
A New Distributed Event-driven Gate-level HDL
Simulation by Accurate Prediction
Dusung Kim1 Maciej Ciesielski1 Seiyang Yang2

1Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA, USA 01003

{dukim, ciesiel}@ecs.umass.edu
2Department of Computer Engineering

Pusan National University, Busan, Korea, 609-735
syyang@pusan.ac.kr

Abstract— This paper describes a new and efficient solution to a
distributed event-driven gate-level HDL simulation. It is based on
a novel concept of spatial parallelism using accurate prediction of
input and output signals of individual local modules in local
simulations, derived from a model at a higher abstraction level
(RTL). Using the predicted rather than actual signal values
makes it possible to eliminate or greatly reduce the
communication and synchronization overhead in a distributed
event-driven simulation.

I. INTRODUCTION
In order to handle the ever-increasing design complexity

of Systems on Chip (SoC), engineers have explored a host of
verification methods: event-driven HDL simulation, hardware-
assisted simulation acceleration, emulation, prototyping, and
formal verification. Among those, event-driven HDL
simulation remains the most widely used technique for
functional and timing verification and will remain such for a
foreseeable future. Simulation owes this popularity to its many
advantages: ease of use, readily available simulation software,
inexpensive computing platforms, controllability, 100% signal
visibility (essential for efficient debugging), etc. However,
event-driven HDL simulation suffers from very low runtime
performance (even less than single cycle per second) dictated
by its inherently sequential nature.

Distributed parallel simulation [1][2] has been proposed
to address the low performance of HDL simulation. So far,
however, most of the previous methods have not been
successful for several reasons: 1) partitioning of design under
verification (DUV) into local modules is a known very
difficult and design-dependent problem; and 2) an inherent
dependence between the modules in DUV imposes heavy
synchronization and inter-module communication overhead.
These overheads are particularly serious in gate-level (GL)
timing simulation.

In this paper, we propose a new method that removes the
major deficiencies of current distributed event-driven GL
simulation by using highly accurate inter-module signal
prediction. Our approach drastically minimizes the
communication and synchronization overhead in distributed
simulation, and is immune to sub-optimal partitioning. In
theory, if the prediction is 100% accurate, the communication
and synchronization overhead is completely eliminated, in

which case even a linear speed-up can be achieved. In this
method, each local simulation is first executed with the
predicted inputs, rather than with the actual inputs from other
modules in other local simulations. As long as the predictions
are correct, each local simulation is executed totally
independently from other local simulations, without incurring
any communication and synchronization overhead. Only when
the prediction fails, the communication and synchronization
among local simulations is necessary; this happens when the
simulation is resumed after having the design/simulation states
properly restored. A detailed description of this new method is
given in Section III.

II. PREVIOUS WORK
A rich body of literature exists in the area of parallel

simulation, known as Parallel Discrete Event Simulation
(PDES) concept [8]. Chamberlain [6] discusses several issues
related to this concept, such as partitioning, synchronization,
and granularity.

There are basically two types of synchronization methods
(protocols) in PDES: conservative (lockstep-base) and
optimistic (rollback-base). It is known that the optimistic
method is typically faster, although its performance is strongly
design-dependent. The performance depends on the number
and granularity of the inserted checkpoints (at compile time),
the number of actual rollbacks (at run time), and many other
factors, such as the type of design, the way it is partitioned,
and how often the communication and synchronization
between the modules actually occurs.

Gafni [9] used state saving concept and rollback
mechanism by restoring the saved state. Time Warp [7] (the
“optimistic” approach) was able to reduce message passing
overhead by using shared memory, although this method was
not initially intended for event-driven HDL simulation.
Fujimoto [8] and Nicol [12] improved the “conservative”
method by introducing the concept of lookahead.

Bauer [4] proposed several improvements over the
standard Time Warp to increase the speedup, including
incremental state saving, bounding window, and
synchronization granularity; he also applied the concept to
gate-level simulation. It achieved speedup between 2 and 4

978-3-9810801-7-9/DATE11/©2011 EDAA

over the sequential LDSIM simulator on 12 processors.
Bagrodia et. al. [3] developed a parallel gate-level circuit
simulator in the MAISIE simulation language and
implemented it on both distributed memory and shared
memory parallel architectures, achieving speedup of 2-3 on 8
processors. Lungeanu [11] proposed a “dynamic” approach,
which combines conservative and optimistic approaches by
switching between the two protocols depending on the amount
of rollback. They demonstrated speedup of up to 11 on 16
processors on a circuit with 14k gates.

Li et. al. [10] claim to have developed the first Verilog
distributed simulator even though it failed to get the desired
performance improvement. Zhu et. al. [14] was able to achieve
a considerable speedup improvement with a large gate-level
decoder design. However, such a design is a special case that
provides almost ideal partitioning, which is generally not
possible to achieve.

Most of the results in this area have been demonstrated
only on small to moderate size, single-clock designs that can
be partitioned without incurring significant inter-module
communication and synchronization. Only a few commercial
products have been developed, including SimCluster [1] and
MP-Sim [2], the latter one requiring a proprietary simulator.
However, they have not attracted the expected attention of
designers, due to their limited performance and scalability.
Most recently, the parallel gate-level simulation methods using
GPU (Graphic Processing Unit) have been proposed [5]. They
are confined to gate-level simulation mode with zero delay
only, and their performance is strongly dependent upon the
type of design being simulated.

III. A NEW DISTRIBUTED PARALLEL EVENT-DRIVEN
GATE-LEVEL HDL SIMULATION

The main goal of the proposed parallel event-driven GL
HDL simulation using highly accurate inter-module signal
prediction is to make the simulation immune to suboptimal
design partitioning and eliminate, as much as possible,
computational overhead associated with data synchronization
and inter-module communication. The simulation process
consists of the following steps:
• Each local simulation is executed with the predicted input,

without incurring any communication or synchronization
cost for exchanging data with other local simulations. At
the same time, each local simulation performs
checkpointing for possible future rollback. (We will refer
to this step as the prediction phase.)

• In the prediction phase, each local simulation compares
the computed actual output with the predicted output. If
the comparison fails, the failure notice and the current
simulation time stamp are globally broadcast to all local
simulations.

• Once the failure notice and the simulation time stamp are
received, each local simulation rolls back to the nearest
checkpoint. From this point on, each local simulation is
executed with the actual inputs, incurring the
communication and synchronization overhead for
exchanging data with other local simulations. (We will
call this the actual phase.)

• In the actual phase, each local simulation compares the
actual input with the predicted input, and counts the
number of matches. If the number of matches exceeds
some predetermined threshold value in all local
simulations, the actual phase is switched back to the
prediction phase and the simulation continues in the
prediction phase.

In this approach, the communication and synchronization
overhead among local simulations occurs only during the
actual phase, and there is no such communication and
synchronization overhead during the prediction phase.
Therefore, the success of this method depends entirely on the
prediction accuracy. In theory, if the prediction is 100%
correct, the communication and synchronization overhead is
totally eliminated. To increase checkpointing efficiency, we
could use snapshots of design state. Practically, obtaining a
design state even for a large-scale design can be done quickly
[15]. From a resource point of view, as all the globally passed
checkpoints during the simulation can be removed, we don't
expect to see significant resource consumption. Moreover, the
checkpoint granularity can be adjusted dynamically depending
on rollback frequency.

Our tactic to obtain such accurately predicted inputs and
outputs quickly is to use the model at a higher abstraction
level. For GL timing simulation considered in this work RTL
model can be used as an accurate and fast predictor. In other
words, in each local simulation a partitioned GL module is
executed together with the entire RTL design model, i.e. the
original DUV at RTL and with the testbench, as a predictor.
The purpose of executing the entire RTL in each local
simulation is to generate the predicted inputs and outputs
accurately and quickly. Those predicted inputs and outputs are
then used in the prediction phase.

Conceptual view of the proposed parallel simulation using
highly accurate prediction is shown in Fig. 1. Fig. 1(a) shows
the original GL design to be simulated. Fig. 1(b) shows the
corresponding RTL model, which is used for generating
predicted inputs and outputs for each local simulation, as an
accurate and fast predictor. It is known that an RTL simulation
is at least 100 times faster than GL model (see the preliminary
experimentation in Section IV). As shown in Fig. 1(c), the
original GL design is partitioned into six modules, each to run

B1 B2

B3 B4
B1

GL Block

RTL Block

Monitors and Drivers

Testbench

Local simulation DUT

B1 B2

B3 B4

B2

B1 B2

B3 B4

B3

B1 B2

B3 B4

B4

B1 B2

B3 B4

B1 B2

B3 B4

B1 B2

B3 B4
B1 B2

B3 B4

(a) An original GL design to be simulated

(b) An RTL design, which is used for
generating predicted inputs and outputs
in local simulation (c) Proposed parallel simulation using highly accurate prediction

cpu1 cpu2 cpu3

cpu4 core5 core6

Figure 1. Basic concept of the proposed parallel event-driven

HDL simulation using highly accurate prediction.

as local simulation on a local HDL simulator. Each local
simulation is depicted to use an RTL model as the accurate
and fast predictor at the top, and a partitioned GL block at the
bottom left of each figure. Each local simulation, executed on
a separate CPU or a processor core, is performed with each
partitioned GL module and with the (fast) RTL model for the
entire design. The RTL model for the entire design in each
local simulation generates the required highly accurate
predicted inputs and outputs, needed for this method.

Usually, GL netlist is the outcome of logic synthesis that
starts with RTL model of the design. Therefore, we can
assume that GL and RTL designs are 100% cycle-by-cycle
equivalent for designs with a single clock, and almost 100%
cycle-by-cycle equivalent for designs with multiple
asynchronous clocks (the reason for occasional discrepancy
will be explained shortly).

However, for our approach to work, the predicted inputs
and outputs must have accurate delays assigned to the
combinational logic so that every local simulation is executed
in the prediction phase as often as possible. This means that in
order to minimize prediction failures, we must annotate the
exact delay values to the predicted inputs and outputs obtained
from the RTL model. To accomplish this, we will explore a
simple but efficient partitioning strategy, explained below.

A better partitioning scheme satisfying the above
requirement is to partition the GL design into multiple
modules at the flipflop boundary (Fig. 2). This way, the size of
each partition can be increased or decreased easily, depending
on the number of CPU or processor cores available. Also, the
predicted inputs and outputs obtained from RTL DUV can be
made accurate by annotating simple yet accurate delay values.
This is because there are no multiple combinational paths
between the partitions that would make the prediction of exact
delay values difficult; there is just a single connecting path
from a flipflop in one partition to other partition(s). Those
annotated simple delay values are actually clock-to-Q delays
of the corresponding flipflops, which are easily obtained from
the timing characteristics of the flipflops. This helps to
significantly increase the prediction accuracy.

The detailed architecture for local simulation in our
parallel event-driven GL HDL simulation is shown in Fig. 3.
From the computer architecture point of view, our strategy is
to significantly off-load the heavy I/O processing, necessary
for communication and synchronization activities in
conventional distributed parallel simulation by only slightly

increasing the internal computation at each processor.
Our approach provides an important additional benefit:

RTL model naturally plays a role of the reference model.
Therefore, our method can automatically determine whether
the design to be simulated is consistent with the model at the
higher level of abstraction. Possible simulation mismatches
between the RTL and GL models (caused by functional
difference and/or timing violation) can be automatically
detected and reported to the designer or verification engineer
for a possible investigation and debugging.

IV. PRELIMINARY EXPERIMENTAL RESULTS
To provide a preliminary proof of concept for the

proposed parallel event-driven GL HDL simulation approach
using highly accurate prediction, we performed several
experiments in gate-level timing simulation and RTL
simulation.

For designs having a single clock, the RTL simulation and
its corresponding gate-level timing simulation must be 100%
cycle accurate at the flipflops boundary. Therefore, in parallel
GL timing simulation, our prediction can achieve 100%
accuracy without much difficulty. But, as mentioned earlier,
one of the challenging questions is whether 100% accurate
prediction could be achieved for designs with multiple
asynchronous clocks. Normally, in the presence of such
multiple clocks the RTL simulation and its corresponding
gate-level timing simulation may not be 100% cycle accurate
at the flipflops boundary. The discrepancy between RTL
simulation and GL timing simulation can be observed on some
of the CDC (Clock Domain Crossing) signals when the
sending clock and a receiving clock exhibit a specific phase
relation. We would like to emphasize that for the designs
having multiple asynchronous clocks, gate-level timing
simulation is still correct even though it may not be 100%
cycle equivalent with respect to its corresponding RTL
simulation. Therefore, our approach should produce the same
exact result as the traditional GL timing simulation.

We have conducted an experiment with a real design
(handshaking logic) commonly used for data transfer between
two asynchronous clocks domain. The design, shown in Fig.
4(a), was synthesized using Xilinx Foundation tool and
simulated using Cadence NC-Verilog.

!

Figure 2. Partitioning scheme for accurate prediction.

HDL simulator for
local simulation

Sub-block
in DUV and
Testbench

Control
module

Selection
module

Compare
module

Model at higher
level of abstraction

(Predictor)
C

o
m

m
u
n
ic

a
tio

n
 a

n
d
 s

yn
c
h
ro

n
iza

tio
n
 m

o
d
u
le

fo

r s
p
a
tia

l p
a
ra

lle
l s

im
u
la

tio
n

actual output

actual input

Compare
module

rollback_time

actual input

actual output

Predicted
output

predicted
input

Figure 3. Detailed architecture for local simulation.

We observed that the output values of the first flipflop in
the synchronizer for REQ signal of the gate-level timing
simulation differs only 69 times from that of RTL functional
simulation during the entire simulation of 9,460 cycles. This
could already provide evidence that RTL design is accurate
enough for being an excellent predictor in our parallel event-
driven GL timing simulation approach even for designs with
multiple asynchronous clocks. One of such situations is
depicted in Fig. 4(b). In this design, all cycle discrepancies are
observed strictly during a single cycle period only; they are
not propagated to the next simulation time.

The performance of the proposed parallel event-driven
GL timing simulation using highly accurate inter-module
signal prediction can be extrapolated from the data in Table 1.
As shown in the table, the RTL simulation of AES and JPEG
encoder designs [13] is significantly faster than the SDF
delay-annotated GL simulation. Also, as both designs have a
single clock, the same cycle accuracy for all flipflops in the
design has been observed at both the RTL simulation and GL
timing simulation.

Based on these experiments, we are confident that the
RTL model is an excellent predictor for our spatial parallel
event-driven GL timing simulation. It is at least two orders of
magnitude faster, and almost 100% accurate even for designs
with multiple asynchronous clocks.

Table 1. RTL and GL conventional timing simulation times

V. CONCLUSIONS AND FUTURE WORK
We propose a novel, radically different solution to greatly

reduce or completely eliminate communication and
synchronization overhead in a distributed event-driven GL

simulation. This is achieved by performing simulation with
highly accurate inter-module signal prediction that comes
from RTL model. A simple but powerful flipflop-bounded
partitioning scheme is introduced to obtain accurate signal
prediction considering delay in GL simulation. Since our
approach naturally includes comparison with a reference
model, we believe that the proposed simulation method
provides a “correct by simulation” methodology, which
explicitly checks the consistency between RTL and GL
models, once the RTL model has met the specification.

In principle, the proposed approach is also applicable to
distributed RTL simulation if a higher abstraction model, i.e.,
Transactional Level (TL) model, is used as an accurate
predictor. Our final goal is to increase the performance RTL
simulation by our distributed HDL simulation with accurate
prediction, which is our future research topic.

ACKNOWLEDGMENT
This work was supported in part by the US National Science
Foundation, award no. CCF 0702506 and CCF 1017530.

REFERENCES
[1] SimCluster datasheet, Avery Design Automation (http://www.avery-

design.com)
[2] MP-Sim datasheet, Axiom Design Automation (http://www.axiom-

da.com)
[3] R. Bagrodia, Y. Chen, V. Jha and N. Sonpar. “Parallel Gate-level Circuit

Simulation on Shared Memory Architectures.” In Computer Aided
Design of High Performance Network Wireless Networked Systems,,
NSF pp. 170-174, 1995.

[4] H. Bauer, C. Sporrer, and T. Krodel. “On Distributed Logic Simulation
using Time Warp.” in Proc. VLSI International Conference (IFIP),
Edinburgh, 1991.

[5] D. Chatterjee, A. DeOrio and V. Bertacco, "Event-Driven Gate-Level
Simulation with GP-GPUs." in Proc. ACM/IEEE Design Automation
Conference (DAC’09), San Francisco, CA, pp. 557-562, July 2009.

[6] R.D. Chamberlain, “Parallel Logic Simulation of VLSI Systems.”, in
Proc. 32nd ACM/IEEE Conference on Design Automation, pp 139-143,
1995.

[7] R.M. Fujimoto, “Time Warp on a Shared Memory Multiprocessor”,
Transactions of the Society for Computer Simulation, Vol, 6, No. 3, pp
211-239, July 1989

[8] R.M. Fujimoto, "Parallel Discrete Event Simulation." Communication of
the ACM, Vol. 33, No. 10, pp 30-53, Oct. 1990.

[9] A. Gafni. “Rollback Mechanisms for Optimistic Distributed Simulation
Systems.” in Proc. the SCS Multiconference on Distributed Simulation,
vol.3, pp 61-67, July 1988

[10] L. Li, H. Huang and C. Tropper, “DVS: An Object-Oriented Framework
for Distributed Verilog Simulation”, in Proc. of the 17th Workshop on
Parallel and Distributed Simulation (PADS’03), 2003.

[11] D. Lungeanu and C.J.R. Shi. “Parallel and Distributed VHDL
Simulation”, in Proc. Design, Automation and Test in Europe
(DATE’00), pp 658–662, March 2000.

[12] D.M. Nicol, “Principles of Conservative Parallel Simulation.” in Proc.
of the 28th Winter Simulation Conference, pp. 128–135, 1996.

[13] http://www.opencores.org
[14] L. Zhu, G. Chen, B.K. Szymanski, C. Tropper, Tong Zhang “Parallel

Logic Simulation of Million-Gate VLSI Circuits” in Proc. 13th IEEE
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems - MASCOTS '05, 2005.

[15] D. Kim, M. Ciesielski, K. Shim and S. Yang, “ Temporal parallel gate-
level timing simulation”, in Proc. High Level Design Validation and
Test Workshop (HLDVT), pp. 111–116, 2008

Design RTL simulation
(sec)

GL timing
simulation (sec) Ratio

AES 110 18669 × 167
JPEG encoder 184 47192 × 256

(a) Two-Phase Handshaking Logic

(b) Cycle discrepancy between RTL and GL timing simulation

Figure 4. Two-Phase Handshaking Logic.

