
VARIABLE ORDERING FOR TAYLOR EXPANSION DIAGRAMS 
 

Daniel Gomez-Prado1, Qian Ren1, Serkan Askar1

 Maciej Ciesielski1, Emmanuel Boutillon2 

 
1University of Massachusetts, Amherst 

2Université de Bretagne Sud, Lorient, France 
 

 
 Abstract:  This paper presents an algorithm for variable 
ordering for Taylor Expansion Diagrams (TEDs). First we 
prove that the function implemented by the TED is 
independent of the order of its variables, and then that 
swapping of two adjacent variables in a TED is a local 
permutation similar to that in BDD. These two properties 
allow us to construct an algorithm to swap variables locally 
without affecting the entire TED. The proposed algorithm 
can be used to perform dynamic reordering, such as sifting 
or window permutation.  We also propose a static ordering 
that can help reduce the permutation space and speed up the 
search of an optimal variable order for TEDs. 
 

Introduction 
 

It has been demonstrated that TEDs are a compact, 
canonical, graph-based representation for algebraic 
expressions and boolean functions, subject to the imposition 
of a total ordering on the variables [1]. This diagram, due to 
its compactness and canonicity property, can be exploited to 
facilitate equivalence checking of high level representations 
of digital designs containing arithmetic data-paths 
interspersed with random boolean logic. 

 
The TED is obtained by using the Taylor Expansion of 

the function, one variable at a time. The zero derivative 
f(x=0) is a 0-child, f '(x=0) is a 1-child, f ''(x=0) is a 2-child, 
with corresponding edges 0-edge (dotted), 1-edge (solid), 2-
edge (double), etc. For example figure 1 shows the 
construction of xwzwyxyzxzywxf +++= 22222),,,(  as 
a TED, with two different variable orders: in case a) only 4 
nodes are needed to represent the TED, while in case b) we 
need 7 nodes to build the same TED. 
 

 
 
 
 
 
 
 
 
 

 

 
 

a) zwyx <<<    b) xwzy <<<  
Fig. 1. Different variable ordering for .),,,( zywxf

Thus, the size of the TED depends on the adopted variable 
order. This means that the complexity of any future 
manipulation on a TED depends on the variable order for 
which it was constructed.  It is therefore desirable to find the 
best order that minimizes the size of the TED.

 
Variable Ordering for TEDs 

 
The TED around the origin for an univariate polynomial is 
the Taylor expansion 
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where . In the case of multivariate polynomials 
the TED will be: 
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Theorem I: The swap of two variables in a TED graph is 

a local permutation that does not affect the TED subgraph 
above or below the two swapped variables. 

 
Proof: Given a multivariate polynomial , 
assume that we have already constructed the TED up to the 
variable  (see Fig. 2). Due to the recursive construction 
of the TED, this means that we have already expanded the 

 first terms of the summation. 

),,( 21 nxxxf K

1−wx

1−wx
 

Xw-2

Xw-1

Xw-2

Xw-3
Xw-3

Xw-2

X1

X2 X2
X2

Unconstructed Θ(xw,...,xn)

 0

x

w

y

1

z

0

x

w

y

1

z

0

x

w

y

z z

w

x

10

x

w

y

z z

w

x

1
Fig. 2. Partial construction of a TED 

with ordering nw xxxx <<<<< − KK 121



 
Here we can see that the constructed part of the TED, the 
top subgraph with variables above the level , does not 
depend on the construction of the bottom subgraph, with 
variables below the level . This is trivial to prove, as 
the constructed TED corresponds to the expanded and 
calculated parts of the summation, and the remaining 
construction only depends on . Therefore the 
constructed top subgraph with variables remains 
the same for any ordering of the bottom  
variables. 
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Now if we look at the unconstructed subgraph we have: 
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where denotes the constructed TED. It remains 

to be proven that the swapping of the variables  and  
will not affect the construction of the subgraph . 
For polynomial, partial derivatives must be equal regardless 
of the order in which the differentiation is done [2]: 
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so we can rewrite as: Θ
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here we can see that the construction of the bottom subgraph  
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remains the same under the swapping of  and . So 
we have proven that swapping any variable below  
doesn't affect Ψ  and swapping any variable above  
doesn't affect ; therefore swapping two adjacent variables 

 and  is a local permutation of the TED that doesn't 
change the TED subgraphs above or below the swapping 
variables. 

wx 1+wx
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A. The algorithm for Local Swapping in TEDs 

 
 The input of the algorithm is a TED and two adjacent 
variables  and  to be swapped. (see Fig. 3.) wx 1+wx
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Fig. 3. TED graph with order nww xxxx <<<<< + KK 11  

 
Step 1: Separate all  nodes whose parent kp-edges have 
connection to ; split those nodes in two nodes, one with 
parent kp-edges connected to  and the other with the 
remaining edges connected to the subgraph 

1+wx

wx

wx
Ψ  above. (see 

Fig. 4.a) 
 
Step 2: Split each node  with parent kp-edges connected 
to  for each child kc-edge connected to the subgraph 

1+wx

wx Γ  
below. (see Fig. 4.b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Γ1

Γ2 Γ3

Γ4
Γ5

Γ6

Γ1

Γ2 Γ3

Γ4
Γ5

Γ6

Xw+1 Xw+1

Ψ1 Ψ3 Ψ4 Ψ5 Ψ6
Ψ2

Γ1

Γ2 Γ3

Γ4
Γ5

Γ6

Γ1

Γ2 Γ3

Γ4
Γ5

Γ6

Xw+1

Xw

Ψ1 Ψ3 Ψ4 Ψ5 Ψ6
Ψ2

Xw+1
Xw+1

Xw

Xw+1Xw+1

Fig. 4.  Steps 1 and 2 of Local Swapping algorithm 
 
Step 3: Separate all  nodes whose children kc-edges have 
connection to ; split those nodes in two nodes, one with 
children kc-edges connected to and the other with the 
remaining edges connected to the subgraph 

wx

1+wx

1+wx
Γ  below. (see 

Fig. 5.a) 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Steps 3 and  4 of Local Swapping algorithm 
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Step 4: Split the nodes  with children kc-edges connected 
to  for each child kc-edge. (see Fig. 5.b) 

wx

1+wx

 

 
Step 5: Split the nodes  with parent kp-edges connected 
to . (see Fig. 6) 

1+wx

wx
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Step 5 
 
Step 6: Eliminate all redundant nodes, and swap the 
variables  and . We can do this because after the 

fifth step we have all monomials with terms  in 
different paths. (see Fig. 7) 
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Fig. 7. Step 6 
 

Step 7: Reestablish canonicity by means of addition. We do 
this by treating all different monomials as different TEDs 
and adding them together. This last operation is not 
computational expensive because all those TEDs share the 
same subgraph above and below, so memory doesn't need to 
be duplicated. (see Fig. 8) 
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Fig. 8. Step 7 
 
After these seven steps we have successfully swapped two 
adjacent variables in a TED without changing the subgraphs 
above or below the swapping variables. The correctness of 
the algorithm relies on the proof of theorem I. The proof that 
the algorithm terminates is given by the fact that a finite 
multivariate polynomial has a finite number of monomials, 
therefore there are a finite number of paths and the 
expansion produced in the first five steps is finite. 
 

B. Complexity of the local swapping 
 

The running time of the algorithm will be related to the 
maximum number of expansion ξ  that can take place, and 
this can be calculated in general by: 

Γ1

Γ2 Γ3

Γ4
Γ5

Γ6

Γ1

Γ2 Γ3

Γ4
Γ5

Γ6

Ψ1 Ψ3 Ψ4 Ψ5 Ψ6
Ψ2

Xw+1

Xw

Xw+1

XwXwXw XwXw Xw

Xw+1 Xw+1Xw+1

 

∑
+

+
=

×Γ=
)(#

1
)(

1

1
)__#__(#

w

iw

xNodes

i
xNodewpc xtoEdgesktoEdgeskξ

 
using the inequality ))(( dcbacdab ++<+  for positive 
integer numbers, we conclude that the running time of the 
algorithm is O(mn), with m equal to the total number of 
edges connecting  to 1+wx Γ , and n equal to the total number 
of edges connecting  to . 1+wx wx
 
Observation: In all the examples we have tested so far, 
reducing the number of nodes in a TED did not increase the 
number of edges. 
 

C. Dynamic ordering 
 

 Local swapping can be achieved with any of the known  
dynamic ordering algorithms (proposed for BDDs, OBDDs, 
etc. [3] [4] [5] [6] [7] [8] [9] [10]) that are based on a greedy 
property. More specifically, we can perform the sifting 
algorithm and window permutation; by bubbling up, 
bubbling down and backtracking the best position can be 
found for a given variable. 
 



D. Static ordering 
 

 We also propose a fast way of variable allocation that 
can minimize the search space. This ordering is heuristic 
and is based on the following observations for TED graphs. 
 
Observation 1: Variables that appear in most terms of the 
monomial with the same exponent in most terms should be 
placed at the top, as they will produce only one node and 
least edges. 

 

  
Observation 2: Variables that appear in most terms of the 
monomials and have multiple number of exponents should 
be placed right after any homogeneous variable identified in 
the first observation. 
 
Observation 3: In the case of a TED with a single output the 
two first observations are followed. In the case of multiple 
outputs we change top for bottom and after for before in the 
two first observations; the latter is done to maximize sharing 
of TED nodes. (see Fig. 9) 
 
 
 
 
 
 
 

Fig. 9. Single and Multiple output TEDs
 
Observation 4: Variables that never appear in the same 
monomial are treat as outputs of a multiple output TED. The 
idea behind this observation is that treating the variables as 
outputs of a multiple output TED allows to fit each variable 
into the first observation. And all these unrelated variables 
will be joined by the additive edge to produce the single 
output TED that we were building in the first place. 
 
An easy way to identify these cases for multivariate 
polynomials, given in the expanded form, is by constructing 
a matrix whose columns represent monomials and  rows 
represent the variables. In each element of the matrix (i,j) 
we put the respective exponent k with variable  that 
appears in the monomial j. 

ix

 
For example the following multivariate polynomial 

 will 
produce the following matrix: 

ywzwxwzxzxyywxzwyxf 22222432),,,( +++++=

 

 ywx 32  xy  
24 xz

 
2wz  zwx 22

 
yw2

 
x 2 1 2 0 2 0 

y 1 1 0 0 0 1 

w 3 0 0 1 2 2 

z 0 0 4 2 1 0 
 

From the matrix the initial variable order is wxzy <<< . 
We have chosen y and z at the top because of the forth 
observation, x is placed at the bottom because it has the 
same number of calls as w but it has more terms with the 
same exponent. Now the only possible further search in 
variable optimization would be swapping variables w and x, 
and this means that we have effectively reduce our space 
search from 4! = 24  to 2. (see Fig. 10) 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) xwzy <<<    b) wxzy <<<  
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Conclusions 
 
From the analysis presented in this paper we can conclude 
the following: 
  
1. Swapping two adjacent variables doesn't change the 

graphs above and below the variables and furthermore it 
does not change the edges and weights connecting the 
graph above. 

2. We can apply the algorithms known from dynamic 
ordering for BDDs that are based on the greedy 
property of local optimality. 

3. Reducing the number of nodes and reducing the number 
of edges in a TED are the same objective. 

 
Recently TED was shown to outperform Mathematica in 
both time and space when checking for equality of large 
polynomials [11]. This result is expected to be improved 
using reordering techniques described on this paper. 
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