divide-by-constant divider,
while Section V develops an algebraic technique for the
fractional and integer dividers. Finally, Section VI presents
some preliminary results and conclusions.

II. BACKGROUND AND PREVIOUS WORK

A popular technique used by industry for arithmetic cir-
cuit verification is Theorem Proving. Theorem provers are
inductive reasoning systems that use mathematical reasoning
to verify correctness of arithmetic circuit algorithms and their
architectures. They use rewriting rules and complex formulas
to represent the circuit and require domain-specific user knowl-
edge [3][4]. The success of the proof relies on the choice of
the rules and on the order in which the rules are applied, with
no guarantee of a successful conclusion. Independently, there
is a need to formally verify the actual gate-level hardware
implementation, which is addressed in this paper.

Most popular verification techniques use SAT-based ap-
proach, equivalence checking, and various canonical diagrams,
such as BDDs [7], BMDs [8]. Some of them have been useful
in proving floating point multipliers, but the literature is rather
scarce on divider circuits. A notable exception in this domain
is the work of Bryant [9]. Although effective and able to
catch (post mortem) the infamous Pentium bug, it requires
generating a checker circuit, which itself needs to be verified.
However, no reliable means were offered for the verification
of the checker circuit itself.

The most promising and novel approach to formal verifi-
cation of arithmetic circuits is based on computer algebra.
In this approach, the arithmetic function specification and
its implementation are represented as polynomial rings in
a given field. The verification goal is then to check if the
implementation satisfies the specification. It is accomplished
by reducing the specification polynomial modulo the imple-
mentation polynomials, known as the ideal membership testing
[10]. Several modifications have been reported in the literature
that improve the efficiency of the technique for multipliers
[2][11]. However, those techniques have not been applied in
the verification of dividers due to the difficulty in finding a
suitable polynomial model of the divider’s specification.

An alternative approach to arithmetic verification of gate-
level circuits has been proposed in [1], using algebraic rewrit-
ing of the specification polynomial. With this approach, the
polynomial representing the encoding of the primary outputs
(called the output signature) is transformed by a series of
rewriting steps into a polynomial expressed in terms of the
primary inputs (the input signature). The transformation uses
algebraic models of the circuit elements, such as logic gates

978-1-7281-3915-9/19/$31.00 © 2019 IEEE

or bit-level arithmetic modules. This method, in fact, performs
function extraction as it derives an arithmetic function from
the gate-level implementation. It has been successfully applied
to complex adders and multipliers [1][11] but it has not
been applied to divider circuits, because of the difficulty of
modeling the divider’s specification.

The work of [12] addresses the verification of array dividers
by extracting a high-level arithmetic model from the low-
level circuit implementation. The resulting arithmetic oper-
ations are compared with the abstract model of the divider
using structural matching. The technique applies column-
based XOR extraction, which relies on a regular structure
of the adder/subtracter trees and the presence of the sum
generation and carry propagation components. A lack of those
components at the right places indicates a bug. The method
requires the divider circuit to have a well defined architecture,
and the adders to be represented with XOR gates, which
is often not the case in a synthesized circuit. Their method
performs structural analysis to see if the circuit’s structure
matches that of a divider but it does not explicitly verify its
actual arithmetic function. In contrast, the method described
here actually verifies whether the circuit performs the division
operation, regardless of its internal structure, and it does not
require any reference circuit. In practice, there is a need
for both approaches: the complete functional verification and
equivalence checking against a known reference design.

III. ALGEBRAIC REWRITING

Our verification approach is based on the algebraic rewriting
method of [1]. In this method the circuit is modeled in the
algebraic domain, where both the circuit specification and its
gate-level implementation are represented as pseudo-Boolean
polynomials. Each gate is modeled as a unique polynomial
fi[X] with binary variables X = {x1, ..., xn} and integer
coefficients. Table I presents algebraic models of some of the
basic Boolean operators [1].

TABLE I: Boolean and algebraic models (characteristic func-
tions) of basic logic operations.

Operation Boolean model Algebraic model
Inv(a) ¬a 1− a

AND(a,b) a ∧ b ab
OR(a,b) a ∨ b a+ b− ab

XOR(a,b) a⊕ b a+ b− 2ab

By construction, each expression evaluates to a binary value
(0,1) and correctly models the Boolean function of the logic
gate. Models for more complex AOI (And-Or-Invert) gates,
used in standard cell technology, are readily obtained from
these basic logic expressions. For example, an algebraic model
for the logic gate g = a ∨ (b ∧ c) is g = a+ bc− abc.

Algebraic rewriting relies on deriving two pseudo-Boolean
polynomials, an output signature and an input signature, and
transforming one into the other by a series of rewriting
operations. The output signature, Sigout, is the polynomial
that represents the result using binary encoding of the primary

outputs. For example, output signature of an usigned arith-
metic circuit with n output bits is Sigout =

∑n−1
i=0 2izi. By

construction, such a polynomial is unique. Similarly, the input
signature, Sigin, is the polynomial over the primary input
variables that represents an arithmetic function performed by
the circuit, i.e., its functional specification. For example, the
input signature for an n-bit unsigned multiplier is Sigin =∑n−1

i=0

∑n−1
j=0 2i+jaibj .

Algebraic rewriting is the process of transforming Sigout
into Sigin using algebraic models of the logic gates of
the circuit, such as those given in Table I. It is done in
a reverse topological order, from the primary outputs (PO)
to the primary inputs (PI), hence referred to as backward
rewriting [1]. The rewriting transformation simply replaces
each variable in the polynomial with an algebraic expression
of the corresponding logic gate. Once a given variable (output
of a gate) is substituted by an algebraic expression of the gate
inputs, it is eliminated from the expression. As a result, the
final signature is unique and expressed in the primary inputs
only. A set of ordering rules is imposed on the rewriting order
to maximize its efficiency [1][11].

Figure 1(a) illustrates the rewriting process for a gate-level
circuit to prove that it is a full adder (FA). The output signature
of the circuit is Sigout = 2C+S, determined by the weights of
the binary encoded output signals, carry C and sum S. During
rewriting, the signature polynomial is iteratively modified by
moving across the gates and substituting variables representing
the gate outputs by the respective logic expressions in terms
of their inputs.

C S

10 12

9

6

11

8

c0

7

a b

X
O
R
2

X
O
R
2

S
1

C
1

g2

a) b)

Fig. 1: Gate-level arithmetic circuit (FA): a) circuit diagram;
b) AIG representation for half adder (HA) extraction.

Two types of simplifications are applied during rewriting:
1) Reduction of the terms with the same monomials, reducing
some of them to zero; and 2) replacing the term xk with degree
k > 1 by x, since for binary signals xk = x. The resulting
input signature is Sigin = a+ b+ c0, indicating that this is a
full adder (note that it is constructed without XORs).

In the case when the circuit contains a bug, the size of
intermediate polynomials during rewriting may become pro-
hibitively large, sometimes even preventing the computation
from completing. In general, identifying a bug is a challenging
problem. Several attempts have been made to identify the
bug(s), either by comparing the result of backward and forward
rewriting [13] or by analyzing the difference between the

computed input signature and the given specification [14].
With a notable exception of finite field (GF) arithmetic circuits
[15] [16], circuit debugging remains an open problem.

The rewriting process can be improved by using a func-
tional, And-Invert Graph (AIG) representation of the circuit
[17]. This technique identifies half- and full adders in the cir-
cuit, shown in Figure 1(b), and performs the rewriting directly
over those sub-circuits instead of its logic gate components.

It seems at first that such a rewriting model cannot be
directly applied to the divider. The characteristic function of
the divider can be described by the following expression:

X = D ·Q+R, with R < D (1)

where X (the dividend) and D (the divisor) are the inputs, and
Q (the quotient) and R (the remainder) are the outputs. The
problem is that the outputs, Q,R, cannot be directly expressed
in terms of the inputs X,D. Hence it is not clear what the
input signature and the output signature are. The remainder of
the paper shows how to resolve this problem and apply the
algebraic rewriting to the divider verification.

IV. DIVIDE BY CONSTANT

First, we consider a special case of the divider, where the
divisor D is a known integer constant. Such a divider is
used in many practical application, such as base conversion,
Jacobi stencil algorithm, computing the sample mean, memory
bank multiplexing, and more [18]. The fact that the divisor is
constant makes the analytical I/O relationship straightforward:
X = D ·Q+R, where D is a hardwired constant. This implies
that the input signature is Sigin = X and the output signature
Sigout = D · Q + R, which allows us to perform algebraic
rewriting from the outputs Q,R to the input X .

Fig. 2: Generic divider block for X divided by a constant D.

The constant divider is typically designed as an iterative
circuit, composed of a number of blocks (N), as shown in
Figure 2. The carry-in Ck and the n-bit dividend Xk are
inputs of each block k. Similarly, the quotient Qk and the
remainder Rk are outputs of each block. For a single-bit block
architecture (n=1) and the division by an integer constant D,
we have 2Ck +Xk = DQk +Rk. Typically, each basic block
is implemented as a lookup table (LUT) with entries for all
possible inputs, Ck, Xk, and the values of the corresponding
outputs, Qk, Rk. To verify the functionality of the basic block,
we need to prove that the equation 2Ck +Xk = DQk + Rk

is correct for every input assignment, where Ck and Xk form
a one-word operand. The term Ck =

∑n−1
i=0 2iCi, where Ci

refers to bit i of block k.

To verify the constant divider X/D with N blocks, a
composite output signature Sigout = DQ+R is created, where
D is a constant, Q =

∑N−1
k=0 2kQk, and R =

∑N−1
k=0 2kRk.

In a functionally correct divider circuit, the resulting input
signature should be X =

∑N−1
k=0 2kXk, where each block

k has the form: Qk =
∑n−1

i=0 2iQi, Rk =
∑m−1

i=0 2iRi,
Ck =

∑m−1
i=0 2iCi, and Xk =

∑n−1
i=0 2iXi.

Table II shows the verification run time for a modular
divide-by-constant, 1-bit block architecture for a 32-bit div-
idend X and different values of the divisor D. It also shows
the results for a constant divider implemented as a restoring
divider circuit, shown in Figure 6, with a 21-bit dividend
The experiments include both the correct (bug-free) and faulty
circuits, emulated by randomly injecting multiple faults in the
truth table of the LUT.

TABLE II: Verification results for a divide-by-constant divider
circuit with a 32-bit dividend and a constant restoring divider
circuit with a 21-bit dividend (refer to Figures 2, 6, resp.).

Modular, 1-bit block, 32-bit Dividend Restoring (constant div.)
21-bit Dividend

Divisor
Rem.

Bits #Gates
Time (s)
No Bugs #Bugs

Time (s)
Bugs #Gates

Time (s)
No Bug

3 2 712 0.06 1 0.06 107 0.66
11 4 1919 1.15 2 1.11 241 2.42
17 5 1763 0.81 3 .75 252 4.13
31 5 1825 0.31 5 0.27 234 10.4
61 6 3715 3.50 8 3.56 263 9.12
89 7 4520 13.5 5 16.71 324 10.9
113 7 3652 6.68 7 7.21 284 3.82
139 8 5542 27.9 7 94.75 342 71.1
191 8 4736 9.67 5 11.36 316 SF
251 8 6410 110.4 5 113.5 295 14.53
257 9 6549 22.56 7 23.0 297 16.9
283 9 8951 643.8 9 638.4 336 22.3

We also simulated the divide-by-constant dividers for differ-
ent sizes of divisors D and dividend X , ranging in size from 28

to 232, using Modelsim SE 10.0. The results demonstrate that
the simulation for dividends larger than 28 bits required 15,264
seconds (4h 24m). It was impossible to simulate dividends
with larger bit-widths without using some advanced simulation
techniques. In conclusion, the verification of the divide-by-
constant based on algebraic rewriting can successfully compete
with simulation.

V. FIXED POINT AND INTEGER DIVIDERS

This section describes our approach to verify two types
of dividers: 1) the fractional divider, operating on fractional
numbers, an essential component of the floating point divider;
and 2) the integer divider, with the same structure as the
divide-by-constant divider, to be used in algebraic rewriting.

Current divider verification methods model the divider with
a series of controlled add/sub operations. The most advanced
divider verification method to-date is probably that of [12]. It is
based on reverse engineering of the gate-level implementation
by creating a logic bit-level model of the circuit (LBLA), and
matching it against the well-structured functional reference
model (FBLA). The method relies on extracting essential com-
ponents, such as carry propagation logic and sum generation
logic that are expected to be present in some form in the
divider. It also searches for XORs and specific logic patterns

present in the reference divider. An error is declared if such
functions cannot be identified in the circuit.

While the CPU runtimes are very good, such a reverse
engineering method, based on a strictly structural pattern
matching, does not provide the functional verification per se. It
may happen, that some components do not match the expected
logic, but may work correctly as an ensemble. Or, that some
logic is represented without XORs. As an example, Figure
1 shows a non-standard full adder implementation without
XORs.

In contrast, in our work the divider is modeled in a single
functional specification, X = D · Q + R, to be compared to
the signature computed by algebraic rewriting. This approach
works for any combinational divider circuit, regardless of its
internal structure.

A. Functional Verification Model

Fractional divider is an essential part of hardware for the
floating point division. The dividend X and the divisor D
are normalized by preshifting to comply with the IEEE 754
standard. Figure 3 shows the functional model of the divider
verification considered in this work. The blue box below the
divider is a "reverse division unit", RDU, which computes
D ·Q+R. The verification goal is to check if it is equivalent
to the dividend X .

Fig. 3: Functional verification model of the divider.

One way to solve this problem is to apply a SAT or SMT
technique; however instead of comparing the divider against
a reference design we compare the RDU circuit (D · Q +
R) against the dividend X . As a proof of concept, we tested
this method on both restoring and nonrestoring array dividers.
A miter was added between the input X of the divider and
the output of RDU. We used ABC system [17] to generate a
CNF file for the SAT problem and solved it using miniSAT .
While the solution required only 4.4 seconds to prove a 16-bit
X/8-bit D divider, a 32-bit/16-bit divider timed out at 3600
seconds.

A more promising method to verify the divider is based on
the algebraic rewriting using the structure shown in Figure 3.
In this approach the output signature polynomial, Sigout =
QD + R, based on the outputs Q,R and the divisor D is
created and algebraically rewritten through the divider network
to the primary inputs, where in the correct circuit it should be
equal to the dividend X .

For the illustration purposes we consider here an unsigned
nonrestoring divider, a preferred hardware implementation that
can be easily extended to signed division. In fact, both the
restoring and nonrestoring dividers satisfy X = D · Q + R,

with R < |D|, but the nonrestoring divisor requires a minor
correction when the remainder R and the dividend X have
opposite signs, to make sure that R < D [19].

B. Fractional vs. Integer Divider

We now demonstrate that the fractional divider can be
used for integer division [19]. In fact, it is only a matter
of interpretation of the result, whether a fractional or integer
division is performed by the hardware, as demonstrated by the
example below (see Figure 4). This will allow us to perform
algebraic rewriting on the divider’s circuit, while working only
with integers.

In the following example we consider unsigned fractional
numbers, with 0 in the leading bit position before the fractional
dot, i.e., X = 0.{xi}, in accordance with the IEEE standard.
We assume that the bit-widths are sized as required to avoid
overflow or underflow, i.e., X has size 2n + 1 and D,Q,R
are of size n+ 1, including 0 before the fractional dot [19].

Fractional Divider (Figure 4(a)): The dividend and the
divisor are preshifted, such that X < D, so that the result
Q is also a fraction. The following representation is used:
X = 0.x1....x6, D = 0.d1d2d3, Q = 0.q1q2q3, R = 0.r1r2r3.

Let X = (0.100000)2 = 1/2 and D = (0.110)2 = 3/4,
which satisfies a non-overflow condition, X < D. The result
is: Q = (0.101)2 = 5/8, R = (0.010)2 = 1/4, Figure 4(a).

The computed remainder R needs to be multiplied by 2−3

(determined by its number of bits) to obtain the final remainder
R′ = 2−3 ·1/4 = 1/32. Hence, X = D ·Q+R′ = 5/8 ·3/4+
1/32 = 1/2, which is a correct result.

Integer Divider (Figure 4c): The result in the integer do-
main can be obtained with exactly the same hardware, but with
the bits of the operand and the results ordered in the opposite
direction. In this case, X = 0x6...x2x1 = (0100000)2 = 32,
D = 0d3d2d1 = (0110)2 = 6. The result is: Q = 0q3q2q1 =
(0101)2 = 5 and R = 0r3r2r1 = (0010)2 = 2. The result is
correct: X = D · Q + R = 6 · 5 + 2 = 32; no adjustment of
R is necessary in the integer case.

Note that, as long as the operands and the result registers
are of correct size, the integer divider will always compute the
correct value, with the difference between X and Q ·D being
compensated by the remainder R. The equivalence between the
fractional divider and the integer divider, as illustrated above,
gives us a right to use our algebraic rewriting technique on
the integer divider to prove the fractional divider circuit.

C. Layered Rewriting

When rewriting an output Q or R of the divider, the final
polynomial at the input, Sigin, will be expressed in terms of
the primary inputs, X,D. In a correct circuit, the composition
of the resulting polynomials, Q(X,D) ·D+R(X,D) should
result in the dividend X , with variables of D eliminated.
This is an ultimate test if the circuit correctly implements the
divider.

One possible way to accomplish this is to generate the poly-
nomial Sigout = D·Q+R expressed in terms of the respective
bits of Q,R,D, and rewrite it all the way to the primary inputs

(a) (b) (c)

Fig. 4: Nonrestoring 7-4 divider (n = 3): a) Fractional divider; b) Controlled Add/Subtract (CAS) block; c) Integer divider

(PI). The resulting Sigin should produce a polynomial in bits
of X only, representing the dividend. An alternative approach
would be to express Q and R separately, each in their own
bits, rewrite them to the PI, and then compose the resulting
signatures as Sigin = Sigin(Q) · D + Sigin(R). The result
for a correct circuit should also be X , with D eliminated.
Our initial experiments, however, suggest that these methods,
when applied directly to the entire circuit, are inefficient, since
the size of the intermediate polynomials becomes prohibitively
large.

To address this problem, we developed a layered technique,
which rewrites each row corresponding to one bit qi of the
quotient at a time. In this case, the output signature is qiD+
Pi, where Pi is the intermediate (partial) remainder, with the
boundary condition P0 = R. The expected input signature
of row i is Pi+1, and Pn = X , where n is the number of
(fractional) bits of R,Q and D.

Fig. 5: Single layer of the restoring divider used in rewriting.

This approach can be justified by the observation that
logic between two adjacent rows will not be optimized by a
synthesis tool and the partial remainder signals are preserved
during synthesis (refer to Theorem 2 of [12]). Synthesis tools,
such as Synopsys DC, typically apply the maintain hierarchy
directive, which is beneficial for physical synthesis. The circuit
is synthesized across the add/sub modules of each layer, but
not vertically across the rows.

Let Pi denote a partial remainder associated with the row
corresponding to the quotient bit qi (starting with i = 0). At
the bottom of the array, P0 = R, the final remainder; and at the
top of the array, Pn = X , the dividend. Rewriting starts at the
remainder output R and rewrites one row of the add/subtract

circuitry at a time, using one bit of the quotient qi and the
entire divisor D to compute the partial remainder Pi. That is,

Sigout(i) = qi ·D + Pi and Sigin(i) = 2Pi+1 +Xi

where D =
∑n

k=0 2
kdk, Pi =

∑n
k=0 2

iPi,(i+k), where Pi,j

denotes a bit of partial remainder in row i, column j = i+ k,
with the following boundary conditions:
P0,k = Rk (k = 0,. . . ,n-1); Pi,n+i = 0 (i = 0,. . . ,n); Pn,k =
Xk (k = n,. . . ,2n). Hence, at each level (row) i, we have

2i(qiD + Pi) = 2i+1Pi+1 + 2iXi

After n steps, the expected signature of the divider is X .

Fig. 6: Restoring integer divider [20].

To illustrate the idea, the following rewriting is applied to
the restoring divider shown in Figure 6.

q0D + 4R2 + 2R1 +R0 = 8P13 + 4P12 + 2P11 +X0

2q1D + 8P13 + 4P12 + 2P11 = 16P24 + 8P23 + 4P22 + 2X1

4q2D + 16P24 + 8P23 + 4P22 = 16X4 + 8X3 + 4X2

By adding the above equations, we obtain:

(4q2 + 2q1 + q0) ·D + (4R2 + 2R1 +R0) =

16X4 + 8X3 + 4X2 + 2X1 +X0

or, equivalently Q ·D + R = X , which is the ultimate proof
that the circuit is a divider.

In this approach, the input signature computed for a given
layer becomes an output signature for the next layer. Such a
layered rewriting approach significantly speeds up the verifi-
cation process and avoids the problem of a potential memory
explosion, especially when there is a bug in the circuit.
Furthermore, the method enables debugging by observing
the signature at each rewriting step. If the result of local
rewriting does not match the polynomial representing the
partial remainder, Pi, we conclude that the bug exists in the
current layer. This process can be easily done in a speculative
parallel manner, since the form of each polynomial at the
row boundary is known, and can be stopped when one of
the layers does not produce the expected result. The source of
error is constrained to the particular layer and the propagation
of rewriting will stop there to examine the bug. The same
procedure can be used to prove the nonrestoring dividers.

VI. RESULTS

The verification technique described here was implemented
in the ABC environment as a rewriting command &polyn. The
experiments were conducted on a 64-bit Intel Core i7-7600
CPU, 2.80 GHz × 2, with 31 GB of memory. The circuits were
generated by a restoring divider generator tool and synthesized
onto standard cells by the Synopsys Design Compiler (DC).

Table III shows the results for two verification method-
ologies: one, for fully rewriting the entire circuit, which (as
explained earlier) does not offer promising results; and the
other based on the layered verification described in this paper.
The results are also compared against: 1) exhaustive simulation
using Modelsim 10.5b on an Intel Core i7, 2.2 GHz with
16 GB memory; and 2) equivalence checking using miniSAT.
For the SAT experiment, the synthesized divider circuits are
compared against the dividers instantiated by the Synopsys
DesignWare (DW) library. As one can see from the table,
neither the simulation nor the SAT results can compete with
the layered verification. While the time of 780 sec for a
21-bit restoring divider seems excessive compared to those
presented in [12], it gives the time to verify the function of
the divider circuit against its functional specification. This is
a significantly harder task than checking its equivalence w.r.t.
a reference design.

TABLE III: Verification results for a bug-free restoring divider.
#Bits = Dividend bit-width. MO = Memory-out 20 GB, TO =
Time-out 3600 s

Bits # Gates Time (s)
Full-rewrite

Time (s)
This work

Time (s)
Simulation

Time (s)
SAT

5 201 0.08 0.01 0.45 0.14
7 352 4.78 0.01 0.97 0.24

11 415 MO 0.01 1.23 10.68
13 570 MO 0.01 8.3 19.16
17 970 MO 4.72 552.5 1584.32
19 1207 MO 51.7 TO TO
21 1470 MO 780 TO TO
23 1750 MO MO TO TO

VII. CONCLUSION AND FUTURE WORK

This paper presents a method to verify the arithmetic
function of the gate-level implementation of an integer

divider using an algebraic rewriting technique. The main
advantage of this method is that it verifies the divider circuit
against its functional specification and does not require a
reference circuit. As such, it can be used to prove newly
developed architectures and certify them as a reference
(golden model); or it can be used for designs that do not have
a well defined or trusted reference. The method can be easily
parallelized and applied to other arithmetic circuits. It also
enables debugging of the circuit at the single layer granularity.

ACKNOWLEDGMENT: This work has been supported by a
grant from the National Science Foundation, Award No. CCF-
1617708.

REFERENCES

[1] C. Yu, W. Brown, D. Liu, A. Rossi, and M. J. Ciesielski, “Formal
verification of arithmetic circuits using function extraction,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 35, no. 12, pp. 2131–
2142, 2016.

[2] T. Pruss, P. Kalla, and F. Enescu, “Equivalence Verification of Large
Galois Field Arithmetic Circuits using Word-Level Abstraction via
Gröbner Bases,” in DAC’14, 2014, pp. 1–6.

[3] E. M. Clarke, S. M. German, and X. Zhao, “Verifying the SRT division
algorithm using theorem proving techniques,” in (CAV). Springer, 1996,
pp. 111–122.

[4] R. Kaivola and M. Aagaard, “Divider circuit verification with model
checking and theorem proving,” Theorem Proving in Higher Order
Logics, pp. 338–355, 2000.

[5] H. F. Ugurdag, F. De Dinechin, Y. S. Gener, S. Goren, and L.-S. Didier,
“Hardware division by small integer constants,” IEEE TC, 2017.

[6] C. Yu and M. Ciesielski, “Efficient parallel verification of Galois field
multipliers,” ASP-DAC 2017, 2017.

[7] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Computers, vol. 100, no. 8, pp. 677–691, 1986.

[8] R. E. Bryant and Y.-A. Chen, “Verification of Arithmetic Functions with
Binary Moment Diagrams,” in Design Autom. Conf., 1995, pp. 535–541.

[9] R. E. Bryant, “Bit-level analysis of an SRT divider circuit,” in 33rd
(Design Automation Conference). ACM, 1996, pp. 661–665.

[10] E. Pavlenko, M. Wedler, D. Stoffel, and W. Kunz, “Stable: A new
QF-BV smt solver for hard verification problems combining Boolean
reasoning with computer algebra,” in DATE, 2011, pp. 155–160.

[11] A. Mahzoon, D. Große, and R. Drechsler, “Polycleaner: Clean your poly-
nomials before backward rewriting to verify million-gate multipliers,”
in Proc. International Conference on Computer-Aided Design, ICCAD,
2018, pp. 129:1–129:8.

[12] M. H. Haghbayan and B. Alizadeh, “A dynamic specification to auto-
matically debug and correct various divider circuits,” INTEGRATION,
the VLSI journal, vol. 53, pp. 100–114, 2016.

[13] S. Ghandali, C. Yu, D. Liu, W. Brown, and M. Ciesielski, “Logic
debugging of arithmetic circuits,” in ISVLSI’15, July 2015.

[14] F. Farahmandi and P. Mishra, “Automated test generation for debugging
multiple bugs in arithmetic circuits,” IEEE Trans. on Computers, 2018.

[15] T. Su, A. Yasin, C. Yu, and M. Ciesielski, “Computer algebraic approach
to verification and debugging of Galois field multipliers,” in ISCAS’18,
2018, pp. 1–5.

[16] U. Gupta, I. Ilioaea, V. Rao, , A. Srinath, P. Kalla, and F. Enescu, “On
the rectifiability of arithmetic circuits using Craig interpolants in Finite
Fields,” IFIP Intl. Conference on VLSI (VLSI-SOC), Oct. 2018.

[17] A. Mishchenko, “ABC: A System for Sequential Synthesis and Verifi-
cation,” URL http://www.eecs.berkeley.edu/˜ alanmi/abc, 2007.

[18] T. Granlund and P. L. Montgomery, “Division by invariant integers using
multiplication,” SIGPLAN Not., vol. 29, no. 6, pp. 61–72, Jun. 1994.

[19] I. Koren, Computer Arithmetic Algorithms. Universities Press, second
edition, 2002.

[20] A. L. Ruiz, E. C. Morales, L. P. Roure, and A. G. Ríos, Algebraic
Circuits. Springer, 2014.

