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Abstract— This paper describes a new and efficient solution to a 
distributed event-driven gate-level HDL simulation. It is based on 
a novel concept of spatial parallelism using accurate prediction of 
input and output signals of individual local modules in local 
simulations, derived from a model at a higher abstraction level 
(RTL). Using the predicted rather than actual signal values 
makes it possible to eliminate or greatly reduce the 
communication and synchronization overhead in a distributed 
event-driven simulation. 

I. INTRODUCTION 
In order to handle the ever-increasing design complexity 

of Systems on Chip (SoC), engineers have explored a host of 
verification methods: event-driven HDL simulation, hardware-
assisted simulation acceleration, emulation, prototyping, and 
formal verification. Among those, event-driven HDL 
simulation remains the most widely used technique for 
functional and timing verification and will remain such for a 
foreseeable future. Simulation owes this popularity to its many 
advantages: ease of use, readily available simulation software, 
inexpensive computing platforms, controllability, 100% signal 
visibility (essential for efficient debugging), etc.  However, 
event-driven HDL simulation suffers from very low runtime 
performance (even less than  single cycle per second) dictated 
by its inherently sequential nature. 

Distributed parallel simulation [1][2] has been proposed 
to address the low performance of HDL simulation. So far, 
however, most of the previous methods have not been 
successful for several reasons: 1) partitioning of design under 
verification (DUV) into local modules is a known very 
difficult and design-dependent problem; and 2) an inherent 
dependence between the modules in DUV imposes heavy 
synchronization and inter-module communication overhead. 
These overheads are particularly serious in gate-level (GL) 
timing simulation.  

In this paper, we propose a new method that removes the 
major deficiencies of current distributed event-driven GL 
simulation by using highly accurate inter-module signal 
prediction. Our approach drastically minimizes the 
communication and synchronization overhead in distributed 
simulation, and is immune to sub-optimal partitioning. In 
theory, if the prediction is 100% accurate, the communication 
and synchronization overhead is completely eliminated, in 

which case even a linear speed-up can be achieved. In this 
method, each local simulation is first executed with the 
predicted inputs, rather than with the actual inputs from other 
modules in other local simulations. As long as the predictions 
are correct, each local simulation is executed totally 
independently from other local simulations, without incurring 
any communication and synchronization overhead. Only when 
the prediction fails, the communication and synchronization 
among local simulations is necessary; this happens when the 
simulation is resumed after having the design/simulation states 
properly restored. A detailed description of this new method is 
given in Section III. 

II. PREVIOUS WORK 
A rich body of literature exists in the area of parallel 

simulation, known as Parallel Discrete Event Simulation 
(PDES) concept [8]. Chamberlain [6] discusses several issues 
related to this concept, such as partitioning, synchronization, 
and granularity.  

There are basically two types of synchronization methods 
(protocols) in PDES: conservative (lockstep-base) and 
optimistic (rollback-base). It is known that the optimistic 
method is typically faster, although its performance is strongly 
design-dependent. The performance depends on the number 
and granularity of the inserted checkpoints (at compile time), 
the number of actual rollbacks (at run time), and many other 
factors, such as the type of design, the way it is partitioned, 
and how often the communication and synchronization 
between the modules actually occurs.  

Gafni [9] used state saving concept and rollback 
mechanism by restoring the saved state. Time Warp [7] (the 
“optimistic” approach) was able to reduce message passing 
overhead by using shared memory, although this method was 
not initially intended for event-driven HDL simulation. 
Fujimoto [8] and Nicol [12] improved the “conservative” 
method by introducing the concept of lookahead. 

Bauer [4] proposed several improvements over the 
standard Time Warp to increase the speedup, including 
incremental state saving, bounding window, and 
synchronization granularity; he also applied the concept to 
gate-level simulation. It achieved speedup between 2 and 4 
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over the sequential LDSIM simulator on 12 processors. 
Bagrodia et. al. [3] developed a parallel gate-level circuit 
simulator in the MAISIE simulation language and 
implemented it on both distributed memory and shared 
memory parallel architectures, achieving speedup of 2-3 on 8 
processors. Lungeanu [11] proposed a “dynamic” approach, 
which combines conservative and optimistic approaches by 
switching between the two protocols depending on the amount 
of rollback. They demonstrated speedup of up to 11 on 16 
processors on a circuit with 14k gates. 

Li et. al. [10] claim to have developed the first Verilog 
distributed simulator even though it failed to get the desired 
performance improvement. Zhu et. al. [14] was able to achieve 
a considerable speedup improvement with a large gate-level 
decoder design. However, such a design is a special case that 
provides almost ideal partitioning, which is generally not 
possible to achieve. 

Most of the results in this area have been demonstrated 
only on small to moderate size, single-clock designs that can 
be partitioned without incurring significant inter-module 
communication and synchronization. Only a few commercial 
products have been developed, including SimCluster [1] and 
MP-Sim [2], the latter one requiring a proprietary simulator. 
However, they have not attracted the expected attention of 
designers, due to their limited performance and scalability. 
Most recently, the parallel gate-level simulation methods using 
GPU (Graphic Processing Unit) have been proposed [5].  They 
are confined to gate-level simulation mode with zero delay 
only, and their performance is strongly dependent upon the 
type of design being simulated. 

III. A NEW DISTRIBUTED PARALLEL EVENT-DRIVEN   
GATE-LEVEL HDL SIMULATION 

The main goal of the proposed parallel event-driven GL 
HDL simulation using highly accurate inter-module signal 
prediction is to make the simulation immune to suboptimal 
design partitioning and eliminate, as much as possible, 
computational overhead associated with data synchronization 
and inter-module communication. The simulation process 
consists of the following steps: 
• Each local simulation is executed with the predicted input, 

without incurring any communication or synchronization 
cost for exchanging data with other local simulations. At 
the same time, each local simulation performs 
checkpointing for possible future rollback. (We will refer 
to this step as the prediction phase.) 

• In the prediction phase, each local simulation compares 
the computed actual output with the predicted output. If 
the comparison fails, the failure notice and the current 
simulation time stamp are globally broadcast to all local 
simulations. 

• Once the failure notice and the simulation time stamp are 
received, each local simulation rolls back to the nearest 
checkpoint. From this point on, each local simulation is 
executed with the actual inputs, incurring the 
communication and synchronization overhead for 
exchanging data with other local simulations. (We will 
call this the actual phase.) 

• In the actual phase, each local simulation compares the 
actual input with the predicted input, and counts the 
number of matches. If the number of matches exceeds 
some predetermined threshold value in all local 
simulations, the actual phase is switched back to the 
prediction phase and the simulation continues in the 
prediction phase. 

In this approach, the communication and synchronization 
overhead among local simulations occurs only during the 
actual phase, and there is no such communication and 
synchronization overhead during the prediction phase. 
Therefore, the success of this method depends entirely on the 
prediction accuracy. In theory, if the prediction is 100% 
correct, the communication and synchronization overhead is 
totally eliminated. To increase checkpointing efficiency, we 
could use snapshots of design state. Practically, obtaining a 
design state even for a large-scale design can be done quickly 
[15]. From a resource point of view, as all the globally passed 
checkpoints during the simulation can be removed, we don't 
expect to see significant resource consumption. Moreover, the 
checkpoint granularity can be adjusted dynamically depending 
on rollback frequency. 

Our tactic to obtain such accurately predicted inputs and 
outputs quickly is to use the model at a higher abstraction 
level. For GL timing simulation considered in this work RTL 
model can be used as an accurate and fast predictor. In other 
words, in each local simulation a partitioned GL module is 
executed together with the entire RTL design model, i.e. the 
original DUV at RTL and with the testbench, as a predictor. 
The purpose of executing the entire RTL in each local 
simulation is to generate the predicted inputs and outputs 
accurately and quickly. Those predicted inputs and outputs are 
then used in the prediction phase. 

Conceptual view of the proposed parallel simulation using 
highly accurate prediction is shown in Fig. 1. Fig. 1(a) shows 
the original GL design to be simulated. Fig. 1(b) shows the 
corresponding RTL model, which is used for generating 
predicted inputs and outputs for each local simulation, as an 
accurate and fast predictor. It is known that an RTL simulation 
is at least 100 times faster than GL model (see the preliminary 
experimentation in Section IV). As shown in Fig. 1(c), the 
original GL design is partitioned into six modules, each to run 
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Figure 1. Basic concept of the proposed parallel event-driven 

HDL simulation using highly accurate prediction. 
 
 
 
 



as local simulation on a local HDL simulator. Each local 
simulation is depicted to use an RTL model as the accurate 
and fast predictor at the top, and a partitioned GL block at the 
bottom left of each figure. Each local simulation, executed on 
a separate CPU or a processor core, is performed with each 
partitioned GL module and with the (fast) RTL model for the 
entire design. The RTL model for the entire design in each 
local simulation generates the required highly accurate 
predicted inputs and outputs, needed for this method. 

Usually, GL netlist is the outcome of logic synthesis that 
starts with RTL model of the design. Therefore, we can 
assume that GL and RTL designs are 100% cycle-by-cycle 
equivalent for designs with a single clock, and almost 100% 
cycle-by-cycle equivalent for designs with multiple 
asynchronous clocks (the reason for occasional discrepancy 
will be explained shortly).  

However, for our approach to work, the predicted inputs 
and outputs must have accurate delays assigned to the 
combinational logic so that every local simulation is executed 
in the prediction phase as often as possible. This means that in 
order to minimize prediction failures, we must annotate the  
exact delay values to the predicted inputs and outputs obtained 
from the RTL model. To accomplish this, we will explore a 
simple but efficient partitioning strategy, explained below. 

A better partitioning scheme satisfying the above 
requirement is to partition the GL design into multiple 
modules at the flipflop boundary (Fig. 2). This way, the size of 
each partition can be increased or decreased easily, depending 
on the number of CPU or processor cores available. Also, the 
predicted inputs and outputs obtained from RTL DUV can be 
made accurate by annotating simple yet accurate delay values. 
This is because there are no multiple combinational paths 
between the partitions that would make the prediction of exact 
delay values difficult; there is just a single connecting path 
from a flipflop in one partition to other partition(s). Those 
annotated simple delay values are actually clock-to-Q delays 
of the corresponding flipflops, which are easily obtained from 
the timing characteristics of the flipflops. This helps to 
significantly increase the prediction accuracy. 

The detailed architecture for local simulation in our 
parallel event-driven GL HDL simulation is shown in Fig. 3. 
From the computer architecture point of view, our strategy is 
to significantly off-load the heavy I/O processing, necessary 
for communication and synchronization activities in 
conventional distributed parallel simulation by only slightly 

increasing the internal computation at each processor. 
Our approach provides an important additional benefit: 

RTL model naturally plays a role of the reference model. 
Therefore, our method can automatically determine whether 
the design to be simulated is consistent with the model at the 
higher level of abstraction. Possible simulation mismatches 
between the RTL and GL models (caused by functional 
difference and/or timing violation) can be automatically 
detected and reported to the designer or verification engineer 
for a possible investigation and debugging. 

IV. PRELIMINARY EXPERIMENTAL RESULTS 
To provide a preliminary proof of concept for the 

proposed parallel event-driven GL HDL simulation approach 
using highly accurate prediction, we performed several 
experiments in gate-level timing simulation and RTL 
simulation. 

For designs having a single clock, the RTL simulation and 
its corresponding gate-level timing simulation must be 100% 
cycle accurate at the flipflops boundary. Therefore, in parallel 
GL timing simulation, our prediction can achieve 100% 
accuracy without much difficulty. But, as mentioned earlier, 
one of the challenging questions is whether 100% accurate 
prediction could be achieved for designs with multiple 
asynchronous clocks. Normally, in the presence of such 
multiple clocks the RTL simulation and its corresponding 
gate-level timing simulation may not be 100% cycle accurate 
at the flipflops boundary. The discrepancy between RTL 
simulation and GL timing simulation can be observed on some 
of the CDC (Clock Domain Crossing) signals when the 
sending clock and a receiving clock exhibit a specific phase 
relation. We would like to emphasize that for the designs 
having multiple asynchronous clocks, gate-level timing 
simulation is still correct even though it may not be 100% 
cycle equivalent with respect to its corresponding RTL 
simulation. Therefore, our approach should produce the same 
exact result as the traditional GL timing simulation.  

We have conducted an experiment with a real design 
(handshaking logic) commonly used for data transfer between 
two asynchronous clocks domain. The design, shown in Fig. 
4(a), was synthesized using Xilinx Foundation tool and 
simulated using Cadence NC-Verilog. 

!
 

Figure 2. Partitioning scheme for accurate prediction. 
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Figure 3. Detailed architecture for local simulation. 



We observed that the output values of the first flipflop in 
the synchronizer for REQ signal of the gate-level timing 
simulation differs only 69 times from that of RTL functional 
simulation during the entire simulation of 9,460 cycles. This 
could already provide evidence that RTL design is accurate 
enough for being an excellent predictor in our parallel event-
driven GL timing simulation approach even for designs with 
multiple asynchronous clocks. One of such situations is 
depicted in Fig. 4(b). In this design, all cycle discrepancies are 
observed strictly during a single cycle period only; they are 
not propagated to the next simulation time.  

The performance of the proposed parallel event-driven 
GL timing simulation using highly accurate inter-module 
signal prediction can be extrapolated from the data in Table 1. 
As shown in the table, the RTL simulation of AES and JPEG 
encoder designs [13] is significantly faster than the SDF 
delay-annotated GL simulation. Also, as both designs have a 
single clock, the same cycle accuracy for all flipflops in the 
design has been observed at both the RTL simulation and GL 
timing simulation.  

Based on these experiments, we are confident that the 
RTL model is an excellent predictor for our spatial parallel 
event-driven GL timing simulation. It is at least two orders of 
magnitude faster, and almost 100% accurate even for designs 
with multiple asynchronous clocks. 

Table 1.  RTL and GL conventional timing simulation times 

V. CONCLUSIONS AND FUTURE WORK 
We propose a novel, radically different solution to greatly 

reduce or completely eliminate communication and 
synchronization overhead in a distributed event-driven GL 

simulation. This is achieved by performing simulation with 
highly accurate inter-module signal prediction that comes 
from RTL model. A simple but powerful flipflop-bounded 
partitioning scheme is introduced to obtain accurate signal 
prediction considering delay in GL simulation. Since our 
approach naturally includes comparison with a reference 
model, we believe that the proposed simulation method 
provides a “correct by simulation” methodology, which 
explicitly checks the consistency between RTL and GL 
models, once the RTL model has met the specification.  

In principle, the proposed approach is also applicable to 
distributed RTL simulation if a higher abstraction model, i.e., 
Transactional Level (TL) model, is used as an accurate 
predictor. Our final goal is to increase the performance RTL 
simulation by our distributed HDL simulation with accurate 
prediction, which is our future research topic.  
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(sec) 

GL timing 
simulation (sec) Ratio 

AES 110 18669 × 167 
JPEG encoder 184 47192 × 256 

 
(a) Two-Phase Handshaking Logic 

 
(b) Cycle discrepancy between RTL and GL timing simulation 

Figure 4. Two-Phase Handshaking Logic. 
 


