
IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

MULTES : MUlti-Level Temporal-parallel
Event-driven Simulation

Dusung Kim, Member, IEEE, Maciej Ciesielski, Senior Member, IEEE, Seiyang Yang, Member, IEEE

Abstract—
Multi-level Temporal-parallel Event-driven Simulation

(MULTES) is a new, radically different approach to simulation
of designs described in Verilog HDL. It is based on a concept of
time-parallel simulation applied to gate-level timing simulation.
The simulation is performed in two steps: (1) fast reference
simulation that runs on a higher, reference level design model
(typically RTL) and saves the design state at predetermined
checkpoints; and (2) target simulation, which runs on a lower,
gate-level model and distributes the simulation run slices
to individual simulators. The paper addresses a number of
important issues that make this approach practical: finding
initial state for each simulation slice; resolving initial state
mismatches; and handling designs with multiple asynchronous
clocks. Experimental results performed on industrial designs
demonstrate the validity and efficiency of the method in terms
of its performance and the debugging efficiency.

Index Terms—Verilog Simulation, Parallel Simulation, Timing
Simulation, State Matching.

I. INTRODUCTION

HARDWARE simulation remains the most widely used
technique for functional and timing verification and

will remain so for a foreseeable future [1]. However its
performance for complex designs becomes prohibitively low,
sometimes reaching the rate of less than one cycle per second.
Static Timing Analysis (STA) is often used in timing verifica-
tion, but it cannot replace simulation-based verification.

Several simulation techniques have been introduced over
the last three decades in an attempt to improve simulation
performance. One of them is hardware emulation, which
in theory should provide orders of magnitude performance
improvement. However, to achieve it, the testbench must also
be synthesizable and implemented in hardware along with the
design under test (DUT), which significantly lowers internal
signal visibility and controllability. In this respect, the use of
emulation for gate-level timing simulation is limited as the
delay model of DUT needs to be adjusted with respect to
the actual delay imposed by the emulation device. It is an
error-prone and complicated task. Furthermore, the prohibitive
cost of purchasing and maintaining the FPGA-based emulation
platforms makes it an expensive proposition.

Another technique to improve simulation performance is
Distributed Parallel Event-driven Simulation (PDES), which

Dusung Kim is with Synopsys, Inc., Mountain View, CA 94043 USA
M. Ciesielski is with the Department of Electrical and Computer Engi-

neering, University of Massachusetts, Amherst, MA, 01002 USA (e-mail:
ciesiel@ecs.umass.edu)

Seiyang Yang is with the Department of Computer Engineering, Pusan
National University, Busan, Korea (e-mail: syyang@pusan.ac.kr)

Manuscript received Feb XX, 2012; revised XXX XX, XXXX.

partitions the design into separate modules and performs
concurrent simulation using multiple HDL simulators [2], [3].
Unfortunately, these methods have not been very successful
due to inherent inter-dependence between the design modules,
which imposes heavy communication and synchronization
overhead, thus introducing significant runtime overhead for
simulation. Partitioning of design into modules to minimize
the inter-module communication is a known NP-hard problem.
It is particularly severe in gate-level timing simulation because
it involves many more event activities.

This paper presents a new approach to parallel simulation,
specifically directed at efficient gate-level timing simulation
that increases both the performance and debugging efficiency.
The main goal of the simulation technique presented in
this paper is to completely eliminate communication and
synchronization overhead associated with spatially distributed
parallel simulation. This is achieved by applying the concept
of time-parallel simulation [4], which partitions the simulation
run into shorter simulation slices, instead of partitioning the
design. Such a simulation does not suffer from drawbacks
of current distributed simulation, such as design partitioning,
synchronization and communication overhead.

The proposed method consists of two steps:
1) Fast reference simulation, which runs on a higher level

(reference) design model and stores the necessary infor-
mation about the design state (i.e., register values and
memory print) at predefined checkpoints; and

2) Target simulation, running on a lower level (target)
design model, distributed to individual simulators.

The entire simulation run is divided into simulation slices,
each to be executed on an independent simulator. For this rea-
son, we refer to this technique as Multi-level Temporal-Parallel
Event-Driven Simulation (MULTES). Including both reference
and target simulation in a single simulation task dramatically
increases debugging efficiency because comparison with the
reference model is performed naturally, as part of the overall
design process, at no significant additional cost.

The general framework of MULTES was introduced in
[5]. This paper describes a complete solution, addressing
a number of practical issues, such as state matching and
handling multiple asynchronous clocks. It also presents the
results of the prototype tool tested on industrial designs. The
background work on distributed parallel simulation and time-
parallel simulation is discussed in Section II. The basic idea
of the proposed technique is explained in Section III, with the
key concepts detailed in Section IV (state matching) and V
(timing simulation issues). Experimental results are described
in Section VI, and conclusions are presented in Section VII.

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

II. PREVIOUS WORK

A. Parallel Distributed Event-driven Simulation

Parallel distributed event-driven simulation is performed by
running each portion of the design separately in a different pro-
cessing unit, called a Logical Processor (LP). The correctness
of the simulation is assured when the event order among LPs
is always preserved. Therefore, event synchronization between
the LPs is the key issue in this approach. There are two main
techniques used in synchronization protocol, a conservative
and optimistic protocol.

The key idea of conservative protocol is to avoid violating
the local causality constraint: no LP should receive an event
from other LPs whose time-stamp is earlier than its local
simulation time. Therefore, each LP must maintain a pending
event list. Optimistic protocol is a technique which allows for
a tentative violation of the local causality constraint. In this ap-
proach simulation state is saved at predetermined checkpoints
during each simulation run to save the state of the design
for the purpose of data synchronization. Once a violation is
detected, simulation system recovers the simulation state from
violation by performing rollback to the latest checkpoint.

Several variations of distributed parallel simulation methods
have been offered, differing in the way the inter-simulation
synchronization is handled. The first algorithms for conserva-
tive protocol were shown by Chandy, Misra [6] and Bryant [7],
known as a CMB algorithm. It uses simulation time lookahead
to maintain the causality order of each processing. In addition,
null message sending protocol was used to avoid deadlock
condition in [8].

The most popular optimistic method is Time Warp, in-
troduced by Jefferson [9]. Time Warp is a framework of
optimistic protocol which performs rollback in the case when
a message having previous time stamp arrives. Manjikian et.
al. [10] implemented a parallel gate-level simulator on a local
area network of workstations. Simulations with circuits from
the ISCAS-89 benchmark suite achieved speedups between 2
and 4.2 on seven processors. Bagrodia et. al. [11] developed a
parallel gate-level circuit simulator in the MAISIE simulation
language and implemented it on both distributed memory and
shared memory parallel architectures, achieving speedup of 2-
3 on 8 processors for circuits from the ISCAS-85 benchmark
suite. Lungeanu et.al. [12] proposed a dynamic approach,
which combines conservative and optimistic approaches by
switching between the two protocols depending on the amount
of roll-back, and developed Parallel Discrete Event Simulation
(PDES) for VHDL simulation. They demonstrated speedup of
up to 11 on 16 processors on a circuit with 14k gates.

Li et. al. [13] claim to have developed the first Ver-
ilog distributed simulator. However, their simulator couldn’t
achieve the desired performance improvement due to extensive
message passing and rollback overhead. Zhu et. al. [14]
attempted to tackle more realistic designs and achieved good
event processing rate, with the number of events increasing
linearly with the number of LPs. This indicates that the
design was partitioned almost ideally, while maintaining good
load balance among the LPs. However, such an approach is
impractical for large, complex RTL or gate-level designs.

An approach to use GPUs for parallel gate-level simulation
has been proposed in [15], but the method is confined to
a zero-delay gate-level model. Furthermore, performance of
such a simulator strongly depends on the type of the design.
Zhu et. al. [16] adapted the CMB algorithm to handle arbitrary
gate-level delays and created a distributed datastructure to
make it suitable for GPU executions. A dynamic GPU memory
management has been used for efficient utilization of the rela-
tively limited GPU memory. The modified asynchronous CMB
algorithm significantly lowers the overhead of synchronization
in such a a fine-grained partition (but not the communication
overhead, which remains strongly data dependent). The time-
based method described in this paper offers an alternative
approach to the spatial fine-grained approach.

Some attempts have been made to perform parallel simula-
tion method at a system-level. In [17] a method has been pro-
posed to manage synchronization and communication between
the partitioned blocks by applying a synchronization wrapper.
The method achieves some improvement in simulation speed
at a cost of sacrificing the cycle-by-cycle accuracy. As such,
the method cannot be applied to GL simulation where an event
accuracy, rather than just cycle-by-cycle accuracy, is required.
Most of the results in this area were demonstrated on small
to moderate-size, single-clock designs that can be partitioned
without incurring significant inter-module communication and
synchronization. Only a few commercial products have been
developed, including SimCluster [2] and MP-Sim [3], but they
have not attracted much attention from designers due to limited
performance and scalability issues.

B. Time-parallel Simulation

Time-parallel simulation is a technique which divides sim-
ulation run into independent intervals (simulation slices) in
temporal domain and each interval is simulated in a different
LP. In this approach, the key issue is identifying initial states
for each simulation interval. To obtain the correct simulation
result with respect to a stand-alone simulation, the signal
values at the end of interval i-1 must match the initial state of
interval i. We refer to this requirement as the horizontal state
matching problem. Once the initial state for each interval is
provided, one can expect a very high degree of parallelism
because the intervals are independent of each other.

The first form of time-parallel simulation was introduced
by Heidelberger and Stone [4], which targeted trace-driven
simulations. During the simulation, trace-driven simulation
records only a trace of those execution events which need to
be simulated. If the trace is not too large it can be reused for
the next simulation. Andradottir [18] applied this approach
to simulation of an ATM multiplexer by using regeneration
points. Greenberg [19] developed an algorithm using parallel
prefix to simulation queuing system. Despite of its potential for
massive parallelism, the research into time-parallel simulation
has not been very active. This is dictated by the difficulty of
finding the initial state of each simulation interval. As a result,
the application of this approach for practical designs has been
very limited.

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

III. MULTI-LEVEL TEMPORAL-PARALLEL EVENT-DRIVEN
SIMULATION

A. Basic Concept

In contrast to traditional distributed parallel simulation
(spatial parallel simulation), which partitions the design in
space into a set of interacting modules, MULTES partitions
the simulation run in time. If does it by cutting the entire
simulation run into a number of independent simulation slices,
each to be executed on a separate simulator. The simulation
consists of two major steps, illustrated in Fig. 1:

1) Reference Simulation. Simulation which provides es-
sential information of temporal partitioning by storing
initial states for each simulation slice.

2) Target Simulation. Simulation of each slice, performed
in parallel, using initial states saved during reference
simulation.

slice	 0	
slice	 1	

slice	 3	
slice	 n-‐2	

slice	 n-‐1	

state 0 state 1 state 2 state n-2 state n-1

Fast reference simulation

Slow target simulation

Fig. 1. Multi-level temporal-parallel event-driven simulation.

For this approach to work, the initial design state for
each slice of the target simulation must first be captured
and saved during the reference simulation run. This is done
at predetermined checkpoints, determined by the number of
processors available for parallel simulation. The design state
consists of the state of all internal registers and memory
print of the design. By saving and restoring the design states,
simulation of each slice can be made independent of each
other. As a result, target simulation can run concurrently and
independently for each slice.

Theoretical performance of MULTES, measured in total
simulation time TM , can be expressed in its idealized form
by equation (1).

TM =

n∑
i=1

TSts(i)+TRsim + max
1≤i≤n

[TTsim(i)+TStr(i)] (1)

The components of the expression (1) are defined as follows:
• TM is the total simulation time in MULTES;
• TSts(i) is the state saving time for slice i;
• TRsim is simulation time for the reference model;
• TTsim(i) is simulation time of one slice for the target model;
• TStr(i) is state restoring time of one slice for the target model.

TM includes the reference simulation time TRsim and
the simulation time TTsim(i) of the slowest target slice. In
practice, state saving and restoring overhead parts, TSts, TStr

are very small and can be ignored. Hence, the smaller the

reference simulation time TRsim, the greater the performance
improvement that can be expected by this approach (asymp-
totically approaching linear speedup, if all but TTsim are
ignored).

The main idea of MULTES is in line with the established
design verification flow, which uses progressive refinement
from high abstraction level to low abstraction level, as shown
in Fig. 2. Notice the relative simulation speed of different
design models shown in the figure. Using gate-level full
timing simulation as a base line, RTL model offers about
100× speedup, while the most abstract, Electronic System
Level (ESL), such as TLM or ISA level, gives another 100×
speedup improvement. The proposed time-parallel simulation
takes advantage of this progressive refinement, in which the
fastest simulation (e.g. RTL) can serve as reference simulation
for the simulation of the lower-level design (gate-level). There
is also an intermediate, zero-delay gate-level model, which
could be used as reference simulation for a full-timing gate-
level simulation, although it only offers about 10× speedup
with respect to the base line.

START

END

ESL Design

RTL Design

Gate-level
Design

Relative Simulation Speed

x10000

x100

x10

x1 GL timing

GL functional

TLM Block

GL

RTL
Block

Design Under Test
(DUT)

RTL

ESL

Fig. 2. Typical design implementation flow.

Therefore, any simulation at the lower abstraction level
(target simulation) can be performed in a fully parallel fash-
ion without incurring any communication or synchronization
overhead, provided that the reference simulation at a higher
abstraction level correctly stores initial states for the target
simulation slices at a lower level. We should note that the
simulation time of the reference simulation run need not to be
counted towards the total simulation time if such a simulation
is mandatory and is carried out at the higher abstraction level
during the design refinement process. That is, if the simulation
needs to be performed at a higher level as part of the overall
design and verification process, it can serve as a reference
simulation for temporal parallel simulation at a lower level
without any additional overhead. Therefore, the TRsim term
in equation in (1) can be removed, making it possible for
MULTES to provide a very high degree of parallelism.

B. Simulation with Unsynthesizable Testbench

In addition to restoring the state of the DUT (saved at
checkpoints during the reference simulation), we also need
to restore the “state” of the testbench that corresponds to the
saved DUT state. Since the software state of the testbench
cannot be captured in registers or memory elements, we need

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

to run the testbench to the point which provided stimulus
corresponding to that DUT state during reference simulation.
To accomplish this, the testbench must be simulated (executed)
from the simulation time 0 to the corresponding checkpoint.
In our implementation it is accomplished by a technique
called testbench forwarding, a fast, testbench-only simulation
to reach the target testbench state. It is implemented as follows:
The values of output ports of DUT, saved continuously during
the reference simulation, serve as stimulus provider (a dummy
DUT) for testbench simulation. The testbench is simulated
with this stimulus from time 0 up to the starting point of
the simulation slice in question. At this point the design state
is restored form the data stored at the checkpoint, and the
dummy DUT is replaced by the original DUT; each slice is
then simulated normally and independently of the other slices.

It should be noted that testbench simulation affects the
overall MULTES simulation time; hence the longest time for
testbench forwarding for slice, TTB(i), must be added to
the simulation time TM in equation (1). Typically, however,
testbench overhead is considerably smaller in complex large-
scale gate-level designs, since testbenches are written as high-
level descriptions with short execution time. Moreover, the size
of testbench is not proportional to the DUT size; instead the
number of test vectors in the testbench is more related to the
complexity of the DUT. Therefore, the longer the testbench
and the more complex the design, the lower the contribution
of testbench to the overall simulation time is, and the greater
performance improvement is achievable with the proposed
method.

IV. STATE MATCHING

In order to make temporal-parallel simulation practical, one
needs to compute the initial states of individual simulation
slices. This process is referred to as state matching. Unlike
the horizontal state matching, encountered in spatially dis-
tributed simulation (c.f. Section II), the states to be matched
in temporal simulation come from the designs at different
abstraction levels. For this reason, one can think of it as
vertical state matching, defined as follows: given a state in
the reference design (in form of a register or a bit vector),
find the corresponding state (in terms of register values) in
the corresponding gate-level representation. In most cases
(for designs obtained using standard combinational synthesis,
without retiming), the initial states can be readily determined
by simple structural analysis. In general, however, the problem
is more difficult, since the notion of a state in gate level design
is not as clear as in RTL. Finding a one-to-one correspondence
between the registers in RTL and gate-level design is difficult.

This section describes a method for computing initial states
when a gate level design is synthesized from RTL using se-
quential retiming and resynthesis techniques. In the following,
we assume a certain level of structural similarity between
the reference (RTL) and target (GL) design that makes this
problem tractable. The method is based on finding register
values in the target design by propagating the known signal
values in the reference design, which is significantly simpler
than proving sequential equivalence between the two designs.

A. Functional State Matching

Consider a pair of states, one (SA) from the original
design and the other (SB) from the target design. The two
states are considered matched if state SB can be obtained
from state SA through sequential synthesis (possibly including
retiming). While the two states are sequentially equivalent,
their respective register functions may not be the same, if
state SB was obtained from state SA using retiming. Note,
however, that in our work we are concerned with the values
of registers corresponding to the two states, rather than with
a general state equivalence. For this reason we use the term
state matching to differentiate it from a state equivalence or a
more general (and difficult) register equivalence.

SAt	 SAt-‐1	

It-‐1	 It	 It-‐k	

SAt-‐k	

F	 :	 SAt	 ×	 It	 -‐>	 B	 F	 :	 SAt-‐1	 ×	 It-‐1	 -‐>B	 F	 :	 Sat-‐k	 ×	 It-‐k-‐>B	

(a)

SBt-‐1	 SBt	 SBt-‐k	

It-‐1	 It	 It-‐k	

G	 :	 SBt	 ×	 It	 -‐>	 B	 G	 :	 SBt-‐1	 ×	 It-‐1	 -‐>B	 G	 :	 SBt-‐k	 ×	 It-‐k	 -‐>	 B	

(b)

Fig. 3. Time-frame model of two sequential circuits unrolled over a fixed
number of clock cycles: (a) Reference time frames; (b) Target time frames.

Fig. 3 represents a time-frame model of a general sequential
circuit, with the reference design and target design shown in
and Figs 3(a) and 3(b). Assume that the design in part (b) is
a retimed and resynthesized version of the design in (a).

Given the original state SA
t at time frame t, the goal is to

find a matching target state SB
t. In our approach, the value

of state SA
t−k (for some small constant k) is known from the

reference simulation. In this case, values of all the internal
signals between SA

t−k and SA
t are also known because these

values can be computed by performing k cycles of simulation.
Therefore, finding internal correspondence between the refer-
ence frames and the corresponding target frames allows one to
compute target state SB

t by using the values in the reference
frames between SA

t−k and SA
t.

State matching is conceptually similar to the equivalence
checking (EC) problem in formal verification. In this section,
a combination of several formal techniques, used mainly for
sequential equivalence checking (SEC), is applied to solve
the problem. In particular, we use sequential equivalence
techniques implemented in ABC system [20].

B. Signal Correspondence

To perform state matching, we rely on a sequential equiva-
lence checking technique, called signal correspondence (SC)

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

[20]. It transforms a sequential equivalence problem into a
combinational problem by unrolling the sequential circuit over
a fixed number of times (k). It computes a set of classes of
sequentially equivalent nodes using k-step induction [21], [22]
and Boolean SAT. The procedure consists of the following two
steps [20].

• Base Case: The equivalent classes hold for all inputs in
the first k frames starting from the initial state; and

• Inductive Case: If the equivalence classes are assumed to
be true in the first k frames starting from any state, they
hold in the (k + 1)th frame.

Initially, the algorithm starts with initial candidate equiva-
lence classes. These initial candidate classes can be selected by
performing a short random simulation (typically with 4,000 -
10,000 input vectors). The first node of each equivalence class
is set as its representative.

For the base case of the induction, the algorithm checks if
all the nodes in each candidate class are equivalent to their
representative during the first k time frames. We assume that
the initial states for both designs are given. If the equivalence
classes cannot be proved, the candidate equivalence classes are
split, so that each node from a non-equivalent pair is placed
in a different class. At the same time, the generated counter-
example from the disproval of equivalence is used to refine
other equivalence classes by running a simulation with such a
counter-example. A new representative node is then set for the
split class. This process continues until the candidate classes
are completely refined for the first k time frames.

For the inductive case, the candidate classes refined by
base case are assumed to be equivalent for any consecutive
k time-frames. This condition is established by merging all
the nodes in the same candidate equivalent class with their
representative node for the k time-frames. The merging pro-
cedure, called speculative reduction [23], plays an important
role in improving the performance of SC because merging
significantly simplifies SAT constraints.

Once the speculative reduction is finished, the candidate
equivalence classes have to be proved or disproved by SAT
sweeping [24] for k+1 time-frames. This process is similar to
proving the base case, except that a symbolic state, instead of
constant initial state, is used in the process. The final resulting
classes are sequentially proven equivalent classes. Therefore,
all the nodes in the same class are sequentially equivalent.

C. State Matching using Signal Correspondence

In order to use the idea of signal correspondence for the
state matching problem, the reference design (e.g. RTL) is
first transformed into a “canonical” gate-level circuit obtained
using simple, trusted synthesis transformations with no (or
minimum amount of) optimization involved. After that, both
the transformed reference design and target design are con-
verted into AIG (And-Inverter Graph), an efficient gate-level
data structure used by ABC.

After merging the two AIG graphs, each unrolled over k
cycles, functional simulation is performed on the unrolled
AIG to propagate the value of reference registers to the
internal nodes. After that, signal correspondence is solved in

the merged AIG to find equivalence classes. If any of the
proven equivalence classes have nodes with specific values that
migrated from the reference registers, their values should be
copied to all the nodes in the same equivalence class. Then, k
cycles of simulation are performed again to propagate internal
values to the target registers. If the propagation reaches all
the target registers, the computed register values are used to
establish the initial state of the corresponding target slice.

Fig. 4 illustrates the concept of state matching between two
designs: the reference Design 1 in Fig. 4(a), and target Design
2 in Fig. 4(b). The goal is to find all the register values in
Design 2 at frame t in Fig. 4(c), based on the values of registers
in Design 1, known from reference simulation. Assume that
signals P and Q are found to be sequentially equivalent using
the ABC software. The values for P1 and P2 in Design 1
are computed from the register values at t− 2 obtained from
the reference simulation. By migrating the values into the
corresponding nets (Q1 and Q2) of Design 2, all the register
values of Design 2 at t can be computed. As a result, the state
of target design at t is matched with the corresponding state
of the reference design.

A	

B	

r1	
r2	

r3	 r4	
r5	 r6	

r7	

P	

(a)

A	

B	

r8	 r9	

r10	
Q	

r11	

(b)

B	

A	

A	

B	

B	

A	

r1	

r2	

r3	

r4	

r5	

r6	

r7	

r4	

r5	

r6	

r7	

r11	

r10	

r9	

r8	

P	

Q	

r1	

r2	

r3	

r11	

r10	

r9	

r8	

t-‐1	 t	

A	

B	

B	

A	

r4	

r5	

r6	

r7	

r11	

r10	

r9	

r8	

P	

Q	

r1	

r2	

r3	

t+1	

Design 1

Design 2

(c)

Fig. 4. Signal value migration from the reference design (a) to the retimed
and re-synthesized target design (b).

As shown in Fig. 4, computing the target state may require
unrolling the design over multiple cycles. In this example, at
least two-cycle unrolling is necessary. The necessary amount
of unrolling, needed to resolve the state matching, is not
known because it depends on the SC values and their number.
To address this problem, the state matching procedure can be
extended by shifting the target state forward. By shifting the
target state by j cycles forward, additional value migration is
possible between the k + 1 and k + j frames. This additional
migration increases a chance to compute the target state. This
procedure initially tries to compute a target state within the k

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

time frames. If it fails, the target state is continuously shifted
up by 1 cycle to extend the number of time frames to k+1.
We illustrate this procedure with an example in Fig. 4. The
state at time (t-1) of Design 2 in Fig.4 is assumed to be
the initial target state. Moreover, assume that only one time-
frame unrolling was provided for the initial setup. Therefore,
only P2 and Q2 are given as initial signal correspondence,
which is insufficient to compute the target state at (t − 1).
Specifically, values of registers r9, r10, shown as blank, cannot
be determined. If this condition occurs, the target state is
shifted by one time-frame, to frame t. After that, by running
one more cycle of reference simulation, the value for P1 can
be migrated to Q1 which allows computation of the new target
state at time t. Note that the shifting target state does not cause
performance drop if a long term simulation is considered.

D. Constrained Signal Correspondence (CSC)

Even though the procedure described above is able to com-
pute state matching, we do not need a full blown sequential
equivalence to solve the state matching problem. For the
purpose of our work, we just need to find values of the register
signals in the target implementation based on the value of the
corresponding register in the reference (RTL) representation,
rather than solving a complete functional equivalence problem.
Since the value of reference registers is already known from
reference simulation, it can be used as a constant invariant
to simplify SAT constraints. We therefore modified the state
matching procedure by using reference values to compute
signal correspondence on the fly. As shown in Section VI,
the modified approach dramatically improves the performance
of state matching.

The modified state matching procedure is illustrated with an
example in Fig. 5. In Fig. 5(a), the nodes n1 and n2 are nodes
in the target design, and node n3 is a node from the reference
design. At this point, both the target and the reference designs
are already combined through a miter. Let nodes n1, n2 and
n3 be proved equivalent by solving SAT. Therefore, during
SAT sweeping n2 and n3 are merged into their representative
node n1, as shown in Fig. 5(b). The merging process also
migrates the constant value v from n3 to n1. In Fig. 5(c) the
representative node n1 is replaced by v, inherited from the
reference node n3. As a result, the entire sub-graph below
node n1 is removed, and the procedure continues by merging
the next set of nodes, n4 and n5. If n4 and n5 are proved to be
equivalent (unSAT), they are considered to form an SC class.
This, however, is a restrictive case of SC because it is based
on the constant value v migrated from n3 to n1. We refer to
this type of SC as Constrained Signal Correspondence (CSC),
since the nodes are equivalent under the restrictive condition
n1 = n2 = n3 = v.

The main difference between this approach and the original
state matching procedure is the time at which the refer-
ence values are applied in the procedure. In the original
approach, the reference value is used after computing the
signal correspondence, but in the new algorithm it is used
while performing SAT sweeping. Solving SAT sweeping using
CSC is much faster than with SC because all the constraints

n1	 n2	 n3
:v	

f1 f2 f3

Ref. node Target node Target node

(a)

n1	
:v	

f1 f2 f3

(b)

0

f5 f4

n4	 n5	

v	

(c)

Fig. 5. SAT sweeping with constrained signal correspondence(CSC): (a)
Equivalent signals f1 = f2 = f3; (b) Merging equivalent signals into their
representative; (c) Finding CSC by replacing n1 with a constant v.

below the nodes (e.g., n1 in Fig. 5), which are replaced
with reference constants, are removed. Moreover, the replaced
constants can be propagated through the down-stream logic
providing additional simplification.

E. State Matching with CSC

To implement state matching using CSC, we modified the
original SC algorithm of ABC [20]. Fig. 6 shows the CSC-
based state matching procedure, with the modified parts shown
in bold. Our procedure starts by performing simulation of the
reference design for k time frames of reference design. The
initial state for the simulation comes from the reference design,
so that the values of all the internal signals within the k time
frames are known. Then, a miter (XOR) is added to the two
designs to enable finding SC and CSC.

Generating accurate initial candidate equivalence classes
dramatically increases the performance of the induction algo-
rithm. In general, the classes are generated by a short period
of random simulation. We use bounded model checking and
speculative reduction implemented in ABC to establish the
base case and the inductive case, respectively.

In the procedure, SatSweepingIntoConstantWithConstraits
method is used for proving the stage of inductive case. It
proves or disproves the equivalence classes in kth time-
frame. Unlike the original SatSweeping algorithm of ABC,
the nodes subjected to sweeping are not only merged into
their representative but also marked with a constant value if
one of the nodes belongs to the reference design. The marked
constant values reduce constraints for proving the equivalence
of other nodes.

The procedure terminates when all the register values of
the target frame are successfully computed by performing
simulation from the migrated values at SC and CSC.

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

aig runStateMatching(aig ref , aig impl, r state, int k, int kmax)
{

//Find all signal values of reference design in k time frames
V ref = performSimulation(ref , r state, k)
aig N = addMiter(ref ,impl);
set of node subsets Classes = randomSimulation(N);
// refine equivalences by BMC from the initial state for depth k − 1
// (this corresponds to the base case)
refineClassesUsingBMC(N , k − 1, Classes);
// perform iterative refinement of candidate equivalence classes
// (this corresponds to the inductive case)
do
{

// do speculative reduction of k − 1 uninitialized frames
network NR = speculativeReduction(N , k − 1);
// derive SAT solver containing CNF of the reduced frames
solver S = transformAIGintoCNF(NR);
//check equivalences and mark them with constants in k-th frame

after merging
SatSweepingIntoConstantWithConstraints(S, Classes, V ref);
//try to compute target state
tg state = simulate(N ,k);
if(tg state is computed) return tg state;

}
while (Classes are refined during SAT sweeping);
//try additional value propagation up to kmax frame
tg state = simulate(N ,kmax);
if(tg state is computed) return tg state;
return failure;

}

Fig. 6. The procedure of state matching using CSC.

F. Assuring Correctness of MULTES Results

Even though the state matching technique uses formal
methods based on CSC, there is no guarantee that target
states can always be computed. This is because the number of
extracted SCs may not be sufficient to reach the target state. As
a result, computing target states may still fail. To address this
issue, we developed the following failure-tolerant procedure. If
computing the initial state for a particular simulation slice fails,
the last slice having a successfully matched state is used to
continue simulation beyond its slice boundary. This is shown
in Fig. 7, where S1A−k and S2A−k of reference simulation
are used to compute the initial states S1B and S2B , for slice
n and n+1, respectively. If the initial state S2B of slice n+1
fails to be computed, slice n+1 cannot be simulated in parallel
because its initial state is not known. In order to achieve a fully
continuous simulation, simulation that starts at state S1B must
override slice n+1. This approach prevents simulation period
with unknown initial state, at a cost of lengthening slice n to
cover slice n+ 1.

Reference	 Simula.on	

Target	 Simula.on	
Slice	 n	

Slice	 n+1	

Slice n-1 Slice n Slice n+1

con.nue	

s1A
-k s2A

-k

s1B : Success

s2B : Failure

Fig. 7. Failure-tolerant initial state assignment in MULTES.

V. GATE-LEVEL TIMING SIMULATION

Simulation of timing-annotated gate-level designs is known
to suffer from very low performance. In this section we
discuss several issues related to timing simulation and propose
solutions to improving simulation performance dramatically.
To understand the issues related to consistency between the
functional reference simulation and timing target simulation,
we need to define the term cycle-consistency. Specifically, if
simulation of two designs produces identical results within
the required number of clock cycles, the two designs are
considered cycle-consistent. With this definition in mind, we
can now make the following observation:

Observation 1. If a synchronous single-clock circuit does not
have timing violation, the functional and timing simulations
of the circuit must be cycle-consistent.

A. Initial State Mismatches

Recall that in MULTES the design state is saved during
the functional reference simulation (using RTL model) and
restored for the target timing simulation (in the GL model).
Depending on a position of the checkpoint, this may cause
timing discrepancies to appear at the beginning of the target
slice. This situation is illustrated in Fig. 8. In this example, q
represents an output of a memory element.

clk

RTL:q

GL:q

cp1 cp2 cp3

clk

RTL:q

GL:q

maximum mismatch window

(a)

RTL:q

GL:q

RTL:q

GL:q

maximum mismatch window

clk clk

(b)

Fig. 8. Example of initial state mismatches caused by gate-level delay: (a)
Single-cycle path case; (b) Multi-cycle path case.

In Fig. 8(a) there are three possible places to make a
checkpoint: cp1, cp2 and cp3. It is safe to make a checkpoint
at either cp1 or cp3 because at these points both reference
and target simulations have identical value of q. However,
if the checkpoint is made at cp2, value 1 reported by the
reference simulation does not match value 0 obtained by gate-
level timing simulation of the target slice.

An intuitive solution to this problem is to allow check-
pointing only at the “safe” points (cp1 and cp3 in Fig.
8(a)). However, finding such points is difficult, as it requires
a sophisticated delay analysis. Moreover, for a design with
multiple-clocks, such points may not even exist.

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

To address this issue, we make use of Observation 1
(Cycle Consistency). Since the RTL and GL simulations must
maintain cycle consistency, the mismatch cannot propagate to
the next cycle. The maximum possible mismatch period, tmis,
caused by the delay, can be computed as follows:

tmis = γtC ; γtC > tMAX Delay (2)

where tC is one clock cycle period, tMAX Delay is the
maximum propagation delay in the target design, and γ is
the minimum positive integer that satisfies Eq. (2).

This problem can be solved by providing an overlap be-
tween two consecutive slices for the tmismatch period as
shown in Fig. 9. Here slice n − 1 and n are allowed to
share the simulation during the tmismatch period from the
last checkpoint. Since mismatch occurs at the beginning of
slice n, the corresponding period is discarded from the slice
simulation, and correct simulation result for that period is
obtained from slice n− 1.

clk

RTL:q

GL:q

cp

slice n

slice n - 1

(a)

RTL:q

GL:q

cp

slice n

slice n - 1

clk

(b)

Fig. 9. (a) Slice overlap in (a) single-cycle path; and (b) multi-cycle path.

As studied earlier (Observation 1), cycle consistency be-
tween the reference and target simulation guarantees the cor-
rect initial state for each slice. Therefore, we need to adjust the
reference simulation making it cycle consistent with respect
to the target simulation. In this case, any mismatches between
reference and target simulation, or between two consecutive
target slices indicate a potential design bug.

The cycle consistency described here is naturally maintained
in synchronous circuits with a single clock. However, if a
design has multiple clocks, asynchronous with respect to each
other, special care is required to provide the cycle consistency,
as discussed in Section V-C.

B. Checkpointing

In cycle-based simulation, the checkpoints can be assigned
at the end of any cycle period without causing any discrepancy
between the reference and target simulation. In an event-driven
simulation, however, finding correct placement for checkpoints
is more difficult because of non-deterministic delay between
the event edges.

An example in Fig. 10 illustrates this situation. Let us
consider a fragment of Verilog code in Fig. 10(a), which is
a part of the reference RTL model used in MULTES. The
#1 (one unit) delay at the right hand side of the non-blocking
assignments models the clock-to-Q delay of the corresponding
flip-flops. There are several reasons that designers use such
delays in their Verilog code, e.g., for debugging convenience,

always @(posedge clk or posedge rst_n) begin
 if(!rst_n) q <= #1 0;
 else q<= #1 d;

end

(a)

!
(b)

Fig. 10. (a) RTL code for a flip-flop modeling clock-to-Q delay; and (b)
Simulation waveform for the code with a checkpoint window.

for mixed RTL/gate-level simulation, etc. [25]. Fig. 10(b)
shows a waveform from an actual simulation of the code. If the
checkpoint is made at CP2 (300,001 nsec of reference simula-
tion time), the correct value, 1, is saved and restored later for
target simulation. This represents a correct behavior. However,
if the checkpoint is made at CP1 (300,000 nsec), an incorrect
value, 0, is saved instead. This wrong value is then restored at
the corresponding flipflop in the target simulation, providing
a wrong starting point for the target simulation. The problem
becomes even more complicated for designs with multiple
asynchronous clocks, in which the correct checkpointing for
each clock domain is possible only at safe simulation times.
In this case, we must find a safe simulation time common to
all clock domains at each checkpoint, prior to the reference
simulation.

One possible solution is to ignore any delays that appear
in the high-level abstraction of the design used for reference
simulation. But this may also result in an incorrect checkpoint-
ing, especially in designs with multiple asynchronous clocks.
To address this checkpointing issue, we introduce the concept
of a checkpoint window, an interval dedicated to saving and
restoring design state. The size of the checkpoint window
is one clock-cycle period in this example, but if Q belongs
to a multi-cycle path, the window needs to be expanded
accordingly. The dotted box in the middle of Fig. 10 represents
one possible checkpoint window for this design.

C. Multiple Asynchronous Clocks

Contrary to a popular belief, gate level simulation for
multiple-clock design may not maintain 100% cycle consis-
tency with the RTL simulation, even if there is no timing
violation. Therefore, a simple state saving and restoring may
cause incorrect target simulation. Fig. 11 illustrates such a
condition with a typical two-phase handshaking logic.

In Fig. 11(a), two synchronizers are used for Req and Ack
signals. No synchronizer is used for Data because the signal
values in data bus are maintained at the same level for a
sufficiently long time so that the receiving flip-flop will always
sample stable values. Fig. 11(b) shows timing inconsistency
between the RTL simulation and gate level timing simulation.
In this case, flip-flop Sync1 in gate level simulation cannot

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

Data[N-1:0] Data[N-1:0]

ReqA

ClkA ClkB

AckA

ReqB

AckB

Req

Ack

Sync1

(a)

One	 cycle	 mismatch	

RTL.ClkA	

RTL.ClkB	

RTL.Req	

RTL.Sync1	

GL.ClkA	

GL.ClkB	

GL.Req	

GL.Sync1	

RTL

GL

(b)

Fig. 11. Two-phase handshaking logic (a) and the simulation results (b).

sample value 1 on Req. Instead, its value is sampled in the
next cycle in RTL simulation, because the delay of Req makes
the value change from 0 to 1 to occur after the rising edge
of ClkB. As a result, the sampling signal value of Req in
gate-level design is delayed by one cycle. In conclusion, gate
level timing simulation may not be 100% cycle consistent
with RTL simulation, even if there is no timing violation. This
inconsistency may cause our approach to produce, in general,
different simulation results from the conventional gate level
timing simulation. This results in timing mismatches between
the reference and target simulation.

In order to handle the multiple-clock issue, the following
method based on abstract delay annotation is proposed. Fig.
12(a) explains the main idea of this approach.

CCD : Common Clock Domain

RTL
model

 GL timing
model

CCD
Block

2

CCD
Block

1

CCD
Block

1

CCD
Block

2

CDC boundary

Abstracted CDC delay
annotation

(a)

Cycle	
accurate	

RTL.ClkA	

RTL.ClkB	

RTL.Req	

RTL.Sync1	

GL.ClkA	

GL.ClkB	

GL.Req	

GL.Sync1	

RTL

GL

(b)

Fig. 12. Abstract delay annotation concept (a) and the result of the technique
(b)

The method takes advantage of the delay information for
CDC paths available from the Standard Delay Format (SDF)
file. The propagation delay at the CDC boundary is extracted
from SDF file and annotated (after the necessary simplifica-
tion and normalization) onto the RTL model. The annotated
abstract delay denoted DADA(CDC) is a function of the
propagation delay at the CDC boundary and the delay of two

asynchronous clocks1, as given by Eq. (3).

DADA(CDC) = D(Clksend)−D(Clkrecv)+D(CDC) (3)

where:
• DADA(CDC) is the abstract delay for CDC path to be anno-

tated in RTL design.
• D(Clksend) is the delay of clock for the register in upstream

clock domain obtained from SDF file.
• D(Clkrecv) is the delay of clock for the register in downstream

clock domain obtained from SDF file.
• D(CDC) is the total delay in a CDC path obtained from SDF

file.

Fig. 12(b) shows that RTL.Req signal is properly delayed
after applying abstract delay annotation described above. Af-
ter annotating abstract delay on the RTL design, the RTL
reference simulation and gate level target simulation should
maintain cycle consistency even in multiple-clock designs. By
doing this, our approach produces identical simulation results
as conventional simulator, unless there is a timing violation in
the DUT.

In our work, we used Conformal CDC checker (Cadence)
to identify CDC paths and implemented a tool to extract the
corresponding delay information from those paths. We then
applied Eq. (3) to modify the delay on CDC paths (and only
on those paths). A new SDF file with the modified CDC delay
information was then generated, and the gate-level design
segments corresponding to the modified SDF file were applied
to the RTL design. Due to some instability of our Verilog
parser, this RTL-to-GL merging part was done manually, using
simple Cross-Module Reference in Verilog.

The difficulty of state matching is one of the limiting
factors in applying the temporal approach to RTL simulation,
as this would require using ESL as reference. Establishing
the correlation between ESL transactions and RTL cycles
may not be possible. Also, it is not clear how to guarantee
cycle consistency between two abstraction models, required
for correct functioning of our technique.

VI. EXPERIMENTAL RESULTS

The temporal parallel simulator, MULTES, has been imple-
mented in C/C++ as a plug-in to Cadence NC-Sim R© simulator
using PLI, and its performance compared to conventional
simulation using NC-Sim.

The system is largely automatic, with only a few manual
steps mandated by the use of third party software. Design is
parsed using PLI of the NC-Sim simulator and CDC paths are
extracted using Cadence Conformal tool. The system generates
script to access and run the tool; the setup is straightforward
and detecting CDC paths takes a few minutes even for large
scale designs. Abstract delay annotation is performed auto-
matically and in a matter of second(s) even for very large
designs. Reference simulation of the annotated RTL design is
fully automatic, with user providing basic parameters, such
as the number of simulation slices, timescale, etc. Saving
the design state and dumping stimulus (for testbench for-
warding) are done automatically based on user configuration.

1Clock delay is defined as the propagation delay in clock path from clock
source to destination register.

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

State matching requires some manual interaction and setup,
with user identifying those parts of the design that required
retiming. For those modules that did not involve retiming,
MULTES automatically matches signals in the reference and
target designs. If matching fails (which can happen when
names in the GL design were changed during synthesis, or
the GL design hierarchy is different than that in RTL), the
system invokes Formality tool of Synopsys to complete the
matching, using an automatically generated TCL script. This
is a one-time task that typically takes several minutes even
for a very large design. If the module under consideration
involves retiming, the matching is solved using ABC. Solving
the signal correspondence task is automatic, based on a fixed
script. Some amount of human effort is required to guide
the matching process, mainly because of the limitation of
resources in developing academic tools. Finally, target sim-
ulation is completely automatic.

The simulation experiments were performed on a computer
equipped with Intel R© T7500 CPU. Target designs were syn-
thesized by Synopsys Design Compiler R© with TSMC 65nm
technology library. The SDF files with delay information for
gate-level design were generated by Design Compiler R© (Syn-
opsys). To measure the performance of target simulation, each
simulation slice was run sequentially on a single computer,
emulating a parallel simulation environment in which each
slice is assigned to a separate physical machine. The run
times reported in this section include all elements of MULTES,
except for state matching, done with a commercial tool, when
applicable. The state matching results are reported separately.

A. Zero-delay Gate-level Reference Simulation

The first set of experiments involved gate-level full timing
simulation with zero-delay gate-level simulation as reference
simulation. In this case, the netlist structures for the reference
and target models are identical and hence state matching is
not required.

1) S1-Core: In this experiment, an S1-Core design from
OpenCORE [26] was used as benchmark. The design has 1.2
million gates and contains one 64 bit-SPARC Core.

Full-timing simulation Zero-delay simulation
Simulation Cycle 500,000 cycles 500,000 cycles
Simulation Time 11,860 s 223 s
Simulation Rate 42.16 cycles/sec 2242.15 cycles/sec

TABLE I
SIMULATION SPEED COMPARISON BETWEEN FULL-TIMING AND

ZERO-DELAY SIMULATION.

Table I shows the speed of the traditional, single-processor
simulation and the zero-delay simulation used as reference
simulation. In this case, zero-delay simulation is 53 times
faster than full timing simulation.

The results of the parallel simulation with MULTES are
shown in Table II (all times are in seconds). The best
simulation performance is attributed to the first slice: the
initial condition for the first slice does not require the design
state to be restored and the testbench does not need to be

Slice
number

Ref. Simul.
(zero-delay)
[sec]

Target slice simula-
tion (timing) [sec] Total simula-

tion time (min,
max) [sec]1st 2nd Last

5 361 2673 2756 2798 3034 - 3159
10 391 1342 1554 1567 1733 - 1958
15 429 887 951 969 1316 - 1398
20 457 648 732 745 1105 - 1202

TABLE II
PERFORMANCE OF GATE-LEVEL SIMULATION WITH 20 SIMULATION

SLICES FOR S1-CORE DESIGN WITH 1.2M GATES.

simulated. From the second slice on, the simulation is slower
because of the testbench forwarding. However, the plots in
Fig. 13 show that the overhead due to testbench forwarding
is small, and the last slice is simulated almost as fast as
the first one. Furthermore, the simulation overhead due to
testbench forwarding is not a function of the number of slices
but a function of the simulation time. Therefore, for gate-
level simulation requiring reasonably long simulation runs, the
total simulation overhead of temporal parallel simulation is
maintained at a low level, regardless of the number of slices.

0	
500	
1000	
1500	
2000	
2500	
3000	
3500	

5	 10	 15	 20	

Se
c	

Number	 of	 slices	

Best	
Worst	

(a)

0	

2	

4	

6	

8	

10	

12	

0	 5	 10	 15	 20	 25	

Sp
ee
d	
up

	 (x
)	

Number	 of	 slices	

Best	

Worst	

(b)

Fig. 13. Performance of MULTES for S1 Core design: (a) Simulation time
in MULTES; (b) Speedup in MULTES.

2) 18M-gate Industrial Design: This experiment was car-
ried out with the help of designers from a major semiconductor
company on an industrial design with 18M gates. Mega-cells
(such as RAM cache, etc.) are replaced with higher level
simulation models. The design was simulated with Cadence
NC-Verilog R© simulators, running on SUN SPARC machines.
Despite a small (10:1) speedup ratio between the zero-delay
simulation and full-timing gate level simulation, the results
showed an expected linear (6x) speedup with 10 simulators
on a simulation run of 72,600,000 cycles.

B. RTL Reference Simulation

In these experiments, RTL design was used as the ref-
erence model for gate-level timing simulation. Formality R©

equivalence checker (Synopsys) was used to establish register
matching between the RTL and gate-level design. The tool
solves registers matching problem as part of equivalence
checking, by detecting structural similarity between the two
designs. This process is very fast even for multi-million gate
designs.

1) JPEG Encoder: In this experiment, we used JPEG
Encoder design from OpenCores [26]. Total gate count of the

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

GL design is 900k gates. Table III shows the performance
of MULTES for this design. RTL reference simulation of
JPEG Encoder is 256 times faster than conventional GL
timing simulation. Under this condition, we were able to
achieve speedup ranging from 6.35 to 110.78 times, depending
on the number of simulation slices. The worst-case target
simulation refers to the simulation of the last slice, as it
includes the longest testbench forwarding period. Computation
of the speedup rate was based on the worst-case simulation.
As shown in Fig. 14(a), MULTES gives a linear speedup for
the first 100 slices with a linear rate of 0.4, and continues at a
lower rate up to 500 slices. Beyond this point, the improvement
tends to saturate but is still noticeable at 1000 slices. This
level of performance improvement is generally not possible
with a conventional distributed parallel simulation. We expect
that a longer total simulation period with the same number of
slices will further delay the saturation point. This is because
the reference simulation and testbench forwarding become
dominating factors for target simulation simulation with 100
slices and beyond, as shown in Fig 14(b).

(a)
Design Simulation run time (sec) Ratio
RTL 184 1
GL timing 47192 × 256

(b)

of slices 10 50 100 500 1000

Reference
Sim (sec) 246 249 255 269 291

Best/Worst B W B W B W B W B W

Target
Sim (sec) 7142 7191 1456 1508 737 791 145 198 78 135

Total (sec) 7388 7437 1705 1757 992 1046 414 467 369 426

Speed up 6.38 6.35 27.7 26.9 47.6 45.12 114 101.1 127.9 110.8

TB f/w (sec) 56 State saving (sec) <0.5

TABLE III
EXPERIMENTAL RESULTS OF MULTES FOR JPEG ENCODER: (A)

PERFORMANCE GAP BETWEEN RTL AND GL TIMING SIMULATION; (B)
SIMULATION PERFORMANCE OF MULTES.

0	

20	

40	

60	

80	

100	

120	

140	

0	 200	 400	 600	 800	 1000	

Sp
ee
d	
up

	

Number	 of	 slices	

Best	 case	

(a)

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

1	 10	 50	 100	 500	 1000	

Si
m
ul
a.

on
	 .
m
e	
(1
00
0	
se
c)
	

Number	 of	 slices	

Standalone	
Testbench	 forwarding	 (last	 slice)	
Target	 Sim	 (best)	
Ref.	 Sim	

(b)

Fig. 14. Performance of MULTES for JPEG encoder: (a) Speedup in
MULTES; (b) Simulation time in MULTES.

2) AES: Advanced Encryption Standard (AES) design from
OpenCORES [26], is used as another benchmark for the
experiment using RTL model for reference simulation. Total
gate count of AES design is 25K.

(a)
Design Simulation run time (sec) Ratio
RTL 110 1
GL timing 18669 × 169

(b)

of slices 10 50 100 500 1000

Reference
Sim (sec) 426 431 442 453 467

Best/Worst B W B W B W B W B W

Target
Sim (sec) 2634 2916 498 940 233 670 43 469 35 652

Total (sec) 3060 3342 929 1371 675 1112 496 922 502 1119

Speed up 6.1 5.59 20.1 13.6 27.7 16.8 37.6 20.3 37.2 16.7

TB f/w (sec)
w/ I/O 424

w/o I/O 81

State sav-
ing (sec) <0.5

TABLE IV
EXPERIMENTAL RESULTS OF MULTES FOR AES: (A) PERFORMANCE
GAP BETWEEN RTL AND GL TIMING SIMULATION; (B) SIMULATION

PERFORMANCE OF MULTES.

Table IV shows that gate level timing simulation of this
design is 169 times slower than RTL simulation. In this case,
the speedup ranges from 5.59 to 20.25 times. Fig. 15 shows
a sub-linear speedup up to 70 slices, and the performance
improvement continues up to 500 slices. Considering a large
gap between the RTL and GL simulation speed, the overall
speedup is lower than one would expect. This is because the
speed gap between RTL and GL simulation is small, due to
the small size and low complexity of the DUT. As a result,
testbench forwarding overhead becomes relatively high. Fig.
15(a) shows that such factors dominate the entire overhead
for the simulation with 50 slices and the overall performance
of MULTES eventually drops after 600 slices. The effect of
the overhead imposed by reference simulation and testbench
forwarding is shown in Fig. 15(b). The optimum number of
parallel nodes during this simulation period is 50. Table IV(b)
also shows that reducing disk I/O overhead, which can be
obtained by compressing data and using faster storage devices,
will contribute to better results. These two experiments demon-
strate that MULTES offers higher performance improvement
for designs having complex simulation data structure, longer
simulation period, and a large amount of event activities.
Therefore, we anticipate that our approach will have significant
impact on dynamic verification of large-scale designs.

C. Performance of State Matching

The experiments in this section show the performance of
state matching, discussed in Section IV, for AES design. In

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0	 200	 400	 600	 800	 1000	

Sp
ee
d	
up

	

Number	 of	 slices	

Best	 case	
Worst	 case	

(a)

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	

1	 10	 50	 100	 500	

Si
m
ul
a/

on
	 /
m
e	
(1
00
0	
se
c)
	

Number	 of	 slices	

Standalone	
Testbench	 forwarding	 (last	 slice)	
Target	 Sim	 (best)	
Ref.	 Sim	

(b)

Fig. 15. Performance of MULTES for AES design: (a) Speedup in MULTES;
(b) Simulation time in MULTES.

this experiment, the target gate-level design was obtained by
resynthesizing the reference AES design using the “forward
retiming with minimum delay” and “refactor” synthesis op-
tions in ABC tool.

Random reference state Matching with
SC (sec)

Matching with
SC&CSC (sec)

1 retime 1.62 0.57
retime&refactor 3.31 0.79

2 retime 1.52 0.51
retime&refactor 3.29 0.73

2 retime 1.54 0.49
retime&refactor 3.33 0.81

TABLE V
STATE MATCHING FOR AES DESIGN.

Table V shows the result of state matching. In this case,
the number of time frames for the induction is fixed at 4.
For this experiment, three different random reference states
were first generated, and for each reference state, two different
state matching approaches were employed. The first approach
was to find all the possible SC (signal correspondence) classes
first, and then to propagate reference state values to the target
registers. These are shown in the second column of Table
V. The second approach was to use CSC (constrained signal
correspondence) and to propagate reference state values on the
fly during SAT sweeping. These are listed in the third column
of Table V. The table clearly demonstrates that using CSC
significantly improves the state matching speed. Specifically,
we observed that matching with both SC and CSC required
much smaller running time than matching with SC only.

We should emphasize that solving the state matching prob-
lem, as described here, is simpler than a complete sequential
equivalence problem. Recall that it is not our goal to prove
that certain signals in the reference and target designs are
sequentially equivalent; instead, we only need to find register
values in the target design, based on known signal values in
the reference design. In general, finding such a mapping is
very fast for designs without retiming, using simple structural
analysis employed by commercial combinational equivalence
checkers. It is also fast for most of the tested designs, as shown
in the above table.

VII. CONCLUSIONS

The time-parallel technique described in this paper is scal-
able and applicable to timing simulation of arbitrary, gate-level
hardware descriptions. It naturally fits in a standard design
synthesis flow, in which the design undergoes a progressive
transformation from higher level abstraction to the lowest,
gate-level implementation. By relying on a higher abstraction
level as a reference model, this technique can automatically
determine whether the simulated design is consistent with the
model at the higher, reference model. Furthermore, the method
handles designs with multi-cycle paths, multiple asynchronous
clocks, and circuits synthesized with retiming, without sacri-
ficing important verification features.

The question is how reliable is this technique for simu-
lation of large industrial designs. Reliability of MULTES is
dictated mostly by its ability to solve the matching problem.
However, as mentioned in Section IV F, MULTES performs
correct simulation by sacrificing performance even if the state
matching failed. Except for retimed designs, for which the
system may not be able to find state matching, the method can
be considered reliable. Specifically, the system dynamically
checks during target simulation if the computed state at the
end of slice k matches the initial state used for slice k+1. In
general, if the implementation is correct (i. e., if there is no
functional difference between the reference and target designs)
the simulation result must be correct. For a single-cycle design,
a mismatch between the reference and GL design at the
clock boundary indicates a bug. For a design with multiple
asynchronous clocks, the mismatch requires more careful
analysis, as it may indicate a design bug or an incorrectly
annotated abstracted delay on CDC paths. If the abstracted
delay on CDC paths is correctly annotated, any mismatches
indicate that there is timing bug in the design. Even though
the validation of a potential bug is user’s responsibility, this
feature simplifies the debugging process.

We should emphasize that our time-parallel simulation
method is suitable for distributed computing environment, such
as simulation farms, rather than for multi-core processor ar-
chitecture. The main reason is large memory required by each
processor to simulate the entire design (albeit over a shorter
simulation slice than the single-thread simulation). This is in
contrast to traditional distributed parallel simulation, where
due to design partitioning each processor can benefit from
the smaller size of the blocks. In the time-based approach,
simulation of each slice requires a full simulation image, as
in the single-processor simulation.

The method described in this work is scalable and applicable
to gate level simulation of a large class of designs. To the best
of our knowledge, no such temporal-parallel simulation have
been successfully implemented or reported, in particular for
designs synthesized with sequential optimization techniques,
such as retiming.

ACKNOWLEDGMENT

This work has been supported by the National Science
Foundation, award CCF-0702506 and CCF-1017530, and by
a research grant from Samsung Electronics Co., Ltd.

IEEE TRANSACTION ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

REFERENCES

[1] W. Lam, Hardware Design Verification: Simulation and Formal Method
Based Approaches. Prentice Hall PTR, 2005.

[2] “Avery Desgin Automation, SimCluster datasheet (http://www.avery-
design.com).”

[3] “Axiom Design Automation (http://www.axiom-da.com).”
[4] P. Heidelberger and H. Stone, “Parallel trace-driven cache simulation by

time partitioning.” in Proc. Winter Simulation Conference (WSC), 1990,
pp. 734–737.

[5] D. Kim, M. Ciesielski, K. Shim, and S. Yang, “Temporal parallel
simulation: A fast gate-level hdl simulation using higher level models.”
in Proc. Design Automation and Test in Europe (DATE), 2011, pp. 1584–
1589.

[6] M. Chandy and J. Misra, “Distributed simulation: A case study in design
and verification of distributed programs.” IEEE Transactions on Software
Engineering, no. SE-5(5), pp. 440–452, 1977.

[7] R. Bryant, “Simulation of packet communication architecture computer
systems.” Computer Science Laboratory. Cambridge, Massachusetts,
Massachusetts Institute of Technology, 1977.

[8] R. Fujimoto, “Parallel discrete event simulation,” Communications of
the ACM, vol. 33, no. 10, pp. 30–53, October 1990.

[9] D. Jefferson, “Virtual time.” ACM Transactions on Programming Lan-
guages and Systems, no. 7(3), pp. 404–425, 1977.

[10] N. Manjikian and W. Loucks, “High performance parallel logic simula-
tion on a network of workstations.” in Proc. Workshop on Parallel and
Distributed Simulation (PADS), 1993, pp. 76–84.

[11] R. Bagrodia, Y. Chen, Y. Jha, and N. Sonpar, “Parallel gate-level circuit
simulation on shared memory architectures.” in Proc. Computer Aided
Design of High Performance Network Wireless Networked Systems,
1995, pp. 170–174.

[12] D. Lungeanu and C. Shi, “Parallel and distributed VHDL simulation.”
in Proc. Design Automation and Test in Europe (DATE), March 2000,
pp. 658–662.

[13] L. Li, H. Huang, and C. Tropper, “DVS: An object-oriented framework
for distributed verilog simulation.” in Proc. Workshop on Parallel and
Distributed Simulation (PADS), 2003.

[14] L. Zhu, G. Chen, B. Szymanski, C. Tropper, and T. Zhang, “Parallel
logic simulation of million-gate VLSI circuits,” in Proc. 13th IEEE
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, Sep. 2005, pp. 521–524.

[15] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level
simulation with GP-GPUs.” in Proc. Automation Conference (DAC09),
2009, pp. 557–562.

[16] Y. Zhu, B. Wang, and Y. Deng, “Massively parallel logic simulation
with GPUs,” ACM Trans. Des. Autom. Electron. Syst., vol. 16, no. 3,
p. 29, Jun. 2011.

[17] D. Yun, S. Kim, and S. Ha, “A parallel simulation technique for
multicore embedded systems and its performance analysis.” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 31, no. 1, pp. 121–131,
2012.

[18] S. Andradottir and T. Ott, “Time-segmentation parallel simulation of
networks of queues with loss or communication blocking.” ACM Trans-
actions on Modeling and Computer Simulation, no. 5(4), pp. 269–305,
1995.

[19] A. Greenberg, B. Lubachevsky, and I. Mitrani, “Algorithms for unbound-
edly parallel simulations,” ACM Transactions on Computer Systems,
vol. 9, pp. 201–221, Aug. 1991.

[20] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and
scalably-verifiable sequential synthesis.” in Proc. The International
Conference on Computer-Aided Design (ICCAD), 2008, pp. 234 – 241.

[21] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs.” in Proc. Tools and Algorithms for Construction and
Analysis of Systems (TACAS), 1999, pp. 193–207.

[22] M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety properties us-
ing induction and a SAT solver.” in Proc. Formal Methods in Computer-
Aided Design(FMCAD), 2000, pp. 108–125.

[23] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman, “Exploiting
suspected redundancy without proving it.” in Proc. Design Automation
Conference, 2005, pp. 463–466.

[24] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements
to combinational equivalence checking.” in Proc. The International
Conference on Computer-Aided Design (ICCAD), 2006, pp. 836–843.

[25] C. Cummings, “Verilog nonblocking assignments with delays, myths
and mysteries.” in Proc. Synopsys User Group Meeting (SNUG), 2002.

[26] “OpenCORES (www.opencores.org).”

Dusung Kim (M’12) received the B.S. and M.S.
degree in computer engineering from Pusan Na-
tional University, Busan, Korea, in 2004 and 2006
respectively, and the Ph.D. degree from University of
Massachusetts (UMass), Amherst, in 2012. Between
2006 and 2012, he was a Research Assistant with the
VLSI CAD Laboratory, Department of Electrical and
Computer Engineering, UMass. His doctoral work
focused on parallel simulation using multi-level de-
sign abstraction model. He is currently a senior
research and development engineer with Synopsys,

Inc., Mountain View, CA, developing static timing analysis techniques for
transistor level design.

Maciej Ciesielski (SM95) is Professor in the De-
partment of Electrical & Computer Engineering
(ECE) at the University of Massachusetts, Amherst.
He received M.S. in Electrical Engineering from
Warsaw Technical University, Poland, in 1974 and
Ph.D. in Electrical Engineering from the University
of Rochester, N.Y. in 1983. From 1983 to 1986 he
worked at GTE Laboratories on a silicon compilation
project. He joined the University of Massachusetts,
Amherst in 1987, where he teaches and conducts
research in the area of electronic design automation,

and specifically in synthesis, optimization and verification of digital systems.
He is recipient of Doctorate Honoris Causa from the Universite de Bretagne
Sud, Lorient, France. Dr. Ciesielski is the recipient of the Doctorate Honoris
Causa from the Universit de Bretagne Sud, Lorient, France, for his contribu-
tions to the field of electronic design automation.

Seiyang Yang received the B.S. degree, and M.S.
degree in electronic engineering from Korea Uni-
versity, Korea in 1981 and 1985 respectively, and
the Ph.D. degree in computer engineering from
University of Massachusetts, Amherst in 1990. From
1990 to 1991, he was a R&D staff with Micro-
electronics Center of North Carolina. In 1991, he
joined the Pusan National University, Korea, where
he is a Professor of the Department of Computer
Engineering. In 1997, he founded a start-up, which
specializes in FPGA-based debugging solutions. His

research interest covers parallel HDL simulation, logic synthesis, and many
aspects of design verification.

