
1

Understanding Algebraic Rewriting for Arithmetic Circuit
Verification: a Bit-Flow Model

Maciej Ciesielski∗, Tiankai Su∗, Atif Yasin∗, Cunxi Yu†

Abstract—This paper addresses theoretical aspects of
arithmetic circuit verification based on algebraic rewriting. Its
goal is to advance the understanding of algebraic techniques
for arithmetic circuit verification in the context of symbolic
computer algebra. The paper offers a new insight into
the arithmetic circuit verification problem, by viewing the
computation performed by the circuit as the flow of digital
data. In the proposed bit-flow model the circuit is modeled as a
network of logic components satisfying a bit-flow conservation
law. We prove that the value of the flow of data in the
circuit is invariant throughout the circuit and use this to
prove soundness and completeness of the rewriting technique,
independently from the computer algebra arguments. The
efficiency of the method is illustrated with impressive results
for large integer multipliers. The verification system and
benchmarks are offered in an open source software envi-
ronment.

Index Terms—Formal Verification, Algebraic Rewriting,
Arithmetic Verification.

I. INTRODUCTION

Despite considerable progress in verification of logic
circuits, arithmetic and datapath verification continues to
pose a considerable challenge. This may be attributed to
the difficulty in efficient modeling of arithmetic designs
without resorting to computationally expensive Boolean
methods, such as BDDs [1], SAT [2], and SMT [3]. Com-
puter algebra techniques, which are based on polynomial
representation of arithmetic circuit implementation, seem
to circumvent this problem and offer efficient solutions for
analyzing arithmetic circuits and datapaths.

Two flavors of these techniques dominate the field:
one, based on Gröbner basis polynomial reduction
[4][5][6][7][8][9][10]; and the other, based on algebraic
rewriting [11][12]. Although the technique based on al-
gebraic rewriting has been known for several years and
proved to be a leading method in arithmetic circuit ver-
ification, its theory has not been fully developed. The
goal of this paper is to advance the understanding of
the algebraic rewriting technique and compare it to an
established computer algebra method in order to better
explain its merit and efficiency. To this end, we offer a
new model, called bit-flow, which will be used to prove the
merits of the rewriting technique independently from the
computer algebra arguments. An open source framework
of algebraic rewriting integrated with ABC software [13]
is introduced.

The paper is organized as follows: Section II provides
the necessary mathematical background of the problem,
while Section III reviews prior work in this field. Section

IV describes details of the algebraic rewriting scheme and
compares it to the Gröbner basis polynomial reduction
technique. Section V offers a new insight into the arith-
metic circuit verification by introducing the bit-flow model.
This model provides the basis for the soundness and com-
pleteness of the rewriting scheme. Results and conclusions
are provided in Sections VI and VII, respectively.

II. THEORETICAL BACKGROUND

The arithmetic circuits considered in this work are cir-
cuits whose computation can be expressed as a polynomial
in the input variables. These include adders, subtractors,
multipliers and fused add-multiply circuits. The circuit is
modeled as a network of interconnected bit-level compo-
nents, each with a finite set of binary inputs and one or
more binary outputs. In this work we will focus on gate-
level integer arithmetic circuits with single-output logic
gates.

Each gate is modeled as a polynomial fi ∈ Z[X],
with variables xi ∈ X in Z2. Such polynomials are
often referred to as pseudo-Boolean polynomials, since
they are algebraic expressions with usual multiplication
and addition operators over Boolean variables. Formally, a
pseudo-Boolean polynomial is an integer-valued function
f : {0, 1}n → Z. The following equations summarize the
algebraic representation of the basic Boolean operators:

¬a = 1− a

a ∧ b = a · b
a ∨ b = a+ b− a · b

a⊕ b = a+ b− 2a · b

(1)

By construction, each expression evaluates to a binary
value {0,1} and hence correctly models the Boolean func-
tion of a logic gate. Models for more complex AOI (And-
Or-Invert) gates, used in standard cell technology, are read-
ily obtained from these basic logic expressions. For exam-
ple, the algebraic model for the logic gate g = a∨(b∧c) can
be derived as g = a+bc−abc, etc. Similarly, a 3-input OR
gate can be represented as z = a+b+c−ab−ac−bc+abc,
a 3-input XOR gate as z = a+b+c−2ab−2ac−2bc+4abc,
etc.

To systematically manipulate polynomials, a term order
“>” is imposed on monomials. Let f, g be polynomials,
and let lt(g) denote the leading term of polynomial g under
such ordering. If a non-zero term t of f is divisible by the
leading term of g, we say that f reduces to r modulo g,
denoted f

g−→ r, where r = f − t
lt(g) · g. Similarly, f can

2

be reduced w.r.t. a set of polynomials B = {f1, . . . , fs},
known as polynomial reduction modulo B. It is denoted
symbolically as f

B−→+ r, where r is a remainder (also
called normal form), such that no term in r is divisible
by the leading term of any polynomial in B. The sign +
refers to the fact that the reduction process is iterative,
using polynomials of B one by one.

Let B = {f1, ...fs} be a set of polynomials representing
circuit elements and let R be a polynomial ring, R = Z[X].
Then, J = 〈f1, ..., fs〉 with fi ∈ Z[X], called an ideal, is
the set of all polynomials generated by fi, defined as

J = 〈f1, ..., fs〉 = h1f1 + ...+ hsfs : hi ∈ R (2)

The polynomials f1, ..., fs are called the bases, or genera-
tors, of the ideal J . In our case, each generator is a poly-
nomial model of a circuit module, and the set of generators
can be viewed as the implementation of the circuit. Given
an ideal J , the set of all simultaneous solutions to a system
of equations f1(x1, ..., xn) = 0; ..., fs(x1, ..., xn) = 0 is
called variety, V (J). From the circuit perspective, a variety
contains all signal values of the circuit produced by any
set of primary inputs, over all possible input combinations.

The functional specification of the circuit is also defined
as a polynomial in Z[X]. For example, the specification of
a multiplier circuit R = A · B, can then be written as a
polynomial F = R−A·B in the input and output variables.
Here, A, B and R are symbolic, bit-vector variables, each
represented as a polynomial, e.g., A =

∑n−1
i=0 2iai, etc.

In the terms of computer algebra, the arithmetic cir-
cuit verification problem is then formulated as follows
[6][7][8][9]: Given a circuit represented by a set of gen-
erators (implementation), B = {f1, ..., fs}, and the spec-
ification F , the goal of functional verification is to prove
that the implementation (B) satisfies the specification (F).
This means that the solution to F = 0 agrees with V (J),
or, equivalently, that F vanishes on V (J)1. Consequently,
this problem has been modeled as an ideal membership
test, which decides whether polynomial F lies in the ideal
J generated by B, i.e., if F ∈ J [14][6][7].

Given an ideal J = 〈f1, ..., fs〉, to test if F ∈ J ,
polynomial F is divided sequentially by f1, ..., fs. The
goal is to cancel the leading term(s) of F using one of
the leading terms of f1, ..., fs. Such a reduction results in
a polynomial remainder r = F − lt(F)

lt(fi)
· fi, in which the

leading term lt(F) has been canceled. If the remainder
r = 0, the implementation satisfies the specification.
However, if r 6= 0, such a conclusion cannot be drawn:
r can still be in J but is not divisible by polynomials in
B = {f1, ..., fs}. That is, the basis B = {f1, ..., fs} may
not be sufficient to reduce F −→ 0, and yet the circuit may
be correct. To check if F is reducible to zero for the given
ideal J , one must compute a canonical set of generators,
G = {p1, ..., pt}, called the Gröbner basis, such that

1Polynomial f is said to vanish on a set V if ∀a ∈ V f(a) = 0.

〈p1, ..., pt〉 = 〈f1, ..., fs〉. The set G is the Gröbner basis
for ideal J iff ∀F ∈ J , F

G−→+ 0 [15]. In short, the
Gröbner basis is necessary to unequivocally answer the
question whether F ∈ J . A known algorithmic procedure
for computing a Gröbner basis is called Buchberger’s
algorithm [16]. Given some basis B = {f1, ..., fs}, it pro-
duces another basis G = {p1, ..., pt}, such that the ideals
〈p1, ..., pt〉 = 〈f1, ..., ft〉 and hence V (〈G〉) = V (〈B〉).
Buchberger’s algorithm is computationally expensive, as
it computes the so-called S-polynomials by performing
expensive reduction operations on all pairs of polynomials
in B. A number of algorithms have been developed for
computing a Gröbner basis, including F4 [17], but the
process, in general, remains computationally expensive.

III. RELATED WORK

The work in arithmetic circuit verification was pio-
neered by [4] and [5], where the concepts from computer
algebra and algebraic geometry were applied to model the
core verification problem. In [5] an arithmetic circuit is
modeled as a network of arithmetic operators, such as
half- and full-adders, comparators, and product genera-
tors, extracted from the gate-level implementation. These
operators are modeled using arithmetic bit-level (ABL)
expressions, B = {Bj}. The authors of [5] (and also [7])
show that for an arbitrary combinational circuit, if the terms
of the gate equations B are ordered in reverse topological
order {outputs} > {inputs}, then all leading monomials of
the polynomials in B are relatively prime. As a result,
the corresponding set B already constitutes a Gröbner
basis (GB), obviating the computation of the complete
canonical basis. The verification problem is solved by
reducing the specification modulo B to a normal form
and testing if it vanishes over Z2n . In [6], the solution
is restricted to binary variables by imposing Boolean
constraints, 〈x2 − x〉, and the problem is solved over
quotient ring Q = Z2n [X]/〈x2 − x〉 using a popular
computer algebra system, Singular [18]. This approach,
however, is limited to circuits composed entirely of half
adders and full adders that must first be extracted from
the gate-level implementation. In practice, this is the most
expensive part of the process, and is not always possible,
especially in highly bit-optimized implementations. In [7]
the verification problem was similarly formulated as an
ideal membership test but applied to Galois Field (GF or
F2q) arithmetic circuits. It has been shown that in GF,
when the specification F and the ideal J of the circuit
implementation are in F2q , the problem can be reduced to
testing if F ∈ (J+J0), over a larger ideal (J+J0) where
J0 = 〈x2 − x〉 is an ideal of vanishing polynomials in F2.
Adding J0 basically restricts the variety V to solutions in
F2, i.e. to V (J) ∩ V (J0) [19]. The polynomials of J0 are
later referred to as field polynomials. Similarly to [5], the
authors of [7] derive term ordering from the topological
structure of the circuit, which renders the set of polyno-
mials B (circuit implementation) a Gröbner basis, thus

3

obviating the need to perform the expensive GB computa-
tion. The method uses a customized, F4-style polynomial
reduction using a modified Gaussian elimination algorithm
[17] under this term order. A different approach has
been proposed in [12], whereby the expensive polynomial
reduction has been replaced by a computationally simpler
algebraic rewriting technique. The method introduces the
concept of an input signature, a polynomial in the primary
inputs, and an output signature, a polynomial that encodes
the result in terms of the primary outputs. The verification
is accomplished by rewriting the output signature, using
algebraic expressions of the internal gates, into an input
signature, which de facto performs function extraction.
Several ordering techniques have been described to make
this method applicable to large arithmetic circuits, but the
method still cannot handle heavily optimized circuits.

A similar approach to arithmetic circuit verification,
called backward construction, was proposed in 1995 in
[20]. It uses *BMDs to reconstruct functional, high level
representation from the gate-level structure of arithmetic
circuits such as adders and multipliers. Experimental re-
sults show that time complexity of the tested circuits is in
the order of n4 for multipliers with n bit operands. There is
no clear indication if the *BMD is an efficient datastructure
for this problem.

The basic approach of the ideal membership testing
and Gröbner basis (GB) reduction has also been used in
the works of [8][9], where it was applied to the integer
circuits. In [8] the following features have been added to
make the reduction more efficient: 1) Logic reduction with
an AND-XOR vanishing rule, which analyzes the structure
of the circuit to identify and remove vanishing monomials
that correspond to the product of XOR, AND signals
with shared input variables; 2) An XOR rewriting scheme,
which reduces the model of the circuit to consider only
primary inputs, outputs, and fan-out points/XOR gates;
and 3) Common rewriting, which eliminates the nodes
with a single parent. These techniques simplify the task
of GB reduction by making the polynomials depend on
shared variables, thus increasing the chance for early term
cancellation during the rewriting process.

The recent work revisits the techniques from [12] and
[8] and provides the proof of correctness for the underlying
approaches [9]. It uses a column-wise technique to model
and verify basic multiplier structures by computing the
Gröbner basis incrementally for each column of the output
bit, rather than for the entire circuit. The paper justifies
the use of the theory of ideal membership (in principle ap-
plicable to Q[X]) to prove properties of integer arithmetic
circuits. It points out that, since the leading coefficients
of the gate polynomials forming the Gröbner basis are
+1 or -1, polynomial reduction never introduces fractional
coefficients and their computation remains in Z. This also
explains ”why dedicated implementations in [12] and [8]
can rely on computation in Z only, while remaining sound
and complete” [9]. A follow-up paper, [10], describes an

enhancement to this column-wise technique by extracting
half- and full-adder constraints to further reduce the size
of Gröbner basis to speed up the computation.

In general, the problem of formally verifying complex
integer arithmetic circuits (not just multipliers) remains
open, and new solutions are being proposed. The remainder
of the paper provides a formal analysis of the state-of-the-
art approach in this domain based on an algebraic rewriting
and introduces a bit-flow model to support the proof of the
correctness of this approach.

IV. POLYNOMIAL REWRITING VS GRÖBNER BASIS
REDUCTION

In this section we analyze the relation between two
major techniques used in formal verification of integer
arithmetic circuits: algebraic rewriting of [12], and com-
puter algebra-based techniques of [6][8][9].

The function computed by an arithmetic circuit is rep-
resented as a specification polynomial in the primary input
variables, denoted Fspec. For example, the specification of
an n-bit unsigned integer multiplier, Z = A ·B with inputs
A = [a0, · · · , an−1] and B = [b0, · · · , bn−1], is described
by Fspec =

∑n−1
i=0

∑n−1
j=0 2i+jaibj . The result of the com-

putation, stored in the primary output bits, is also expressed
as a polynomial, called output signature, Sout. Typically,
such a polynomial is linear, uniquely determined by the m-
bit encoding of the output, provided by the designer. For
example, for a signed 2’s complement arithmetic circuit
with m output bits, Sout = −zm−12m−1 +

∑m−2
i=0 2izi.

The circuit is implemented as a network of logic gates
G, each modeled as a polynomial gi derived from Eqn.(1).
The polynomial representing a given gate evaluates to zero
for all the input and output combinations satisfied by this
gate.

The remainder of this section compares two types of
polynomial reduction: 1) based on Gröbner basis (GB)
reduction, and 2) based on algebraic rewriting. The results
demonstrate that, while both approaches have worst case
exponential complexity, the rewriting approach is more
efficient. This point will be illustrated with a (non-standard)
gate-level implementation of a full adder, shown in Fig. 1.

Fig. 1. Gate-level arithmetic circuit (Full Adder)

The following set of polynomials G = {fi} represents
the gate-level implementation of the circuit. We refer to
this set as G to indicate that it forms a Gröbner basis. The
terms of each polynomial are ordered such that the leading

4

term is the output of the gate, which automatically renders
them a Gröbner basis.

f1 = p1 − (−ab+ a+ b)

f2 = g1 − (−ab+ 1)

f3 = S1 − p1g1

f4 = C1 − (−g1 + 1)

f5 = p2 − (S1c0 − S1 − c0 + 1)

f6 = g2 − S1c0

f7 = S − (p2g2 − p2 − g2 ++1)

f8 = C − (−C1g2 + C1 + g2)

f9 = (a2 − a)

f10 = (b2 − b)

· · · · · ·
f17 = (g22 − g2)

(3)

Each gate polynomial satisfies the relation fi = 0. The
gate polynomials, f1, ..., f8 , have the form fi = vi −
tail(fi), where the leading term lt(fi) = vi is the output
of gate fi, and tail(fi) is the logic specification of the
gate in terms of its inputs. The leading terms under such
ordering are relatively prime, which renders G a Gröbner
basis [6][7][9]. This feature is essential for both the GB
reduction and the rewriting technique.

The last group of polynomials, f9, ..., f17, represents
field polynomials J0 =< x2 − x >, where x is one of
the signals {a, b, c0, p1, g1, S1, C1, p2, g2}. They play an
important role in the reduction process, which is handled
differently in the GB reduction than in the algebraic
rewriting approach.

A. Gröbner Basis Polynomial Reduction

In this method the reduction of F modulo G is ac-
complished by successively eliminating terms of F , one
by one, by a leading term of some polynomial fi ∈ G,
using Gaussian elimination. The reduction is performed
over a Gröbner basis derived from G and field polynomials
J0. From the mathematical point of view, this means that
the computation will be performed in the quotient ring,
Z[X]/〈x2 − x〉 : x ∈ X , the set of all variables (signals)
of the circuit.

The GB reduction algorithm is given in Algorithm 1.
First, the polynomial base G={f1, ..., fm} is derived from
N using Equations (1), where m is the number of logic
components in N . All the variables in the circuit are
ordered in reverse-topological order, from primary outputs
to primary inputs, and for each gate polynomial from the
gate outputs to its inputs. Furthermore, output signals of
gates that depend on common variables (fanins) should
be ordered next to each other, as this will maximize the
chance for potential term cancellation and minimize the
size of intermediate polynomials. For example, consider

the reduction of a polynomial F = 2C + S + in a
circuit containing a half adder composed of an AND gate
C = ab and an XOR gate S = a+ b− 2ab. Since both C
and S depend on common variables, a, b, reducing them
one immediately after the other will eliminate the product
term ab from the polynomial, resulting in F = a+b+
This is beneficial before continuing with the reduction of
the remaining terms of the polynomial.

Considering these two basic ordering rules, one possible
term order for the polynomial ring of the circuit in Figure
1 is shown below, where variables in curly brackets can
assume any relative order.

{S,C} > {p2, g2} > {S1, C1} > {p1, g1} > {a, b, c0}
(4)

The expression F to be reduced is initialized with the
difference between the output signature Sout and Fspec.

Algorithm 1 Gröebner Basis Polynomial Reduction
Input: Specification polynomial Fspec;and Gate-level netlist N
Output: Remainder Rem

1: Create base G={f1,...,fm} of N using Eq.(1)
2: Generate Sout from N
3: Define ring and specify term order
4: Initialize F ← Sout − Fspec

5: while F 6= 0 do
6: if ∃fi ∈ G :

lt(F)
lt(fi)

6= 0 then
7: /* there exists fi such that its leading term is divisible by lt(F) */
8: F ← F − lt(F)

lt(fi)
· fi // polynomial division

9: else
10: /* no leading term of fi divides F , move lt(F) to Rem */
11: F ← F − lt(F)
12: Rem← Rem + lt(F)
13: end if
14: Maintain the term order imposed on the ring
15: end while
16: return Rem

The main part of the GB reduction is given in lines
5-15. The algorithm searches for a polynomial fi in G
such that the leading term of fi divides the current leading
term lt(F) of F . If such a polynomial exists, it will be
used to reduce F , as shown in line 8. Otherwise, the lt(F)
will be moved to the remainder Rem (lines 11 − 12). At
any point, when new terms (with intermediate variables)
are added to polynomial F (line 8), the procedure must
maintain the term order imposed on the ring. The reduction
process terminates when F becomes empty, either by
being reduced or moved to Rem. The zero remainder is
the evidence of a correct implementation, as discussed in
Section III.

We illustrate the GB reduction process with the example
in Fig. 1. The initial polynomial for this circuit is:

F = 2C + S − (a+ b+ c0)

Equation (5) gives a sequence of steps that reduces
F with the gate polynomials fi ∈ G for the circuit
in Figure 1. At each step, F represents the polynomial
reduced by the previous reduction step. For brevity, the
substitution is shown for a pair of variables at once. For
example, F/(C, S) means reducing variables C and S with

5

F = 2C + S − (a+ b+ c0)

1) F/(S , C) = 2(−C1g2 + g2 + C1) + (p2g2 − p2 − g2 + 1)− (a+ b+ c0)

= p2g2 − p2 − 2g2C1 + g2 + 2C1 − (a+ b+ c0) + 1

2) F/(p2, g2) = (S1c0 − S1 − c0 + 1)S1c0 − (S1c0 − S1 − c0 + 1)− 2S1C1c0 + S1c0 + 2C1 − (a+ b+ c0) + 1

= S2
1c

2
0 − S2

1c0 − S1c
2
0 + S1c0 − 2S1C1c0 + S1 + 2C1 − (a+ b)

3) F/(S2
1 − S1) = −2S1C1c0 + S1 + 2C1 − (a+ b)

4) F/(S1, C1) = −2(p1g1)(−g1 + 1)c0 + p1g1 + 2(−g1 + 1)− (a+ b)

= −2(−p1g
2
1 + p1g1)c0 + p1g1 − 2g1 − (a+ b) + 2

5) F/(g21 − g1) = p1g1 − 2g1 − (a+ b) + 2

6) F/(p1, g1) = (−ab+ a+ b)(−ab+ 1)− 2(−ab+ 1)− (a+ b) + 2

= a2b2 − a2b− ab2 + ab

7) F/(a2 − a) = 0

(5)

polynomials f8, f7. The term order imposed on the ring,
cf. Eqn. (4), is maintained throughout the entire reduction
process.

The effect of field polynomials J0 =< x2 − x >,
responsible for keeping each variable Boolean, can be
observed during the steps 2, 4 and 6, shown in bold.
The result of the reduction is Rem = 0, indicating
that the circuit implements the function indicated by the
specification, a full adder.

B. Algebraic Rewriting

Algebraic rewriting is the process of transforming the
output signature Sout into an input signature Sin using
algebraic models of the internal components (logic gates)
of the circuit. The rewriting is done in reverse topological
order: from the primary outputs (PO) to the primary inputs
(PI); for this reason it is also referred to as a backward
rewriting [12]. Intermediate expressions obtained during
rewriting are also represented as polynomials, referred to
as signatures, over the variables representing the internal
signals of the circuit. By construction, each variable in a
given signature (starting with Sout) represents an output
of some logic gate. The rewriting transformation simply
replaces that variable with the algebraic expression of the
logic gate. If the variable is part of a monomial involving
other variables, the expression is multiplied by the remain-
ing terms and expanded to a disjunctive normal form. This
is followed by a standard polynomial simplification by
combining terms with same monomials.

The Algebraic Rewriting procedure is summarized in
Algorithm 2. First, the polynomial base G={f1,...,fm} is
derived fromN using Eq.(1), as in the GB reduction. Then,
the polynomials in G are sorted in reverse-topological or-
der (lines 1-2). Among several possible topological orders
the one that maximizes the number of early cancellations
during rewriting is sought. This has an effect of minimizing
the size of the intermediate polynomials during rewriting
(the ”fat belly” effect) [12]. This is accomplished by
keeping together the polynomials whose leading terms
(gate outputs) depend on common variables, as in the GB

reduction. The expression to be rewritten, Sig, is initialized
with the given output signature Sout of N (lines 3-4).

Algorithm 2 Algebraic Rewriting
Input: Specification polynomial Fspec; and Gate-level netlist N
Output: (Sin == Fspec), or the computed signature Sin

1: Derive G={f1,...,fm} from N using Eq.(1)
2: Sort G to maximize the cancellations // pre-processing
3: Generate Sout from N
4: Initialize Sig ← Sout

5: for fi in G do
6: v ← lm(fi) // leading monomial of fi is output of a gate
7: if v ∈ Sig then
8: /* replace v with tail(fi) in Sig */
9: Sig ← Sig(v ← tail(fi))

10: x← x2 // for all x in Sig
11: end if
12: end for
13: /* upon termination, Sig is composed of PIs only */
14: if Sig == Fspec return True
15: else return Sin = Sig

The main part of the rewriting, lines 5-12, iterates
over the polynomials fi ∈ G and performs the required
substitutions. Specifically, all occurrences of v = lt(fi)
in Sig are replaced by tail(fi), followed by possible
expansion of the resulting term. To maintain Boolean value
of the variables the degree of each variable in Sig is
reduced to 1 (line 10) during rewriting. At the end, the
algorithm returns Sin = Sig as the derived signature of
the circuit. If the terms of polynomials in G are sorted in
a reversed topological order, the returned polynomial Sin

contains only the primary input (PI) variables, so it can
be compared with Fspec. Detailed proofs of soundness and
completeness of the rewriting method are given in Section
V.

While the main goal of algebraic rewriting, as described
by Algorithm 2, is to determine the arithmetic function
implemented by the circuit, it can also be used to verify it
against the known specification. This can be simply done
by rewriting F = Sout−Fspec and checking if it produces
zero. We will use this rewriting mode in order to compare
it against the GB reduction method in Section IV-A.

We illustrate the rewriting process using the example
of the gate-level full-adder circuit in Figure 1. The output

6

F = 2C + S − (a+ b+ c0)

1) F/(S, C) = 2(C1 + g2 − C1g2) + (1− (p2 + g2 − p2g2))− (a+ b+ c0)

= 2C1 + g2 − 2C1g2 − p2 + p2g2 + 1− (a+ b+ c0)

2) F/(p2, g2) = 2C1 + S1c0 − 2S1C1c0 − (1− (S1 + c0 − S1c0)) + (1− (S1 + c0 − S1c0))S1c0 + 1− (a+ b+ c0)

= 2C1 − 2S1C1c0 + S1 + S1c0 − S2
1c0 − S1c

2
0 + S2

1c
2
0 − (a+ b)

= 2C1 − 2S1C1 + S1 − (a+ b)

3) F/(S1, C1) = 2(1− g1)− 2(1− g1)(p1g1)c0 + p1g1 − (a+ b)

= 2− 2g1 − 2(p1g1 − p1g
2
1) + p1g1 − (a+ b)

= 2− 2g1 + p1g1 − (a+ b)

4) F/(p1, g1) = 2− 2(1− ab) + (a+ b− ab)(1− ab)− (a+ b)

= ab− a2b− ab2 + a2b2 = 0

(6)

signature of the circuit is Sout = 2C + S, determined by
the binary encoding of the output, and the specification
Fspec = a + b + c0. Following the ordering rules de-
scribed in [12], the best rewriting order which minimizes
the size of intermediate polynomials is {(S,C), (p2, g2),
(S1, C1), (p1, g1)}, as in the GB reduction. The signals
shown in brackets can be rewritten in any order as they
are the ones that depend on common inputs. Equation (6)
shows the rewriting steps for the circuit. The terms shown
in bold face indicate those that are reduced to zero during
polynomial simplification. For brevity, the substitution is
shown for each pair of variables applied at once. For
example: F/(C, S) means rewriting of F using C and S
variables of polynomials f8, f7. During the rewriting, two
types of simplifications can be observed:

• Simplification of the terms with same monomials; for
example, 2g2− g2 = g2, in Step 1. This is a common
simplification applied in GB reduction as well.

• Lowering the term x2 to x, since the signal variables
are binary. This can be seen in Steps 2, 3, and 4,
shown in bold face. For example, in step 2 we have:
S1c0 − S2

1c0 − S1c
2
0 + S2

1c
2
0 = S1c0 − S1c0 − S1c0 +

S1c0 = 0. Similarly, in step 3: (p1g1−p1g21) = p1g1−
p1g1 = 0, etc. This simplification is simpler and can
be executed faster than dividing the polynomials by
the respective field polynomials (x2 − x), as it is
done in computer algebra approach. This is one of
the main reasons for greater efficiency of the algebraic
rewriting compared to GB reduction.

Subsequently, the final result reduces F = Sout−Fspec to
zero, indicating that the circuit correctly implements a full
adder.

It should be noted that in addition to the two basic
simplification rules mentioned above (rewriting the gates
with common inputs, and the x2 → x reduction), some
more sophisticated simplifications can be applied to the
running polynomial Sig during rewriting by analyzing the
structure of the gate-level network. For example, recog-
nizing that some signal g is a product of XOR and AND
signals with the same fanin inputs will allow it to reduce

signal g to zero. This simplification, called an XOR-AND
vanishing rule has been used by [8], but for clarity of the
above illustration, it has not been taken here into account.

C. AIG Rewriting

The algebraic rewriting technique described in the
previous section can be further improved by performing
rewriting using the functional AIG (Add-Inverter Graph)
representation of the circuit instead of its gate level struc-
ture. This section provides a brief overview how this is
accomplished, with details provided in [21].

AIG (And-Inverter Graph) is a combinational Boolean
network composed of two-input AND gates and inverters
[13]. Each internal node of the AIG represents a two-
input AND function; the graph edges are labeled to in-
dicate a possible inversion of the signal. We use the cut-
enumeration approach of ABC [13] to detect XOR and
Majority (MAJ) functions with a common set of variables;
they are essential components of adder trees that are
present in most arithmetic circuits in some form [21]. After
detecting the XOR and MAJ components of the adder’s
AIG, rewriting skips over the detected adders, significantly
speeding up the rewriting process. Figure 2 illustrates the
process for the full adder (FA) circuit from Figure 1.
In Figure 2 the groups of nodes (6,7,8) and (9,11,12)
correspond to half adders (HA). The functions rooted at
nodes 6 and 9 are majority (AND) functions, and those at
nodes 12 and 8 are XORs. Subsequently, the functions at
node 12 (S) and node 10 (C) are identified as XOR3 and
MAJ3, respectively, on the shared inputs, a, b, c0.

The AIG rewriting of Sout = 2C+S over the extracted
XOR3 and MAJ3 nodes is trivial, with the nonlinear
monomials automatically cancelled as follows:

2C + S = 2(ab+ ac0 + bc0 − 2abc0)

+(a+ b+ co − 2ab− 2ac0 − 2bc0 + 4abc0) = a+ b+ co

The resulting signature matches the specification, which
clearly indicates that the circuit is a full adder. As illus-
trated with this example, the AIG rewriting requires con-
siderably fewer terms than the standard algebraic rewriting.

7

Fig. 2. AIG rewriting of a full adder circuit from Figure 1.

Data structure: AIG rewriting is implemented in ABC
with the polynomial data structure, type Pln_Man_t.
Its main components include: 1) the AIG manager
(Gia_Man) that represents the input design; and 2) two
vector hash tables using type Hsh_VecMan_t are used
for storing the constants and monomials. The hash tables
of monomials include coefficient vectors and monomial
vectors. When substitution is applied to the leading term,
new monomials will be created and the substituted one will
be removed. For example, when ab+ c+ bd is substituted
by a = b + d, the monomial ab is removed first, and b
and bd are added to Pln_Man_t. During the process of
adding the new monomials, the program will first check if
these monomials already exist in Pln_Man_t; in this case
only the coefficient of these monomials will be changed
accordingly. In this example, two new monomials are
generated by the substitution, namely b2, reduced to b,
and bd. Since bd already exists, the coefficient 1 of bd
is replaced by 2, resulting in b+ c+ 2bd.

D. Comparison between the two Methods

It should be clear from the above discussion that both
methods, the GB reduction and algebraic rewriting, are
equivalent in the sense that they both perform polynomial
reduction. The GB reduction scheme achieves polynomial
reduction by division (Gaussian elimination), while alge-
braic rewriting does it by substituting the gate output vari-
able by the polynomial expression of the gate’s function.

While the goal of GB reduction scheme is to reduce
F = Sout − Fspec modulo G to 0, it can also be used to
extract the arithmetic function by reducing Sout modulo
G, and interpret the result as the circuit’s functional spec-
ification Fspec. In the algebraic rewriting scheme, the goal
is to rewrite the Sout to Sin, the expression in the primary
inputs, and check if it matches the expected specification
Fspec. If Sin = Fspec, the circuit is correct; otherwise
it is faulty. Alternatively, as illustrated above, algebraic
rewriting can be also applied to F = Sout − Fspec, as
in the GB approach.

Variable substitution of algebraic rewriting (line 9 of
Algorithm 2) seems simpler than the main step of polyno-
mial division of the GB reduction (line 8 of Algorithm 1).
On the other hand, it requires additional multiplication of
the terms and expansion into a sum of products. Hence,
complexity of these steps are comparable. Both methods
avoid explicit computation of Gröbner basis, but achieve
it by different means. In the GB reduction it is done by
setting the variable order in the ring so that all variables are
in reverse topological order to make the implementation set
G a Gröbner basis. In the algebraic rewriting scheme on the
other hand, the polynomials fi ∈ G are sorted in reverse
topological order to effect the rewriting. As a result, both
methods ensure the polynomial base to be a Gröbner basis.
However, there are some essential differences between the
two methods that affect their efficiency.

• The GB reduction scheme requires the field polynomi-
als J0 =< x2−x > to be added to the base G in order
to keep the variables Boolean. This increases the size
of the Gröbner basis and results in a larger search
space in each iteration. Whereas in the rewriting
scheme, the reduction by < x2 − x > is solved in
a simpler way by lowering x2 to x via a simple data
structure (line 10 in Algorithm 2).

• In the algebraic rewriting scheme, the gate polynomi-
als fi ∈ G are ordered in topological order (line 5 in
Algorithm 2) so that each gate polynomial fi is used
exactly once. The selected polynomial is used to per-
form the rewriting by a simple string substitution and
is never needed again. In contrast, in each iteration of
the GB reduction one has to search for a polynomial
fi that divides the leading term of F under reduction.
While in principle the GB reduction can also work
over an ordered list of gate polynomials, this does not
apply to the field polynomials < x2−x >, needed for
the reduction. Since the appearance of intermediate
signals in nonlinear terms xk is unpredictable, it is
impossible to pre-order the list of field polynomials
in GB reduction.

V. THE BIT-FLOW MODEL

This section offers a new insight into an arithmetic
circuit verification problem, in which the computation
performed by the circuit is treated as the flow of digital
data. The goal here is not to introduce any new algorithm,
but to suggest an interpretation how the computation
propagates in an arithmetic circuit. This interpretation will
then provide an argument for soundness and completeness
of the algebraic rewriting method, independently from the
computer algebra arguments.

The circuit is modeled as an acyclic network of logic
and/or arithmetic components connected via electrical sig-
nals or wires. Mathematically, the signals are represented
as variables, denoted X; they include the internal signals,
the primary inputs (PI), and the primary outputs (PO). The

8

terms signals and variables will be used interchangeably,
depending on the context (structural vs. functional view of
the circuit). Each component of the circuit is described by
its characteristic function, a pseudo-Boolean polynomial
function relating the component’s inputs to its outputs.
The characteristic functions of Boolean logic gates are
provided by Equation 1. For example, the characteristic
function of an OR gate z = a ∨ b is z = a + b − ab.
Similarly, the characteristic function of a half adder (HA)
is 2C + S = a+ b, etc.

The generic term flow is intuitively understood as a
movement of some physical entity (such as current or
fluid) through the network. Here, it is a movement of
digital data (voltages evaluated as 0 or 1) whose capacity
is measured in bits, where each bit contributes one unit of
flow to its value. The flow starts at the primary inputs
and propagates towards the primary outputs, distributed
internally according to the characteristic functions of the
circuit components. For example, a full adder accepts an
in-flow of three bits, a, b, c and ”distributes” this flow
to the outputs according to its characteristic function:
a+ b+ c = 2C + S. The coefficient associated with each
variable represents its ”capacity”, the maximum value of
the flow that can pass through the corresponding signal. In
a half-adder or a full-adder, the weight of each input bit
is 1, and the weight of the output bits C and S are 2 and
1, respectively. For a logic gate, the inputs and the output
bits have a weight of 1 each.

The idea of using the flow conservation law to verify
arithmetic circuits has already been proposed in [11]. How-
ever, it is applicable only to arithmetic circuits composed
of half- and full-adders, where the circuit elements and the
specification are modeled as linear expressions. Here, we
extend this idea to an arbitrary integer arithmetic circuit
which computes an arithmetic function as a polynomial.

The value of the flow in the circuit is captured by
the polynomials (signatures) generated during the algebraic
rewriting. Equations (5) and (6) are examples of such
polynomials. The value of the flow at the primary inputs
is represented by the specification polynomial Fspec, while
the value of the flow at the primary outputs is represented
by the output signature Sout. The value of the flow at an
arbitrary cut of the circuit (defined below) is represented
by a polynomial in terms of the variables associated with
the respective signals of the circuit. It can be computed
from the polynomial generated at each step of the algebraic
rewriting. We shall show that the value of the flow in
an arithmetic circuit represented by such polynomials is
invariant throughout the circuit.

In principle, the circuit can be composed of arbitrary
components, with single-output logic gates as well as
multiple-output arithmetic modules, such as half- and full-
adders; or any module for which the I/O relationship can
be defined as a polynomial. Here we limit our attention
to gate-level arithmetic circuits with single-output logic

gates. In the remainder of this section, any reference to
polynomials Si, Sin, Sout or Fspec assumes that they are
reduced over the field polynomials < x2 − x >, which
is implicitly achieved by replacing x2 with x during the
algebraic rewriting (refer to Section IV-B). It should be
clear that the value of the flow is not affected by this
transformation or by any simplification which removes the
terms that evaluate to zero, since it does not change the
value of the polynomial.

Consider a polynomial Pi generated at step i of the
algebraic rewriting process. It can be observed that the
variables Xi that are in the support set of Pi correspond
to a cut in the circuit. Using network flow terminology,
the cut is a set of signals that partitions the circuit into
two subsets: one containing the gates whose inputs are
transitively connected to the primary inputs PI , and the
other containing the gates whose outputs are transitively
connected to the primary outputs PO. This separation is
an inherent property of backward rewriting: starting with
the output signature polynomial Pi = Sout, a variable
xk ∈ Xi of Pi that represents an output of some gate
gk is replaced by the polynomial in its inputs. From the
structural viewpoint, this moves the cut from the gate
output to its inputs. From this perspective, the polynomial
Pi can also be viewed as the signature of the cut Ci,
denoted Si.

Polynomial expressions in Eq. (5) and (6) are examples
of cut signatures for the full adder circuit of Figure 1. The
input and output signatures, Sin and Sout defined earlier,
are the signatures of the boundary cuts, associated with the
primary inputs PI and primary outputs PO, respectively.
The following example illustrates the relationship between
the polynomial and cut rewriting.

Fig. 3. Cut rewriting in a full-adder circuit.

Example 1: Figure 3 shows a full adder
circuit (FA) with a set of cuts. The signatures
{Sout, S4, S3, S2, S1, Sin}, associated with cuts
{Cut5,, Cut0}, are given in Eq. 7. They are
obtained by successively rewriting the output signature
Sout = 2C + S of Cut5 through the circuit. Specifically,
the signature Sout is transformed into signature S4 of
Cut4 by replacing variable C with the expression of
the OR gate, C = g + t − gt, resulting in the signature
S4 = 2(g+ t− gt)+S. This signature is then transformed
into S3 by rewriting across the AND gate, t = cp,
etc., until it reaches the primary inputs. The following

9

signatures are obtained by successive rewriting of the
circuit, in the order consistent with the ordering rules
discussed in Section IV. Furthermore, the expression for
S3 is reduced here by applying XOR-AND simplification
rule of [8], namely pg = 0.

Sout = 2C + S

S4 = 2(g + t− gt) + S

S3 = 2(cp+ g − cpg) + S

= 2(cp+ g) + S

S2 = c+ p+ 2g

S1 = c+ p+ 2ab

Sin = c+ a+ b

(7)

Note that, in contrast to the network flow model of [11],
the signature Si of some cut Ci is not a linear combination
of its signals Xi, but in general a nonlinear polynomial Si

in variables X .

We now introduce the notion of the flow value, a
measure of the capacity of the bit-flow across a cut.
Definition 1: The value of a cut Ci with signature Si for a
given assignment of variables Xi is an integer value of its
signature Si evaluated at Xi. It is denoted as V (Si)(Xi).

One should keep in mind that the values of variables
Xi of a cut cannot be arbitrary but can assume only those
values that can be derived from the bit values of PI . To
this effect, we introduce the following definition.

Definition 2: The assignment of variables in Xi is called
legal, denoted by [Xi], if it is derived from an assignment
of the primary inputs, XPI . In this case we say that [Xi]
is compatible with XPI .

With this we will use the notation V (Si)[Xi] to denote
the value of the cut only for legal assignment of Xi.
We can then say that two assignments, [Xi], [Xj], are
compatible if they are both derived from the same values
XPI .

The reason for introducing the concept of legality is
that one can only reason about the flow through the
cuts for only those values of signals that are actually
generated by the circuit. Example 2: Table I shows the
flow values for the FA circuit in Figure 6 at each cut for
all possible PI assignments. These values are obtained by
simply substituting given values of [Xi] into the expression
of Si.

An important observation is that, for a given assignment
of XPI , the values of all cuts (and of their signatures) are
invariant.

Definition 3: Two cuts, Ci, Cj , with signatures Si, Sj ,
are congruent, denoted Ci

∼= Cj , if for every pair of
compatible assignments, [Xi], [Xj], their values are the
same, i.e., V (Si)[Xi] = V (Sj)[Xj]. In this case, we
also say that the corresponding signatures are congruent,
denoted Si

∼= Sj .

TABLE I
FLOW VALUES OF CUTS IN THE CORRECT CIRCUIT.

S5 = Sout = 2C + S; S0 = Sin = a+ b+ c = Fspec

PIs Intermediate POs Flow value V (Si) at Cuti
c a b p g t C S S5 S4 S3 S2 S1 S0 Fspec

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 0 0 0 1 1 1 1 1 1 1 1
0 1 1 0 1 0 1 0 2 2 2 2 2 2 2
1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 2 2 2 2 2 2 2
1 1 0 1 0 1 1 0 2 2 2 2 2 2 2
1 1 1 0 1 0 1 1 3 3 3 3 3 3 3

Theorem 1: Given a pair of cuts Ci, Cj , such that Ci is
transformed into Cj or, equivalently, Si rewritten into Sj

by algebraic rewriting, the two cuts are congruent. That is
Si −→ Sj =⇒ Si

∼= Sj .

Proof. A cut Ci(Xi) can be transformed into another cut
Cj(Xj) by a series of algebraic rewriting transformations
over logic gates, each described by some polynomial
g = v − tail(g). During rewriting, every occurrence of
variable v in the source cut (initially Ci) is replaced by
tail(g) in the target cut (finally Cj). Since polynomial g
satisfies the relation g = v − tail(g) = 0, provided by
Eq. (1), then v = tail(g). Consequently, V (Si) = V (Sj)
for all values of variables v and those in tail(g) that
satisfy this relation. Hence, V (Si)[Xi] = V (Sj)[Xj] for all
compatible assignments [Xi], [Xj], and thus by Definition
6 they are congruent, Si

∼= Sj .

Example 3: Theorem 1 states an important property of bit-
flow conservation across the cuts in an arithmetic circuit.
Table I gives the values of individual cuts for the full-adder
circuit in Figure 3. As we can see, the signature value
of each cut in the original (correct) circuit, including the
inputs and output signatures are the same for all primary
input assignments.

Notice that two cuts may be congruent even if one
cannot be obtained from the other by rewriting. For ex-
ample, in Figure 3, Cut3 = {S, c, p, g} and cut {p, c, t, g}
(crossing each other, not shown in the figure) cannot be
derived from each other since there are no gates that can
transform one into another; yet, they are also congruent
since each can be derived by a rewriting of Sout, albeit
through a different set of gates. To that effect, we have the
following Corollary:

Corollary 1: All cuts in the circuit are mutually congruent.
In particular, Sout

∼= Sin.

Proof. By Theorem 1, any cut Ci in the circuit is congruent
with the cut at the primary outputs, PO, because it
can be obtained by backward rewriting from PO. Any
other cut, Cj , is also congruent to PO. That is, by
definition of congruence, V (Si)[Xi] = V (SPO)[XPO] and
V (Sj)[Xj] = V (SPO)[XPO], and hence Si

∼= Sj , for any
cuts Ci, Cj , including Sin and Sout. As a result, all the
cuts are congruent and form an equivalence class.

10

Corollary 1 basically states that the value of the flow
measured at any cut in the circuit is constant throughout
the circuit.

We now need to discuss how to distinguish a circuit
that is functionally correct from the circuit that is faulty.
The circuit is said to be functionally correct if its im-
plementation satisfies the specification; or, equivalently,
that the values computed by the circuit are the same as
those provided by the specification for all possible input
assignments. Using the terminology of algebraic rewriting
we can formalize this definition as follows:

Definition 4: The circuit is functionally correct, if for
each primary input assignment, XPI , the result en-
coded in the primary outputs XPO satisfies the condition
V (Sout)[XPO] = V (Fspec)[XPI].

The following theorem specifies the sufficient and nec-
essary condition for the functional correctness of a circuit.

Theorem 2: The circuit is functionally correct if and only
if the input signature, Sin, computed by algebraic rewriting
of the output signature, Sout, is the same as the functional
specification, i.e., if Sin = Fspec.

Proof. The if part (soundness): let Sin = Fspec, which im-
plies that V (Sin) = V (Fspec) for all possible primary in-
put assignments, XPI . Since, by Corollary 1, Sin

∼= Sout,
i.e., V (Sin) = V (Sout), we have V (Sout) = V (Fspec)
for all possible values of XPI . That is, the circuit is
functionally correct.

The only if part (completeness): Let the circuit be func-
tionally correct, i.e., V (Sout) = V (Fspec) for all values of
XPI . Since Sout

∼= Sin, we have V (Sin) = V (Fspec)
for all the assignment of inputs XPI . This in turn implies
that Sin = Fspec. Furthermore, the rewriting procedure
always terminates: the circuit as a DAG has no loops and
the number of rewriting steps is equal to the number of
gates. Hence, the method is also complete.

It should be emphasized that the above argument is only
valid for pseudo-Boolean polynomials, reduced over field
polynomials J0. It is known that such polynomials have
unique polynomial representation, so that two polynomials
will evaluate to the same value only if they are the same.

Example 4: To illustrate the case of a faulty circuit, where
Sin 6= Fspec, consider again the full adder example in
Figure 3 in which the AND gate g = ab has been replaced
with an OR gate, g = a+b−ab. This causes the signatures
of the cuts to change, as follows (note that in this circuit

the AND-XOR simplification pg = 0 does not apply):

Sout = 2C + S

S4 = 2(g + t− gt) + S

S3 = 2(cp+ g − cpg) + S

S2 = c+ p+ 2g − 2cpg

S1 = c+ p+ 2(a+ b− ab)− 2cp(a+ b− ab)

Sin = c+ 3(a+ b)− 4ab− 2c(a+ b− 2ab)

(8)

The input signature obtained by this rewriting is now:
Sin = c+ 3(a+ b)− 4ab− 2c(a+ b− 2ab), which does
not match the circuit specification, Fspec = a + b + c.
The flow values for each cut, for each assignment XPI ,
are shown in Table II. The table confirms that all the cuts
{S5, S4, S3, S2, S1, S0} are congruent; and the flow value
at any of the cuts, according to Theorem 1, is constant
for any PI assignment. However, the flow value for some
assignments of XPI is different than in the correct circuit
(shown in the column Fspec), proving that the circuit is
faulty.

TABLE II
FLOW VALUES IN FAULTY CIRCUIT (GATE AND OF g REPLACED BY

OR); S5 = Sout = 2C + S; S0 = Sin 6= Fspec

PIs Intermediate POs Flow value V (Si) at Cuti
c a b p g t C S S5 S4 S3 S2 S1 S0 Fspec

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 1 3 3 3 3 3 3 1
0 1 0 1 1 0 1 1 3 3 3 3 3 3 1
0 1 1 0 1 0 1 0 2 2 2 2 2 2 2
1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 0 2 2 2 2 2 2 2
1 1 0 1 1 1 1 0 2 2 2 2 2 2 2
1 1 1 0 1 0 1 1 3 3 3 3 3 3 3

In summary, in the circuit that computes a polynomial,
the value of the flow from PI to PO is constant throughout
the entire circuit. In the functionally correct circuit the
value of the flow equals that of Fspec; in a faulty circuit
the flow value is different than that of Fspec, while all the
cuts remain congruent.

If the circuit is correct, Sin will match the specification,
Fspec; otherwise, the algorithm will report the circuit as
faulty and will return the computed signature Sin.

VI. RESULTS

Our algebraic rewriting algorithm has been imple-
mented in C and integrated with the ABC tool [13], where
it is performed over the AIG datastructure. We developed
an open source framework of Algebraic RewriTing (ARTi)
system for arithmetic circuit verification using ABC [13]
as back-end2, for open access and reproducibility.

The experiments were conducted on benchmarks re-
leased in [9][10]3. For fair comparison, we recompiled their
C code on our platform and evaluated it with Singular
v4.1.1 [18]. The experiments were conducted on a PC
with Intel(R) Xeon CPU E5-2420 2.20 GHz x24 with 1

2Source and demos: https://github.com/ycunxi/abc
3http://fmv.jku.at/algeq/

11

TB memory. The memory out (MO) limit is 100 GB and
timeout (TO) limit is 3600 seconds. Singular reports error
state (ES) if the circuit contains more than 32,767 ring
variables.

The verification results for multipliers without synthesis
and technology mapping are included in Table III, and
those with mapping are given in Table IV . The results
in column ARTi are generated for three types of circuits,
btor, sp-ar-rc, and multipliers generated by abc, using the
following sets of commands for:

a) read btorXX.aig; &get; &polyn -v;

b) read sp-ar-rcXX.aig; &get; &atree; &polyn -v;

c) gen -N XXX -m abcXXX.blif; &get; &polyn -v;

The command &polyn includes various rewriting options,
such as using the structural gate-level netlist, AIG datas-
tructure, signed or unsigned circuits, verbosity level (-v),
automatic vs manual specification of the output signa-
ture, and more. Details are available from the ABC tool,
command &polyn − help. Extraction of the adder tree is
invoked by the command &atree.

TABLE III
CPU VERIFICATION TIME (IN SECONDS) FOR MULTIPLIERS PRIOR TO

SYNTHESIS. ES = ERROR STATE REPORTED BY SINGULAR.

Design ARTi [9] [10]
btor-16 0.01 0.5 0.01
btor-32 0.02 11.7 0.3
btor-64 0.1 725 4.0
btor-128 0.5 ES ES
sp-ar-rc16 0.01 1.1 0.01
sp-ar-rc32 0.1 35.5 0.3
sp-ar-rc64 0.4 1312 4.6
sp-ar-rc128 1.6 ES ES
abc-256 0.7 ES ES
abc-512 3.7 ES ES

Table IV shows the verification results for multipliers
mapped onto standard cells with three different libraries,
including simple two-input gates and industrial libraries of
14 nm and 7 nm nodes. The table also compares the results
with the open source tools of [9][10]. The first group of
four designs in the table are the synthesized circuits without
technology mapping. The three circuits in the second group
are synthesized and mapped onto a simple library of two-
input gates. The last group of four circuits contains designs
that were synthesized and mapped onto industrial libraries.
For these circuits we executed several iterations of dch and
strash commands before applying ARTi to eliminate extra
logic introduced for meeting timing constraints. As can be
seen from the tables, our algebraic rewriting is significantly
more efficient than those using computer algebra, GB-
reduction based approach.

We were unable to directly compare our results with
those of [20] for the lack of benchmarks and access to their
code. This paper, dating 1995, reports that a 64-bit gate-
level multiplier can be verified by reconstructing it into a
*BMD in 3-6 hours on a SPARCstation 10/51, which is an
impressive result for the time. Our attempts to represent

TABLE IV
CPU VERIFICATION TIME (IN SECONDS) OF SYNTHESIZED AND

TECHNOLOGY MAPPED MULTIPLIERS USING DIFFERENT LIBRARIES.
#GT = NUMBER OF GATE TYPES. FI≥5 = NUMBER OF GATES WITH

FANIN≥5.

Designs ARTi #GT FI≥5 [9] [10]
btor64-resyn3-nomap 0.1 - - 711 4.2
abc64-resyn3-nomap 0.1 - - 801 4.0
btor128-resyn3-nomap 0.3 - - ES ES
abc128-resyn3-nomap 0.1 - - ES ES

btor64-resyn3-map-simple 0.3 7 0 1073 418
abc64-resyn3-map-simple 0.1 7 0 1071 415
abc128-resyn3-map-simple 1.8 7 0 ES ES

abc64-resyn3-map-14nm 29 15 17 TO TO
abc64-resyn3-map-7nm MO 24 9,791 TO TO
abc128-resyn3-map-14nm 400 15 1,008 ES ES
abc128-resyn3-map-7nm MO 23 26,600 ES ES

large arithmetic circuits with canonical representations
such as *BMD or TED were not successful.

VII. CONCLUSIONS

The paper addresses theoretical aspects of arithmetic
circuit verification based on algebraic rewriting in the
context of symbolic computer algebra. It provides a de-
tailed comparison between both methods and explanation
why the rewriting scheme is more efficient than the GB
reduction scheme. The bit-flow model is introduced to
formally prove the rewriting approach.

Two modes of algebraic rewriting are possible: 1) Veri-
fication against the known specification; and 2) Extracting
the specification from the circuit structure. If the specifi-
cation of the circuit is known, one needs to compare the
computed input signature with this specification. While this
can be done using canonical polynomial representations,
such as TED or BMD, this comparison can be avoided
altogether by rewriting the difference between the output
and input signature, Sout − Fspec instead of Sout. The
result of such a rewriting should be zero for a correct
circuit. A non-zero result is an indication of a bug. In the
case when specification is not known, the computed input
signature provides the function of the circuit (buggy or
not). In the case of a buggy circuit, the size of intermediate
polynomials during rewriting may become prohibitively
large, sometimes even preventing the computation from
completing. This by itself can be used as a warning signal
that the circuit is probably faulty. In general, concluding
that the circuit is incorrect and identifying a bug is a
challenging problem. Several attempts have been made
to identify the bug(s), either by comparing the result of
backward and forward rewriting [22] or by analyzing the
difference between the computed input signature and the
given specification [23]. With a notable exception of finite
field (GF) arithmetic circuits [24][25], the debugging of
arithmetic circuits remains an open problem.

While the bit-flow verification model presented in this
paper does not offer any particular algorithmic method per
se, it gives an interesting interpretation of the computation

12

performed by the circuit. It also provides arguments for the
proof of the correctness of the rewriting-based verification:
with the bit-flow model, algebraic algebraic rewriting is
proved to be sound and complete. The method can be used
to verify an arbitrary arithmetic circuit, on an arbitrary level
of abstraction (not only gate-level), as long as its functional
specification Fspec and an output encoding Sout can be
expressed as a polynomial. An open source framework with
various backward rewriting options are released publicly.
ACKNOWLEDGMENTS
This paper was supported by a grant from the National
Science Foundation, Award No. CCF-1617708. We are
indebted to Prof. Priyank Kalla, University of Utah, for
explaining mathematical concepts of computer algebra;
and to Prof. Hans Schönemann and Dr. Christian Eder,
Univeristy of Kaiserslautern, for their help with using the
Singular software.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for boolean function ma-
nipulation,” Computers, IEEE Transactions on, vol. 100, no. 8, pp.
677–691, 1986.

[2] M. Ganai and A. Gupta, SAT-based scalable formal verification
solutions. Springer, 2007.

[3] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 9, 2015.

[4] N. Shekhar, P. Kalla, and F. Enescu, “Equivalence Verification of
Polynomial Data-Paths Using Ideal Membership Testing,” TCAD,
vol. 26, no. 7, pp. 1320–1330, July 2007.

[5] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G.-M. Greuel,
“An Algebraic Approach for Proving Data Correctness in Arithmetic
Data Paths,” CAV, pp. 473–486, July 2008.

[6] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, A. Dreyer, F. Seelisch,
and G. Greuel, “Stable: A new qf-bv smt solver for hard verification
problems combining boolean reasoning with computer algebra,” in
DATE, 2011, pp. 155–160.

[7] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner Basis Reductions
for Formal Verification of Galois Field Arithmatic Circuits,” TCAD,
vol. 32, no. 9, pp. 1409–1420, September 2013.

[8] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drech-
sler, “Formal verification of integer multipliers by combining
gröbner basis with logic reduction,” in DATE’16, 2016, pp. 1–6.

[9] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in FMCAD’17, 2017.

[10] ——, “Improving and extending the algebraic approach for veri-
fying gate-level multipliers,” in 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), March 2018, pp. 1556–
1561.

[11] M. Ciesielski and A. R. W. Brown, “Arithmetic Bit-level Verification
using Network Flow Model,” in Haifa Verification Conference,
HVC’13. Springer, LNCS 8244, Nov. 2013, pp. 327–343.

[12] C. Yu, W. Brown, D. Liu, A. Rossi, and M. J. Ciesielski, “Formal
verification of arithmetic circuits using function extraction,” TCAD,
vol. 35, no. 12, pp. 2131–2142, 2016.

[13] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
Strength Verification Tool,” in Proc. Intl. Conf. on Computer-Aided
Verification, 2010, pp. 24–40.

[14] S. Gao, “Counting zeros over finite fields with gröbner bases,”
Master’s thesis, Carnegie Mellon University, 2009.

[15] W. Adams and P. Loustanau, An Introduction to Gröbner Bases.
American Mathematical Society, 1994.

[16] B. Buchberger, “Ein algorithmus zum auffinden der basiselemente
des restklassenringes nach einem nulldimensionalen polynomideal,”
Ph.D. dissertation, Univ. Innsbruck, 1965.

[17] J.-C. Faugere, “A New Efficient Algorithm for Computing Gröbner
Bases (F4),” Journal of Pure and Applied Algebra, vol. 139, no.
1–3, pp. 61 – 88, 1999.

[18] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “SINGU-
LAR 3-1-6 A Computer Algebra System for Polynomial Computa-
tions,” Tech. Rep., 2012, http://www.singular.uni-kl.de.

[19] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms.
Springer, 1997.

[20] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construction
of Binary Moment Diagrams for verifying arithmetic circuits,” in
Proceedings of IEEE International Conference on Computer Aided
Design (ICCAD), Nov 1995, pp. 78–82.

[21] C. Yu, M. J. Ciesielski, and A. Mishchenko, “Fast algebraic
rewriting based on and-inverter graphs,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 37, no. 9, pp. 1907–1911,
2018.

[22] S. Ghandali, C. Yu, D. Liu, W. Brown, and M. Ciesielski, “Logic
debugging of arithmetic circuits,” in ISVLSI’15, July 2015, pp. 113–
118.

[23] F. Farahmandi and P. Mishra, “Automated test generation for de-
bugging multiple bugs in arithmetic circuits,” IEEE Transactions
on Computers, 2018.

[24] T. Su, A. Yasin, C. Yu, and M. J. Ciesielski, “Computer algebraic
approach to verification and debugging of galois field multipliers,”
in IEEE International Symposium on Circuits and Systems, ISCAS
2018, 27-30 May 2018, Florence, Italy, 2018, pp. 1–5.

[25] V. Rao, U. Gupta, I. Ilioaea, A. Srinath, P. Kalla, and F. Enescu,
“Post-Verification Debugging and Rectification of Finite Field Arith-
metic Circuits using Computer Algebra Techniques,” FMCAD’18.

