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Abstract—The paper presents an algebraic approach to func-
tional verification of gate-level, integer arithmetic circuits. It
is based on extracting a unique bit-level polynomial function
computed by the circuit directly from its gate-level implementa-
tion. The method can be used to verify the arithmetic function
computed by the circuit against its known specification, or
to extract an arithmetic function implemented by the circuit.
Experiments were performed on arithmetic circuits synthesized
and mapped onto standard cells using ABC system. The results
demonstrate scalability of the method to large arithmetic circuits,
such as multipliers, multiply-accumulate, and other elements of
arithmetic datapaths with up to 512-bit operands and over 2
million gates. The results show that our approach wins over the
state-of-the-art SAT/SMT solvers by several orders of magnitude
of CPU time. The procedure has linear runtime and memory
complexity, measured by the number of logic gates.

Index Terms—Formal verification, functional verification,
arithmetic circuits, computer algebraic

I. INTRODUCTION

W
ITH an almost unmanageable increase in the size

and complexity of ICs and SoCs, hardware design

verification have become a dominating factor of the overall

design flow. Despite a considerable progress in verification of

random and control logic, advances in formal verification of

arithmetic designs have been lagging. This can be attributed

mostly to the difficulty in efficient modeling of arithmetic

circuits and datapaths without resorting to computationally ex-

pensive Boolean methods, such as BDDs and SAT, that require

“bit blasting”, i.e., flattening the design to a bit-level netlist.

Approaches that rely on computer algebra and Satisfiability

Modulo Theories (SMT) methods are either too abstract to

handle the bit-level nature of arithmetic designs or require

solving computationally expensive decision or satisfiability

problems. Similarly, theorem provers require a significant

human interaction and intimate knowledge of the design to

guide the proof process.

Importance of arithmetic verification problem grows with

an increased use of arithmetic modules in embedded systems

to perform computation intensive tasks for multi-media, signal
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processing, and cryptography applications. EDA vendors, such

as Synopsys, do offer tools that automatically generate “correct

by construction” arithmetic components that can be used with

high level of confidence in commercial designs. However,

this practice, acceptable for standard IP components, does

not solve the problem of verifying non-standard, highly bit-

optimized embedded arithmetic circuits.

The work presented in this paper aims at overcoming some

of these limitations. It addresses the verification problem at an

algebraic level, treating an arithmetic circuit and its specifica-

tion (if known) as a properly constructed algebraic system. The

proposed technique solves the verification problem by function

extraction, i.e., by deriving arithmetic function computed by

the circuit from its low-level circuit implementation. The

method can be used to verify the extracted function against

the given specification (if known), or as a reverse engineering

tool, to learn the function performed by the circuit. In case of

an incorrectly implemented function, this method will generate

a counterexample (bug trace). The results presented here are

based on an in-depth analysis of recent advances in computer

algebra, reviewed in Section II.

II. RELATED WORK

A. Canonical Diagrams

Several approaches have been proposed to check an arith-

metic circuit against its functional specification. Different

variants of canonical, graph-based representations have been

proposed, including Binary Decision Diagrams (BDDs) [1],

Binary Moment Diagrams (BMDs) [2] [3], Taylor Expansion

Diagrams (TED) [4], and other hybrid diagrams [5].While

BDDs have been used extensively in logic synthesis, their

application to verification of arithmetic circuits is limited

by the prohibitively high memory requirement for complex

arithmetic circuits, such as multipliers. BDDs are being used,

along with many other methods, for local reasoning, but not as

monolithic data structure [6]. BMDs and TEDs offer a better

space complexity but require word-level information of the

design, which is often not available or is hard to extract from

bit-level netlists.

B. SAT and SMT solvers

Arithmetic verification problems have been typically mod-

eled using Boolean satisfiability (SAT) or satisfiability modulo

theories (SMT). Several SAT solvers have been developed

to solve Boolean decision problems, including ABC [7],
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MiniSAT [8], and others. Some of them, such as Cryp-

toMiniSAT [9], specifically target XOR-rich circuits, but,

like all others, are based on a computationally expensive

Davis/Putnam/Logemann/Loveland (DPLL) decision proce-

dure. Several techniques combine linear arithmetic constraints

with Boolean SAT in a unified algebraic domain [10]; or

combine automatic test pattern generation (ATPG) and modu-

lar arithmetic constraint-solving techniques for the purpose of

test generation and assertion checking [11]; but they do not

offer sufficient scalability. Approaches based on ILP models

of the arithmetic operators [12] [13] are also known to be

computationally expensive and not scalable.

SMT solvers depart from treating the problem in a strictly

Boolean domain and integrate different well-defined theories

(Boolean logic, bit vectors, integer arithmetic, etc.) into a

DPLL-style SAT decision procedure [14]. Some of the most

effective SMT solvers, potentially applicable to our problem,

are Boolector [15], Z3 [16], and CVC [17]. However, SMT

solvers still model the problem as a decision problem and, as

demonstrated by our experimental results, are not efficient at

solving verification problems that appear in arithmetic circuits.

C. Theorem provers

Another class of solvers include Theorem Provers, deduc-

tive systems for proving that an implementation satisfies the

specification, using mathematical reasoning. The proof system

is based on a large and strongly problem-specific database of

axioms and inference rules, such as simplification, rewriting,

induction, etc. Some of the most popular theorem proving

systems are: HOL [18], PVS [19], Boyer-Moore/ACL2 [20],

and Nqthm [18][21]. These systems are characterized by

high abstraction and powerful logic expressiveness, but they

are highly interactive, require domain knowledge, extensive

user guidance, and expertise for efficient use. The success

of verification using theorem prover depends on the set of

available axioms and rewrite rules, and on the choice and order

in which the rules are applied during the proof process, with

no guarantee for a conclusive answer. Similarly, term rewriting

techniques, such as [22] or [23], are incomplete and “may fail

to generate the proof because additional lemmas are needed”

[23].

D. Computer Algebra Methods

One of the most advanced techniques that have poten-

tial to solve the arithmetic verification problem are those

based on symbolic Computer Algebra [24]. These methods

model the arithmetic circuit specification and its hardware

implementation as polynomials [25],[26],[27],[28],[29],[30].

The verification goal is to prove that implementation sat-

isfies the specification by performing a series of divisions

of the specification polynomial F by the implementation

polynomials B = {f1, . . . , fs}, representing components that

implement the circuit. For example, the specification of a

multiplier circuit with word-level inputs X,Y and output Z
is F = Z − X · Y . The implementation polynomials are

derived from gate equations, similar to those shown later in

Equation(1).

To systematically perform polynomial division, term order-

ing “>” is imposed on monomials, so that each polynomial

has a well defined leading term lt(). If polynomial f contains

some term t that is divisible by the leading term lt(g) of

polynomial g, then the division of f by g gives a remainder

polynomial r = f − t
lt(g) · g. In this case, we say that f

reduces to r modulo g, denoted f
g

−→ r. With this, the

verification problem is posed as the reduction of F modulo

B, denoted F
B
−→+ r. The remainder r has the property

that no term in r is divisible by the leading term of any

polynomial fi in B. The set of polynomials B = {f1, . . . , fs}
generates an ideal J = 〈f1, ..., fs〉 with fi ∈ Z[X], defined as:

J = 〈f1, ..., fs〉 = h1f1+ ...+hsfs, with hi from polynomial

ring R. The polynomials f1, ..., fs are called the bases, or

generators, of the ideal J . In the context of circuit verification,

they model the implementation of the circuit.

Given a set f1, ..., fs of generators of J , a set of all simul-

taneous solutions to a system of equations f1(x1, ..., xn) =
0; ..., fs(x1, ..., xn) = 0 is called a variety V (J). Verification

problem is then formulated as testing if the specification F
vanishes on V (J)1 [29] [30]. In some cases, this test can be

simplified to checking if F ∈ J , which is known in computer

algebra as ideal membership testing2.

A standard procedure to test if F ∈ J is to divide polyno-

mial F by f1, ..., fs, one by one. The goal is to cancel, at each

iteration, the leading term of F using one of the leading terms

of f1, ..., fs. If the remainder of the division is r = 0, then F
vanishes on V (J), proving that the implementation satisfies

the specification. However, if r 6= 0, such a conclusion cannot

be made: B may not be sufficient to reduce F to 0, and yet the

circuit may be correct. To check if F is reducible to zero one

must use a canonical set of generators, G = {g1, ..., gt}, called

Groebner basis. Without Groebner basis one cannot answer the

question whether F ∈ J .

A number of algorithms have been developed to compute

Groebner basis over the field, including the well known Buch-

berger’s algorithm [31]. However this algorithm is computa-

tionally expensive, as it computes the so called S-polynomials,

by performing expensive division operation on all pairs of

polynomials in B. Even with newer algorithms, such as F4

[32], the computational complexity of Groebner basis com-

putation remains prohibitively large for arithmetic circuits.

Furthermore, what is the most important, these algorithm

do not apply directly to rings over integers, Z2n , which is

needed to solve the verification problem for arithmetic circuits

considered in this work. In general, this problem cannot be

solved by testing if F is a member of an ideal J = 〈f1, ..., fs〉,
i.e., if F ∈ J . Many of the results related to ideal membership

that are valid over algebraically closed fields are fundamentally

unsolved over integers Z. It has been shown that solving the

problem for Z2n requires testing if F ∈ I(V (J)), where

I(V (J)) is a set of all polynomials that vanish on V (J) [33]

[29].

1Polynomial f is said to vanish on V if ∀a ∈ V : f(a) = 0.
2In general, one must test if F ∈ I(V (J)). Only for finite fields F2q that

this test reduces to F ∈ J . Details can be found in [24] [29].
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Wienand et. al. [27] model an arithmetic circuit as an arith-

metic bit-level (ABL) network of adders and other arithmetic

operators. Both the specification and the arithmetic operators

are represented as polynomials over Z2n . They show that,

the properly ordered set G of polynomials representing logic

gates automatically renders it a Groebner basis. The verifica-

tion problem is solved by testing if specification F reduced

modulo G vanishes over Z2n using a computer algebra system,

SINGULAR [34]. In [28], the solution is further restricted to

variables in Z2 and the reduction formulated directly over

quotient ring Q = Z2n [X]/〈x2−x〉. Here, the ideal 〈x2−x〉 is

the constraint restricting values of variables x to (0,1). While

mathematically elegant, adding this constraint for all variables

makes the method computationally expensive for gate-level

circuits. For this reason, the method of [28] is limited to ABL

networks composed of half adders (HA).

Kalla, et. al [29][30][35][36], formulated the verification

problem similarly, but applied it to Galois field (GF) arithmetic

circuits, which enjoy certain simplifying properties. Specifi-

cally, for GF, the problem reduces to the ideal membership

testing over a larger ideal that includes J0 = 〈x2 − x〉 in F2.

The solution uses a modified Gaussian elimination technique.

In [30], a symbolic computer algebra method is used to derive

a word level abstraction for GF circuits, where GF operators

are elements of a polynomial ring with coefficients in F2k .

This work relies on the customized computation of Groebner

basis and applies only to GF networks. It does not extend to

polynomial rings in integers Z2n which is the subject of this

paper.

A different approach to arithmetic verification has been

proposed in works of Basith et. al. [37] and Ciesielski et.

al. [38], where a bit-level network is described by a system

of linear equations. The system is then reduced to a single

algebraic signature, FSig , using standard linear algebra meth-

ods and compared to the specification polynomial Fspec. A

non-zero residual expression, RE = FSig−Fspec, determines

a potential mismatch between the implementation and the

specification, indicating a potential design error. Additional

step is needed to check if RE = 0, which may be as difficult as

the original problem itself. An extension to this work has been

recently presented in [39], by computing input signature from

the known output signature using a network-flow approach.

This technique also relies on the half-adder (HA) based circuit

structure and represents logic gates as elements of HAs. Logic

gates that cannot be mapped into adders are represented as

HAs, with an unused output left as “floating”. Additional

constraint relating floating signals to fanouts in the circuit

must be satisfied for the result to be trusted; however the

computation to verify this condition can be expensive. For this

reason, this method becomes inefficient if the number of logic

gates dominates the HA network. Also, the circuit would need

to be partitioned into linear and non-linear portions, which is

a non-trivial task.

In contrast, the technique described in this paper works on

an arbitrary, unstructured gate-level arithmetic circuit without

requiring any reference to higher level models such as adders;

it can efficiently handle nonlinear circuits without a need to

distinguish between linear and nonlinear parts.

In summary, the problem of formally verifying integer

arithmetic circuits over integers Z2n remains open [40]. To

the best of our knowledge, the techniques reviewed here

cannot efficiently solve the verification problem for gate-level

arithmetic circuits in Z2n over Boolean variables Z2, which is

the problem we describe in this paper.

The technique proposed in this paper solves the functional

verification problem by devising an alternative but equivalent

method, based on polynomial substitution and elimination,

initially described in [41]. It correctly implements ideal mem-

bership testing without a need for expensive division process

with Groebner basis. The results demonstrate that it scales

better and is more efficient than the state-of-the-art computer

algebra methods.

III. FUNCTION EXTRACTION

This paper offers a robust solution to arithmetic verifi-

cation by extracting a unique bit-level polynomial function

implemented by the circuit, directly from its gate-level im-

plementation. This is done by transforming the polynomial

representing the encoding of the primary outputs (called the

output signature) into a polynomial at the primary inputs

(the input signature). If the specification of the circuit is

known, the extracted input signature will be compared with

that specification. Otherwise, the computed signature identifies

the arithmetic function implemented by the circuit.

The method uses an algebraic model of the circuit, with

logic gates represented by algebraic expressions, while cor-

rectly modeling signals as Boolean variables. In contrast to

[39], it works directly on unstructured, gate-level implementa-

tions. And, in contrast to [28],[30] and other computer algebra

methods, it is done using efficient polynomial transformation

process, without a need for expensive Groebner-based poly-

nomial division.

To the best of our knowledge, this approach has not been

attempted before in the context of gate-level integer arithmetic

in Z2n
3. It provides a practical method for checking if the

implementation satisfies the specification without resorting to

the ideal membership testing in Z2n .

A. Algebraic Model

The circuit is modeled as a network of logic elements of

arbitrary complexity: basic logic gates (AND, OR, XOR, INV)

and complex (AOI, OAI, etc.) standard cell gates obtained by

synthesis and technology mapping. In fact, the proposed model

admits a hybrid network, composed of an arbitrary collection

of logic gates and bit-level arithmetic components. At one

extreme, it can be a purely gate-level circuit; at the other, a

network composed of arithmetic components only. Each logic

element is modeled as a pseudo-Boolean polynomial fi, with

variables from Z2 (binary) and coefficients from Z2n (integers

3The functional abstraction technique described in [30] applies only to
Galois field circuits and is based on polynomial reduction via Groebner basis.
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modulo 2n). The following algebraic equations are used to

describe basic logic gates:

¬a = 1− a

a ∧ b = a · b

a ∨ b = a+ b− a · b

a⊕ b = a+ b− 2a · b

(1)

In our model, the arithmetic function computed by the

circuit is specified by two polynomials: an input signature

and an output signature. The input signature, Sigin, is a

polynomial in primary input variables that uniquely repre-

sents the integer function computed by the circuit, i.e., its

specification. For example, an n-bit binary adder with in-

puts {a0, · · · , an−1, b0, · · · , bn−1}, is described by Sigin =∑n−1
i=0 2iai +

∑n−1
i=0 2ibi. Similarly, the input signature of a

2-bit signed multiplier, shown in Fig. 1, is Sigin = (−2a1 +
a0)(−2b1 + b0) = 4a1b1 − 2a0b1 − 2a1b0 + a0b0, etc. In

our approach, the input specification need not to be known; it

will be derived from the circuit implementation as part of the

verification process.

Similarly, the output signature, Sigout, of the circuit is

defined as a polynomial in the primary output signals. Such

a polynomial is uniquely determined by the n-bit encoding

of the output, provided by the designer. For example, the

output signature of the 2-bit signed multiplier in Fig. 1 is

−8z3 + 4z2 + 2z1 + z0. In general, an output signature

of an unsigned arithmetic circuit with n output bits zi is

represented as a linear polynomial, Sigout =
∑n−1

i=0 2i zi.
Similar expression is derived for signed arithmetic circuits.

Our goal is to transform the output signature, Sigout, using

polynomial representation of the internal logic elements, into

the input signature, Sigin. By construction, the resulting Sigin
will contain only the primary inputs (PI) and will uniquely

determine the arithmetic function computed by the circuit (cf.

Theorem 1 in Section III.C).
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Fig. 1. Verifying a 2-bit signed multiplier: Gate-level circuit with output
signature Sigout = −8z3 + 4z2 + 2z1 + z0.

Algorithm 1 Verification Flow

Input: Gate-level netlist, output signature Sigout
(input signature Sigin)

Output: Pseudo−Boolean expression extracted by rewriting

1: Parse gate-level netlist; create algebraic equations for

gates/modules

2: Find ordering for variable substitution (levelization, de-

pendency)

3: i = 0; Fi = Sigout
4: while there are unused equations do

5: Rewrite: Fi+1 = Fi with variables substituted with gate

equations;

6: i = i + 1

7: return F = Fi (to be compared with Sigin)

B. Outline of the Approach

The proposed verification flow is outlined in Algorithm 1.

The inputs to the algorithm are: the gate-level netlist (imple-

mentation); output signature Sigout (encoding of the result a

PO); and optionally the input signature Sigin (specification).

The first step is to translate the gate-level implementation into

algebraic equations (line 1). Then, the algebraic equations are

ordered according to the circuit structure and its topology by

algorithms that try to keep the size of the intermediate ex-

pressions small (line 2). Specific algorithms (levelization and

dependency) are discussed in the next section. The rewriting

process is an iterative application of rewriting one pseudo-

Boolean expression into another in the predetermined order

(lines 3− 6), starting with the output signature Sigout at the

primary outputs, PO. At each iteration, all variables in the

current expression are substituted by the corresponding gate

expressions. Each iteration produces its own expression, Fi

(line 5). The process ends when the rewriting reaches the

primary inputs, PI, (line 7), or when all equations have been

used. The resulting expression F can then be compared with

Sigin, if it was provided by the designer, to determine if

the circuit correctly implements the specification. Otherwise,

the computed expression F determines the arithmetic function

implemented by the circuit.

The rewriting process is illustrated with a simple 2-bit

signed multiplier example, shown in Fig. 1. Each equation

corresponds to a cut in the circuit, i.e., a set of signals that

separate primary inputs from primary outputs; its pseudo-

Boolean expression is denoted in the Figure by Fi. First, F0

is transformed into F1 using substitutions z3 = 1 − x8 and

z2 = 1 − x9. Subsequently, F2 is obtained from F1 using

equations for x8 and x9, and so on, culminating at the primary

inputs with expression F7 = 4a1b1 − 2a0b1 − 2a1b0 + a0b0.

Note the local increase in the polynomial size (at F2 or F4)

known as “fat belly” effect, before it is eventually reduced

to the expression in PIs only. The choice of the cuts and the

order in which the variables are eliminated by substitution has

a big influence on the size of the fat belly and the efficiency

of the method. The following heuristics are used to keep the

size of the intermediate expressions as small as possible.
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Fig. 2. Substitution order analysis using a 2-bit multiplier.

F0 = −8z3 + 4z2 + 2z1 + z0

F1 = 8x8 − 4x9 + 2z1 + z0 − 4

F2 = 8(x1 + x7 − x1x7)− 4(x1 + x7 − 2x1x7) + 2z1 + z0 − 4

F3 = 4x1 + 4x7 + 2z1 + z0 − 4

F4 = 4x1 + 4x5x6 + 2(x5 + x6 − 2x5x6) + z0 − 4

F5 = 4x1 + 2(x5 + x6) + z0 − 4

F6 = 4x1 − 2x2 − 2x3 + x4

F7 = 4a1b1 − 2a0b1 − 2a1b0 + a0b0

= (−2a1 + a0)(−2b1 + b0)

1) Substitution order: The substitution order has the great-

est influence on the intermediate expression size (#. monomi-

als). For a small difference between two orders, the maximum

intermediate expression size may be several orders of magni-

tude larger in a large design. We illustrate the impact of the

substitution order using a 2-bit multiplier (Figure 2). Orders

(a) and (b) are two different substitution solutions which the

first four iterations are different. We record the intermediate

expression size step by step during rewriting (TABLE I). We

can see order (b) identifies a larger peak than order (a). We

present two methods to find the efficient substitution order:

Dependency and Levelization.

Dependency: Substitution must follow the reverse-topological

order; once a given variable (output of a gate) is substituted

by an algebraic expression of the gate inputs, it will be

eliminated from the current cut expression and will never be

considered again. That is, a variable is substituted for only

after substituting all signals in its logical cone. For example,

before substituting for x6, one must substitute for x7 and z1,

since they both depend on x6. Since the circuit is acyclic, there

always exists an ordering of substitutions that satisfies this

condition. We refer to this topological constraint informally

as “vertical”, since it orders variables upwards from POs to

PIs.

Levelization: To further increase the efficiency of substitution,

a ”horizontal” constraint is also imposed on the ordering of the

candidate variables at a given transformation step. Specifically,

the variables that are at the same logic level (from PIs)

and have transitive fan-in to common variables should be

#.iteration 1 2 3 4 5 6 7 8

Exp. size(a) 4 4 4 6 6 4 4 4

Exp. size(b) 4 4 6 8 6 4 4 4

TABLE I
2-BIT MULTIPLIER INTERMEDIA EXPRESSION SIZE OF TWO SUBSTITUTION

SEQUENCE

eliminated together, as this will maximize a chance of the

reduction of common terms. It is these variables that define

the best cut at each step of the procedure.

We demonstrate why substitution order greatly impacts

the rewriting process using larger examples (Figure 3). We

compare the rewriting process of 4-bit, 6-bit, and 8-bit CSA

multipliers using dependency and levelization. In Figure 3,

the x-axis represents the rewriting process in percentage of

computation. The y-axis represents the size of intermediate

expression, i.e. the number of monomials in the expressions.

We can see that the difference of the size of the intermediate

expression using dependency and levelization increases when

the size of the design is increasing. This means that the

substitution order has greater impact on the rewriting process

if the designs are more complex.
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Fig. 3. Substitution order analysis using 4-bit, 6-bit, and 8-bit multiplier. Dep

is dependency; Lev is levelization.

2) Fanouts: The size of the intermediate polynomial gener-

ated during rewriting can be reduced by identifying variables

that depend on common inputs (fanouts of some variables).

In this case, the substitution of such variables can be done

simultaneously as this increases a chance for eliminating

common subexpressions. For example, in Fig. 1 variables

x8, x9 in subexpression (8x8−4x9) of F1 depend on common

fanout variables x1 and x7. As a result, the subexpression

(8x8 − 4x9) = 4(2x8 − x9) reduces to 4(x1 + x7), without

introducing a nonlinear term 8x1x7, so F1 can be directly

transformed into F3. Such nonlinear terms are particularly
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harmful if their variables continue to be substituted by other

variables, potentially leading to an exponential explosion.

Another simplification that can be applied during rewriting

relies on recognizing some pre-defined multiple-input mod-

ules with known I/O signatures, such as half adder or full

adder. Adders are particularly useful, since they exhibit linear

relationship between their inputs and outputs. For example,

the circuit in Fig. 1 contains a half adder with inputs x5, x6

and outputs x7, z1, with a linear I/O relationship described by

(x5+x6 = 2x7+z1). In this case, the subexpression 4x7+2z1
in F3 can be directly translated into 2(x5 + x6), avoiding an

intermediate nonlinear term 4x5x6 of F4. As a result, cut F3

can be directly transformed into F5.

3) Vanishing Polynomials: In some arithmetic circuits a

particular output bit may always evaluate to zero. This is

typically associated with MSB, but this is not the only case.

For example, in the squarer circuit (Z = A2) the output bit

z1 is always 0. For this reason one may want to exclude bit

z1 from the output signature, Sigout =
∑n−1

i=0 2i zi. However,

the set of algebraic expressions associated with the term 2z1
offers some early simplification during the computation of the

signature, before it reaches the primary inputs. Obviously, the

logic cone of z1 itself will reduce to 0 at the PI, but the terms

of its intermediate cuts (at internal signals) help reduce the size

of the intermediate cuts of the rest of the circuit. We refer to

such a redundant expression as the vanishing polynomial, as

it vanishes (evaluates to 0) for all possible values of its input

variables.

4) Complex gates: Our signature transformation algorithm

works on a fabric of basic Boolean gates; this offers high

logic granularity and the greatest choice of signals for the

selection of the smallest cut. For the design with complex

gates (standard cells AOI, OAI, etc.), algebraic equations are

written for each internal signal of the gate, rather than only

for its output. As confirmed by our experiments, this offers a

richer set of cuts to choose from and increases a chance of an

earlier simplification of the cut expression.

logic

logic

logic

AOI21

logic

Fig. 4. Expanding complex gates for cut rewriting.

5) Binary signals: During elimination, the expensive divi-

sion by the ideal 〈x2 − x〉, employed by [28], is replaced by

lowering xk to x every time variable x is raised to higher

degree during the substitution process. For example, if at any

point an expression contains a term xyx or x2y, it will be

replaced by xy. With this, an expression, such as xyx− yxy,

will immediately reduce to 0. This significantly simplifies the

procedure, compared to the division by 〈x2−x〉. This approach

has also been used in recent works [29], [30] that targeted GF

circuits. The lack of this kind of simplification was the main

reason for the existence of residual expression in earlier works

that advocated algebraic approach [37].

6) Efficient Datastructure: Our algorithm uses an efficient

data structure to support these simplifications and efficiently

implement an iterative substitution and elimination process.

Specifically: a data structure is maintained that records the

terms in the expression that contain the variable to be substi-

tuted. It reduces the cost of finding what terms will have their

coefficients changed during the substitution. The expression

data structure is a C++ object that represents a pseudo-Boolean

expression. It supports both fast addition and fast substitution

with two C++ maps, implemented as binary search trees, a

terms map and a substitution map.

It is essential to guarantee that the algebraic expressions of

logic gates (eq. 1) correctly model Boolean signal variables.

That is, the internal signal variables computed using those

algebraic models must evaluate to exactly the same values as

when using strictly Boolean methods, for all possible binary

input combinations. With this, many potentially large algebraic

subexpressions produced during the substitution will reduce to

zero. This point can be illustrated with an example of the OR1

gate with output x11 in the 3-bit adder in Fig. 5, now written

in algebraic rather than Boolean form (Figure 6). As one can

see, the value of x11 is exactly the same as the one obtained

above using strictly Boolean methods (where x5x8 was also

shown to reduce to 0).

FA0

FA1

HA2HA3

HA4

AND1AND2

AND3OR1

OR2OR3

XOR

a0b0c0a1b1a2 b2a3 b3

Cout S0S1S2S3

x1

x2

x3

x4x5

x7x8
x6

x11 x9x10

x12

Fig. 5. Parallel prefix adder, hybrid model
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Fig. 7. Arithmetic function of a 2-bit multiplier extracted from the circuit
using TED in normal factored form: Sigin = (−2a1 + a0)(−2b1 + b0).

C. Properties of Computed Input Signature

Once Sigin has been computed, it is analyzed to see if it

matches the expected specification. The comparison between

the two expressions can be done using canonical data struc-

tures, such as BMD [2] or TED [4] that can check equivalence

between two word-level outputs expressed in bit-level inputs.

In the case of a buggy circuit, if the specification is given and

the system can successfully compute input signature, then any

mismatch between the specification and input signature can

be used to generate a counter-example (bug trace). This can

be done by solving a SAT/SMT problem on that mismatch

polynomial. Any satisfying solution will provide a test vector

for the counter-example.

If the specification is not given, TED can provide the

function implemented by the circuit in normal factored form

to help identify the type of arithmetic function obtained. TED

has a capability of finding the ordering of variables from which

such a form can be obtained [42]. In large arithmetic circuits,

additional variable ordering directives may be given by the

designer if the bit-level composition of input words is known.

For example, for the circuit in Fig. 1, the input signature com-

puted by our method is Sigin = 4a1b1−2a0b1−2a1b0+a0b0.

Its TED representation shown in Fig. 7 reveals the canonical

factored form, Sigin = (−2a1+a0)(−2b1+b0). This indicates

that the function computed by the circuit is a two-bit signed

multiplier, A·B, where the variables (a1, a0) and (b1, b0) form

the two-bit input words, A and B.

Essential part of the described approach is the following

theoretical result about the correctness and uniqueness of the

computed input signature.

Theorem 1: Given a combinational circuit composed of

basic logic gates, the input signature Sigin computed by the

proposed procedure is unique and correctly represents the

arithmetic function implemented by the circuit.

Proof: The proof of correctness hinges on the fact that

each internal signal is correctly represented by an algebraic

expression, i.e., such an expression evaluates to a correct

Boolean value. Specifically, it can be easily verified that

equations (1) are the correct algebraic representations of basic

Boolean functions. Hence, any logic function that is expressed

recursively by Eq. (1) must evaluate to a correct Boolean

value; and once the polynomial is reduced by removing redun-

dant terms, the algebraic representation is unique. Example:

XOR function, f = a ⊕ b = a′b + ab′, can be written as

f = (1−a)b+a(1− b)− ((1−a)b)(a(1− b)), which reduces

to a unique form, a+ b−2ab. Hence, a PO signal is correctly

represented by variables in its logic cone, up to the primary

inputs. Therefore, Sigout, which is the weighted sum of the

output signals, is eventually replaced by Sigin. For this reason

such computed Sigin is a correct algebraic representation of

the circuit.

The proof of uniqueness is done by induction on i, the

step when polynomial Fi is transformed into Fi+1. Base case:

polynomial F0 = Sigout is unique. Also, as discussed above,

algebraic representation of each logic gate is unique.

Induction phase: Assuming that Fi is unique, we prove that

Fi+1 is unique. Recall that each variable in Fi represents

output of some logic gate; during the transformation process

it is substituted by a unique polynomial of that gate. Since the

circuit is combinational (no loops) and the substitution is done

in reversed topological order, at each step i a variable in Fi

is replaced by a unique polynomial in new variables. Hence,

polynomial Fi+1 derived from Fi by such substitution is also

unique. �

This theorem applies to combinational circuits, but it can be

readily extended to sequential circuits by unrolling the circuit

over a fixed number of time frames into a combinational circuit

(bounded model).

IV. EXPERIMENTAL RESULTS

The verification technique described in this paper was

implemented in C++. It performs rudimentary variable sub-

stitution and elimination, using the ordering strategy and

implementation discussed in Section III-B. The program was

tested on a number of gate-level combinational arithmetic cir-

cuits, taken from [43]: CSA multipliers, add-multiply, matrix
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multipliers, squaring, etc., with operands ranging from 64 to

512 bits. The results are shown in Tables III and IV. The

experiments were conducted on a PC with Intel Processor

Core i5-3470 CPU 3.20GHz x4 with 15.6 GB memory. The

gate-level structures were obtained by direct translation of

standard implementation of the designs onto basic logic gates

[43]. The designs labeled with extension .syn were synthesized

and mapped using ABC system [7] (commands: strash; logic;

map) onto mcnc.genlib standard cell library. The plot for CPU

runtime in Fig. 8 a) shows an approximately linear runtime

complexity of the program in the number of gates for all

the tested circuits. This should be contrasted with quadratic

runtime complexity of [39] (col. 5) and the exponential time

complexity of other tools.

As proposed in Section III-B, the reason why our technique

is efficient is that rewriting the Sigout provides significant

internal expression elimination. We demonstrate this by mea-

suring the size of the internal expressions of Sigout and

the individual output bit expressions (Figure 9). We can see

that the expressions for z5, z6, z7 are more than 100 times

larger than the Sigout in the middle of the rewriting process.

However, each output bit expression contains many common

monomials which can be eliminated by weighted addition (i.e.

Sigout).

A. SAT experiments

We tested the applicability of SAT tools to the the type of

arithmetic verification problems described in this paper. The

functional verification problem was modeled as a combina-

tional equivalence checking problem, generated with a miter

using ABC (command miter)[7], with the reference design

generated by ABC using [gen -N -m] command. Then, we

check if the miter is unsatisfiable. The state-of-the-art SAT

solvers were tested using the CNF files created by ABC. ABC

was also tested using the combinational equivalence checking

cec (Table IV).

The CEC approach in ABC is based on AIG rewriting

via structural hashing, simulation and the state-of-the-art SAT

[44]. This technique reduces the overall complexity of check-

ing equivalence between two designs by finding equivalent

internal AIG nodes. However, finding internal equivalent nodes

in non-linear arithmetic designs is very difficult. In Table

II, N1, N2 are the numbers of AIG nodes before and after

function reduction [fraig− v] [7]). ∆1 shows the percentage

of reduced nodes. The reference design is generated by ABC

[gen -N -m] command. We can see that fraig is unable to

identify and merge the internal equivalent nodes. Additionally,

we evaluate the complexity of checking Satisfiability using

SAT solver lingeling [45]. N3, N4 are the numbers of clauses

before and after simplification by [45]. ∆2 shows the percent-

age of reduced clauses. We can see that both fraig and SAT

solver cannot simplify the integer multiplier CEC problem. For

this reason, such techniques are inefficient to verify non-linear

arithmetic gate-level designs.

We also tested the SAT-based pseudo-Boolean solvers

MiniSat+ [46] and PBSugar [47] that have been applied

to problems dealing with large pseudo-Boolean expressions.

The specification is modeled as a pseudo-Boolean expression

(Sigout − Sigin) and the gate-level implementation using the

algebraic model, as in Eq. (1). If such constructed problem is

unSAT, the implementation is bug-free. Both solvers success-

fully verified a 4-bit CSA multiplier, but were unable to solve

the problem for a CSA multiplier circuit greater than six bits

in 24 hours.

B. SMT experiments

Given the specification Sigin and output encoding Sigout,
the goal was to prove that (Sigout − Sigin) is unsatisfiable

(unSAT). Two types of modeling of the gate equations were

tested:

1) We directly translated the algebraic equations of the gate-

level implementations into SMT2 format and modeled the

specification (Sigout-Sigin) as a Pseudo-Boolean polynomial

using Boolean vector operations.

2) The product circuit (miter) was translated directly into

SAT by converting the CNF model into SMT2 format. The

CNF files used in this experiment were the same as input

to the SAT experiments. The second approach showed better

performance; it is the one shown in Table IV.

Table IV gives comparison of our results for the synthesized

multipliers with winners of recent SMT competitions and

evaluation, including Boolector [15], Z3 [16], CVC4 [17];

minisat_blbd [48], lingeling [45] and the ABC system [7]; with

the symbolic algebra tool, SINGULAR [34]; and Synopsys’

Formality system. It shows that our technique surpasses those

tools in CPU time by several orders of magnitude.
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Size k 8-bit 16-bit 32-bit 64-bit 96-bit 128-bit

AIG

N1 1173 5180 21641 88365 200140 356973

N2 1142 5140 21577 88278 200020 356822

∆1 2.6% 0.7% 0.29% 0.09% 0.06% 0.08%

SAT

N3 1655 7317 30543 124613 282159 503215

N4 1566 7133 30120 123758 280672 501512

∆2 5.4% 2.5% 1.4% 0.07% 0.05% 0.03%

TABLE II
N1, N2 ARE #. NODES BEFORE AND AFTER fraig -v IN ABC; N3, N4 ARE

#. CLAUSES BEFORE AND AFTER SIMPLIFICATION BY [45]

C. Limitations and Proposed Solutions

1) Circuit Boundaries: Currently, the described method of

functional verification by signature rewriting requires knowl-

edge of the I/O boundary of the circuit. Specifically, we need

to know the output bits and their position (to be discussed in

the next section), in order to generate the starting polynomial,

Sigout. We also need to know when to stop the rewriting

process to correctly reason about the computed signature,

Sigin, and to determine if the circuit implements the expected

arithmetic function. This seems to be a reasonable requirement

for the functional verification of the given circuit, where the

circuit has a well defined I/O boundary. However, if the

method is used to extract an arithmetic function from a larger

circuit, the exact I/O boundary may not be known. Presence

of additional logic blocks at the inputs or outputs of the circuit

clearly complicate the rewriting process. Future research will

concentrate on relaxing the problem to the one with unknown

I/O boundaries.

2) Output Encoding: As mentioned above, to obtain

Sigout, we need to know the correct encoding of the output

bits. However, the encoding of the output bits may not be

known. Hence, we propose a method by studying the interme-

diate expression of individual output bits to correctly assign

the encoding position for the output bits.

The results shown in Figure 9 represent the intermediate

expression size of individual output bit of a 4-bit multiplier.

The horizontal axis represents the iteration number of rewriting

process; the vertical axis represents the size of the expression

at each point of the computation. We can see that the complex-

ity of rewriting individual bits is different. The intermediate

expression size of the 2nd MSB is characterized by the highest

complexity and LSB is the lowest one. The complexity of

the individual output bits increases from z0 to z5. Based

on this observation, we can determine the output encoding

by monitoring the intermediate expression. The output bits

close to MSB are very difficult to be extracted individually by

our technique. The reason is that the intermediate expression

is too large since there are few cancellations without the

expressions from other outputs. However, to determine the

output encoding, it is not necessary to rewrite the signature

all the way to the primary inputs. The output encoding can

be determined earlier in the process and the process will be

terminated immediately. For example, in Figure 9, all the

output bits can be recognized before iteration #35.

3) Effects of Synthesis on Function Extraction: The per-

formance of our technique is sensitive to logic synthesis and

technology mapping. In Figure 10, we compare the rewriting

process with different logic synthesis techniques using 8-bit

CSA Multiplier. The horizontal axis represents the rewriting

process as percentage of the complete run; the vertical axis

represents the size of the expression at each point of the

computation. Original presents the rewriting process of 8-

bit multiplier without any optimization. In Figure 10, curves

resyn and resyn3 are two different logic synthesis commands

provided by ABC; curve complex refers to the mapping library

includes the complex gates (e.g. AOI21, OAI221, etc.); curve

"no-complex" refers to the library contains only 2 input logic

gates.

We can see that the original 8-bit multiplier provides a

much lower intermediate expression size, which means it is the

easiest one to be verified. The synthesized multiplier mapped

with complex gates are more difficult to verify than with

the simple gates. The reason why the intermediate expres-

sion size is larger is that the logic synthesis technique and

technology mapping techniques "restructure" the multiplier.

This creates fewer possible cancellations in our rewriting

technique. Using the heuristics proposed in Section III-B, we

can verify a lightly-synthesized multiplier up to 256 (TABLE

IV). However, the bit-optimized arithmetic design produced

by DesignCompiler or ABC dch remains challenge for this

method.

V. CONCLUSIONS AND FUTURE WORK

The paper presents an efficient approach to derive the func-

tion computed by an integer arithmetic circuit from its gate-

level implementation. It shows that such function extraction

and the test if the implementation satisfies the specification can

be efficiently implemented in algebraic domain using signature

rewriting concept.

Our approach uses an advanced data structure and a set

of efficient heuristics to effect this extraction. The results

show that the approach can handle gate-level integer multiplier

circuits up to 512 bits and containing over 2 million gates.

It should be noted that our experiments involved circuits

synthesized with ABC onto a relatively simple set of complex

gates (mcnc.genlib). It seems that the synthesis tool which

retains certain degree of redundancy in the circuit, in form of

a vanishing polynomial, may be useful in verification. Solving

the verification problem for highly optimized bit-level circuits,

synthesized with commercial tools, remains a challenge, as

the synthesis tools are more aggressive in removing such

redundancy. This, together with the need to know the circuit

I/O boundary is currently the main limitation of this method.

We should also note that the verification of more structured

circuits, containing larger pre-verified blocks will, in general,

be easier. It requires fewer polynomials to be processed, which

lowers the overall size of the problem, and there are fewer

rewriting iterations. This is especially true if the relationship

between the inputs and outputs of such a block is simpler

than those of the internal gates. A simple example of such

a structure, mentioned in Section III-B2 (Fanouts), is a half

adder, whose I/O expressions can be reduced at its boundary

to (a + b = 2C + S), without introducing any non-linear

term. The early work on verification of arithmetic circuits

mapped into a combination of half- and full adders and logic

gates demonstrate an almost linear computational complexity
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Benchmark 64-bit 128-bit 256-bit

Name Function # Gates CPU [sec] Mem # Gates CPU [sec] Mem # Gates CPU [sec] Mem

adder F = A + B (Wallace) 445 0.01 1.5 MB 893 0.05 3.5 MB 1.8K 0.10 5.7 MB

adder_syn F = A + B (Wallace) 445 0.01 1.5 MB 1.1K 0.05 3.5 MB 1.8K 0.19 6.4 MB

shift_Add F = A + A/2 + A/4 + A/8 1.9K 0.09 3.6 MB 3.8K 0.20 9.8 MB 7.7K 0.44 18.2 MB

multiplier F = A · B (CSA Array) 32K 1.89 72 MB 129K 7.78 129 MB 521K 32.26 1.15 GB

multiplier_syn F = A · B (CSA Array) 42K 5.50 76 MB 164K 39.64 299 MB 663K 285.22 1.25 GB

mixAddMult F = A · (B + C) 33K 3.17 18 MB 131K 13.77 306 MB 525K 70.18 1.18 GB

mixAddMult_syn F = A · (B + C) 39K 5.03 80 MB 161K 34.32 302 MB 650K 209.31 1.12 GB

multiplier_3 F=A1B1 + A2B2 + A3B3 98K 5.88 75 MB 393K 23.32 392 MB 1,571K - MO

sq_comp F=A2 + 2 · A + 1 33K 2.56 18 MB 132K 10.96 285 MB 527K 48.84 1.13 GB

cube_comp F = 1 + A + A2 + A3 99K 192.8 416 MB 395K 2052.85 2.3 GB 1,576K TO -

Matrix_Mult F=A[3 × 3] · B[3 × 1] 293K 18.82 621 MB 1,176K 77.09 2.5 GB 4,712K - MO

TABLE III
CPU TIME AND MEMORY RESULTS (TO = TIMEOUT AFTER 3600 SEC; MO = MEMORY OUT OF 8 GB).

multiplier_synthesized
multiplier_3

Statistics Function-Extraction [39]

[sec]

SAT [sec] SMT [sec] Commercial

Size #Gates CPU [sec] Mem lingeling minisat_blbd ABC Boolector Z3 CVC4 Formality Our Formality

4 86 0.01 2.2 MB 0.45 0.00 0.00 0.01 0.00 0.03 0.09 0.81 0.02 2.34

8 481 0.04 2.9 MB 1.72 4.40 62.75 11.66 7.18 16.55 42.63 3.19 0.07 21.51

12 1.2K 0.08 4.3 MB 5.21 TO 1615.47 UD 2030.19 TO TO 108.1 0.17 150.65

16 2.1K 0.14 6.1 MB 7.34 TO TO UD TO TO TO 111.2 0.33 798.24

64 41.4K 5.50 76 MB TO TO TO UD TO TO TO 675.4 5.88 TO

128 164K 39.64 299 MB TO TO TO UD TO TO TO TO 23.32 TO

256 663K 285.22 1.25 GB TO TO TO UD TO TO TO TO 97.60 TO

512∗ 2,091K 130.22 4.44 GB TO TO TO UD TO TO TO TO MO TO

TABLE IV
RESULTS FOR A SYNTHESIZED MULTIPLIER; COMPARISON WITH [39], SAT, SMT, AND COMMERCIAL TOOLS (TO = TIMEOUT AFTER 3600 SEC; UD =

UNDECIDED; MO = MEMORY OUT OF 8 GB). *ABC WAS UNABLE TO SYNTHESIZE THE 512-BIT CSA MULTIPLIER DUE TO MEMORY LIMITATION.
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[37] [38]. However, as experimentally confirmed, sometimes

the rewriting process benefits from breaking the aggregated

complex gates into smaller ones to increase the chance of term

cancellation during rewriting, c.f. Section III-B4 (Complex

gates).

The verification method described in this paper can also

be used to verify and debug faulty circuits. The basic idea is

to perform signature rewriting in both direction, i.e., forward

(from PI to PO) and backward (from PO to PI), up to some

internal point (cut) of the circuit suspected of a bug. By

comparing the two signatures one can determine if the circuit

is correct of faulty. In the correct circuit, the two signature

should be the same; if they are not, the difference between

the two signatures can be used to identify the source of the

bug. The details of this approach, for the case when the bug is

caused by using a wrong type of logic gate (for example OR

instead of AND) has been described in [49] and [50]. Initial

results published in those papers, demonstrate applicability

of this approach to large multipliers. The difficulty lies in

deciding at which point the two signature should be compared,

i.e., in efficient generation of cuts to locate a bug.

Future work will concentrate on verifying circuits syn-

thesized with commercial tools; on verifying sequential and

floating point circuits; and on arithmetic circuit debugging

based on the signature rewriting concept.
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